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RESOLUTIONS OF SUBSETS OF FINITE SETS OF POINTS IN

PROJECTIVE SPACE

STEVEN P. DIAZ, ANTHONY V. GERAMITA, AND JUAN C. MIGLIORE

Abstract. Given a finite set, X, of points in projective space for which the
Hilbert function is known, a standard result says that there exists a subset of
this finite set whose Hilbert function is “as big as possible” inside X. Given a
finite set of points in projective space for which the minimal free resolution of
its homogeneous ideal is known, what can be said about possible resolutions
of ideals of subsets of this finite set? We first give a maximal rank type
description of the most generic possible resolution of a subset. Then we show
that this generic resolution is not always achieved, by incorporating an example
of Eisenbud and Popescu. However, we show that it is achieved for sets of
points in projective two space: given any finite set of points in projective two
space for which the minimal free resolution is known, there must exist a subset
having the predicted resolution.

1. Introduction

We work over an algebraically closed field, k. Let X = {P1, . . . , Pd} be a finite
set of d distinct points in projective n-space over k, P

n. Associated to X we have
its homogeneous ideal I(X) ⊂ k[x0, . . . , xn] = S and its homogeneous coordinate
ring S(X) = S/I(X). A fundamental invariant of X is its Hilbert function, hX ,
defined to be the Hilbert function of S(X):

hX(t) = dimk S(X)t.

Lacking some uniformity property such as the Uniform Position Property (UPP),
the subsets of X of fixed cardinality may have different Hilbert functions. Given
this, it is somewhat surprising at first glance that there is always at least one
subset with a predetermined Hilbert function. Indeed, one of the fundamental
results about Hilbert functions of subsets of X is the following:

Lemma 1.1. Fix an integer e, 1 ≤ e < d. Then there exists a subset Y of X of
exactly e points such that

hY (t) = min{hX(t), e}.

Proof. This is very well known. See for instance [GMR], Lemma 2.5 (c). See also
Remark 4.5.

The Hilbert function is a very coarse measure of the properties of X . Related
finer measures that are often studied are the graded Betti numbers and twists of
the minimal graded free resolution of S(X) or equivalently I(X).

0 → Fn−1 → · · · → F1 → F0 → I(X) → 0(1.1)
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where Fi = ⊕ri

j=1(S(−γij))
αij . The γij are the twists and the αij are the graded

Betti numbers. Since Lemma 1.1 is so useful for Hilbert functions, one may wonder
whether there is a corresponding result for resolutions.

In section 2 we state a natural first guess at a possible generalization of Lemma 1.1
to resolutions. The guess is stated in terms of Koszul cohomology. The basic idea
of the guess is that at least one subset of X of each cardinality should behave
as generically as possible subject to some obvious constraints imposed by being a
subset of X . The guess is very similar to the Minimal Resolution Conjecture of
Lorenzini [L2] except that the Minimal Resolution Conjecture does not deal with
subsets.

In section 3 we show that the guess of section 2 is incorrect. In fact a counterex-
ample to the Minimal Resolution Conjecture provided in [EP] is used to construct
a counterexample to the guess. While the Minimal Resolution Conjecture did not
turn out to be true in full generality, it is true in many cases and is perhaps a good
first start at understanding the true situation. (The end of the introduction to [HS]
contains a good list of references to results about the Minimal Resolution Conjec-
ture.) One might still hope that the guess of section 2 would behave similarly. We
make this hope more precise with some questions at the end of section 3.

In sections 4 and 5 we answer these questions for P
2 by showing that the guess

is true for sets of points in P
2 (a place where the Minimal Resolution Conjecture

of Lorenzini is also known to be true). A variety of tools are used to carry this
out. We divide the problem into four cases, depending on the number of minimal
generators of I(X) in the maximum possible degree. The three easiest of these
cases are treated in section 4. The most difficult is the case where I(X) has two
minimal generators in this degree, and this case is treated in section 5. Here we
combine liaison theory with a careful study of certain sections of a certain twist of
Ω1

P2 , the sheaf of differential one-forms on P
2.

2. A First Guess

We first recall briefly how the graded Betti numbers of an ideal may be computed
using Koszul cohomology; see [G] section 1 for more details. One makes a complex

· · · →
∧p+1

S1 ⊗ I(X)q−1

dp+1,q−1

−−−−−→
∧p

S1 ⊗ I(X)q

dp,q

−−−→
∧p−1

S1 ⊗ I(X)q+1

dp−1,q+1

−−−−−→
∧p−2S1 ⊗ I(X)q+2 → . . .

(2.1)

where dp,q(l1 ∧ l2 ∧ · · · ∧ lp ⊗ f) =
∑p

i=1
(−1)p−il1 ∧ · · · ∧ li−1 ∧ li+1 ∧ · · · ∧ lp ⊗ lif.

In the resolution (1.1) the exponent of S(−(p + q)) in Fp is the dimension, as a
vector space over k, of the cohomology group

ker dp,q

im dp+1,q−1

.

Of course an exponent of 0 means that S(−(p+ q)) does not appear. One certainly

knows the dimensions of the vector spaces
∧i

S1. If one also knew the Hilbert
function of X and thus the dimensions of the vector spaces I(X)j, then to compute
all the graded Betti numbers and twists for I(X) it would be sufficient to know the
ranks of all the maps di,j . Thus, our guess will combine Lemma 1.1 with a guess
about these ranks.
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As before X = {P1, . . . , Pd} consists of d distinct points. We assume that the
Hilbert function and resolution of X are known. We fix an integer 1 ≤ e < d. We
guess that there should exist a subset Y of X of exactly e points such that the
graded Betti numbers and twists of the graded minimal free resolution of I(Y ) are
determined as follows in (a) and (b).

(a) The Hilbert function of Y is as in Lemma 1.1. Since Y ⊂ X , for each i,
I(X)i ⊂ I(Y )i and we may compare the complex (2.1) for I(X) and the
corresponding one for I(Y ) by the following commutative diagram.

· · · →
∧p

S1 ⊗ I(X)q

dp,q

−−−→
∧p−1

S1 ⊗ I(X)q+1 → . . .
⋂ ⋂

· · · →
∧pS1 ⊗ I(Y )q

ep,q

−−−→
∧p−1S1 ⊗ I(Y )q+1 → . . .

Assuming (a), we know the dimensions of all the I(Y )j . We then guess that
the ranks of the ei,j will be as follows

(b) Of course e0,p+q is the zero map. Having determined the rank of ei,p+q−i, the
rank of ei+1,p+q−i−1 is as large as possible subject to the two constraints:
(i) ker ei+1,p+q−i−1 must contain ker di+1,p+q−i−1

(ii) im ei+1,p+q−i−1 must be contained in ker ei,p+q−i.
In other words rank ei+1,p+q−i−1 is the smaller of

(i′) dim
∧i+1

S1 ⊗ I(Y )p+q−i−1 − dimker di+1,p+q−i−1 and
(ii′) dimker ei,p+q−i.

3. A Counter-Example to the First Guess

As mentioned in the introduction this guess is similar to the Minimal Resolution
Conjecture of Lorenzini. They are both Maximal Rank Conjectures in that they
conjecture that certain vector space maps have ranks as large as possible. It is not
surprising, therefore, that one can construct a counterexample to the guess out of
a counterexample to the Minimal Resolution Conjecture.

In the introduction to [EP] they point out that for 11 general points in P
6 the

Minimal Resolution Conjecture predicts the resolution to be

0 → S(−8)4 → S(−7)18 → S(−6)25⊕S(−5)4 → S(−4)45 →

S(−3)46 → S(−2)17 → I → 0

whereas the actual resolution is

0 → S(−8)4 → S(−7)18 → S(−6)25⊕ S(−5)5 → S(−5)1 ⊕ S(−4)45 →

S(−3)46 → S(−2)17 → I → 0.

From [L1] section 3 or [L2] section 3 we know that the Minimal Resolution
Conjecture is true for 22 general points in P

6. Thus one can work out that the
resolution of 22 general points in P

6 is

0 → S(−8)15 → S(−7)84 → S(−6)190 →S(−5)216 → S(−4)120 →

S(−2)6 ⊕ S(−3)20 → I → 0.

Any subset of 11 points of 22 general points is a set of 11 general points. Let us
see what the guess predicts as the resolution of 11 points contained in 22 general
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points. The crucial term is S(−5) so we compute only that. The relevant Koszul
complex to look at is

0 →
∧3

S1 ⊗ I2

d3,2

−−−→
∧2

S1 ⊗ I3

d2,3

−−−→
∧1

S1 ⊗ I4

d1,4

−−−→
∧0

S1 ⊗ I5 → 0.(3.1)

When I is the ideal of 22 general points, using that these points have generic
Hilbert function 1, 7, 22, 22, . . . , one easily computes the dimensions in (3.1) as

0 → 210
d3,2

−−−→ 1302
d2,3

−−−→ 1316
d1,4

−−−→ 440 → 0.

To get the known resolution we must then have

rank d1,4 = 440 dimker d1,4 = 1316− 440 = 876

rank d2,3 = 876 dimker d2,3 = 1302− 876 = 426

rank d3,2 = 210 dimker d3,2 = 210 − 210 = 0

so that dim
kerd2,3

im d3,2
= 426 − 210 = 216.

When I is the ideal of 11 general points, one again easily computes the dimensions
in (3.1) as

0 → 595
e3,2

−−−→ 1533
e2,3

−−−→ 1393
e1,4

−−−→ 451 → 0

Applying the guess we get

rank e1,4 = 451 dimker e1,4 = 1393 − 451 = 942

rank e2,3 = 942 dimker e2,3 = 1533 − 942 = 591

rank e3,2 = 591 dimker e3,2 = 595 − 591 = 4

so that dim
ker e2,3

im e3,2
= 591− 591 = 0 and dim

ker e3,2

im e4,1
= 4− 0 = 4. That is, the guess

predicts the same resolution for 11 general points in P
6 as the Minimal Resolution

Conjecture, which is wrong.
The guess does give some restrictions on what resolutions of subsets of X can

be. Conditions (i) and (ii) must always be satisfied, but the rank could be smaller
than this upper bound. Also, because of the inductive nature of the upper bounds,
once one ei,j fails to achieve the upper bound, the upper bounds on ei+s,j−s for
s ≥ 1 can change.

The above calculations give some preliminary evidence that the following ques-
tion may have an affirmative answer. See also Remark 5.6.

Question 3.1. When X is a general set of d points in projective space, does the
guess for a subset of e < d points of X always give the same graded Betti numbers
as those given by the Minimal Resolution Conjecture for a general set of e points?

Since the known counter-examples to the Minimal Resolution conjecture go
wrong in the “middle” of the resolution, it may well be that parts of the Min-
imal Resolution Conjecture are always true. In particular, it is known that the
Cohen-Macaulay Type Conjecture is true ([TV], [La]), and one naturally wonders
if the Ideal Generation Conjecture is true. This leads to the second question:

Question 3.2. Is the guess true at least at the ends of the resolution? In particular,
given any finite set of points in P

n, is there always a subset with the predicted
minimal generators and the predicted Cohen-Macaulay type?
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Note that the guess does not assume that we have a general set of points, or even
that we have some sort of uniformity! The next two sections show that Question
3.2 has an affirmative answer for subsets of P

2.

4. The Subset Resolution Theorem for points in P
2

We now restrict our attention to points in P
2. Let X = {P1, . . . , Pd} be a set of

d distinct points, with homogeneous ideal I = I(X) ⊂ k[X0, X1, X2] = S. At first
glance the Koszul complex would seem to involve sequences of the form

0 →
∧3

S1 ⊗ Is−2

d3,s−2

−−−→
∧2

S1 ⊗ Is−1

d2,s−1

−−−→
∧1

S1 ⊗ Is

d1,s

−−−→
∧0

S1 ⊗ Is+1 → 0

However, we know that the graded minimal free resolution for I has only two terms,
so we must have that d3,s−2 is injective and kerd2,s−1 = im d3,s−2. The only thing
in question is the rank of the map d1,s. This is just the multiplication map

µs : S1⊗Is → Is+1

L⊗F 7→ LF.

Definition 4.1. If Y ⊂ X has the Hilbert function given in Lemma 1.1, we will
say that it has truncated Hilbert function.

For any subset Z ⊂ X and any positive integer s, we have a commutative diagram

S1 ⊗ I(X)s

µs,X

−−−→ I(X)s+1
⋂ ⋂

S1 ⊗ I(Z)s

µs,Z

−−−→ I(Z)s+1

(4.1)

The subset resolution guess for points in P
2 then becomes the following.

Theorem 4.2. Let X be a reduced set of d points in P
2. Fix an integer m, 1 ≤

m < d. Then there exists a subset Z ⊂ X of cardinality m and with truncated
Hilbert function, as given in Lemma 1.1, and such that for all positive integers s

rank µs,Z = min{dim I(Z)s+1, rank µs,X +

dim S1 ⊗ I(Z)s − dim S1 ⊗ I(X)s}.

Proof. First observe that if X is contained in a line then X and all its subsets are
complete intersections. The resolution of a complete intersection is well known. We
let the reader check the theorem in this case. Thus we may assume that X is not
contained in a line.

Now we show that it is enough to prove the theorem for m = d − 1. To do this,
it is enough to show the following. Let Z ⊂ X be a subset consisting of m = m0

points, such that Z has truncated Hilbert function and µs,Z has the predicted rank,
for any s. Assume that there is a subset Z1 ⊂ Z consisting of m0 − 1 points such
that Z1 has truncated Hilbert function, and such that for all s, the rank of µs,Z1

is
what is predicted in the theorem if we take X = Z and d = m0. Then we have to
show that this is the same rank that is predicted by the theorem if we had taken
X = X and Z = Z1.

The fact that Z has the predicted rank says that for all s, either µs,Z is surjective
or kerµs,Z = kerµs,X . By our assumption on Z1, we get that for all s either µs,Z1

is
surjective or kerµs,Z1

= kerµs,Z . For those s with µs,Z1
surjective we are done. For
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those s with kerµs,Z1
= kerµs,Z = kerµs,X we are done. This leaves only those s for

which kerµs,Z1
= kerµs,Z but kerµs,Z 6= kerµs,X . But if kerµs,Z 6= kerµs,X then

µs,Z is surjective. Furthermore, the Hilbert function of X in degree s is different
from that of Z in degree s. Since Z has truncated Hilbert function, this says that
Z imposes m0 independent conditions on forms of degree s, and Z1 imposes m0−1
independent conditions on forms of degree s. Hence µs,Z1

is surjective. Thus it is
enough to prove the theorem for the case m = d − 1.

Part of the proof will be by induction on d. The reader can easily get this
induction argument started by checking directly that the theorem is true for small
values of d.

Let l be the smallest positive integer such that X imposes d conditions on forms
of degree l. Then I(X) is generated in degrees less than or equal to l + 1, [DGM]
Prop. 3.7. Let Z ⊂ X be any subset with d−1 points. Then I(Z) is also generated
in degrees less than or equal to l + 1. Thus for s ≥ l + 1 the multiplication map
µs,Z is surjective and thus satisfies the conclusion of the proposition.

Next consider s ≤ l − 1. From now on, unless specified otherwise, we assume
that our subset Z has truncated Hilbert function. Then X imposes at most d − 1
conditions on forms of degree s. By Lemma 1.1, Z imposes the smaller of d− 1 and
the number of conditions imposed by X on forms of degree s. Thus, I(X)s = I(Z)s.
This says that µs,X and µs,Z are the same map. Certainly the conclusion of the
proposition follows in this case. We are only left to consider the case s = l. We
have to show that among subsets with cardinality d − 1 and with truncated Hilbert
function, we can find one with the right number of minimal generators in degree
l + 1.

Consider the diagram (4.1) with s = l. Regardless of whether or not Z has
truncated Hilbert function, I(X)l has codimension one in I(Z)l, and similarly for
l + 1. Let F1, . . . , Ft be a basis for I(X)l and let G be a form of degree l in
I(Z)l − I(X)l, so that F1, . . . , Ft, G is a basis for I(Z)l. The proof breaks down
into four cases according to the codimension of the image of µl,X in I(X)l+1, in
other words, the number of generators I(X) needs in degree l + 1. Note that if
I(X)l is zero dimensional then I(Z)l is one dimensional, so µl,Z is injective. We
may assume that I(X)l has positive dimension.

Case 1. I(X) is generated in degrees ≤ l. This says that µl,X is surjective.
We wish to show that µl,Z is also surjective, for any Z (hence in particular one
with truncated Hilbert function). Since I(X)l+1 has codimension one in I(Z)l+1

we simply need to find a single form in the image of µl,Z not in the image of µl,X .
Let L be a linear form not vanishing on the single point of X − Z. Note that G
also does not vanish on the single point of X − Z. LG is certainly in the image of
µl,Z , but not in the image of µl,X because LG does not vanish on all of X .

Case 2. The image of µl,X has codimension one in I(X)l+1. We need to show
that there is at least one subset Z, with cardinality d − 1 and truncated Hilbert
function, so that µl,Z is surjective. For this case we consider all subsets of X of
cardinality d − 1. Set Zi = X − {Pi}, i = 1, . . . , d. Let Gi be a form of degree
l in I(Zi)l − I(X)l. Note that Gi is well defined up to elements of I(X)l. One
can see that F1, . . . , Ft, G1, . . . , Gd form a basis for Sl. Indeed, since I(X)l has
codimension d in Sl there are the right number of them to be a basis, and any
linear relation a1F1 + · · · + atFt + at+1G1 + · · · + at+dGd = 0 would need to have
at+i = 0, i = 1, . . . , d, since Gi(Pi) 6= 0 but all the other G’s and F ’s vanish at Pi.
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This would give a linear relation among the F ’s which is impossible because they
form a basis for I(X)l.

We only need to find one Zi such that µl,Zi
is surjective, and such that Zi has

truncated Hilbert function. We will first argue that in this situation, if µl,Zi
is

surjective then Zi must have truncated Hilbert function.
Let L be a general linear form and let

J =
I(X) + (L)

(L)
Ji =

I(Zi) + (L)

(L)

be the corresponding ideals in R = S/(L) ∼= k[x, y]. Note that L is not a zero
divisor on S/I(X) or S/I(Zi). By slight abuse of notation, we will call the rings
A = R/J and Ai = R/Ji the Artinian reductions of X and Zi, respectively.

Claim 4.3. I(X) and J (resp. I(Zi) and Ji) have the same number of minimal
generators, occurring in the same degrees.

Proof. This is standard. See for instance [M], p. 28.

Claim 4.4. Ji is equal to J in degrees greater than or equal to l if and only if Zi

does not have truncated Hilbert function.

Proof. Notice that J ⊂ Ji for all i, and notice that Ji = J in degrees ≥ l + 1, so it
is enough to prove that dimJi = dimJ in degree l if and only if Zi does not have
truncated Hilbert function.

Consider the Hilbert functions of A and of Ai:

hA : 1 a1 a2 . . . al−1 al 0
hAi

: 1 b1 b2 . . . bl−1 bl 0

Since J ⊂ Ji we have aj ≥ bj ≥ 0 for all j. We also have
∑

aj = d and
∑

bj = d−1.
It follows that for one value of j, say j0, we have aj0 = bj0 + 1, and for all other j
we have aj = bj. Since Zi has truncated Hilbert function if and only if j0 = l, this
completes the proof of the claim.

It follows from Claims 4.3 and 4.4 that if Zi does not have truncated Hilbert
function then it is impossible that X has a minimal generator in degree l+1 but Zi

does not have a minimal generator in degree l + 1. So if we prove the existence of
a Zi with no minimal generator in degree l + 1 then the truncated Hilbert function
will follow automatically.

Suppose that µl,Zi
is never surjective. Since dimS1⊗I(Zi)l = dimS1⊗I(X)l+3,

dim I(Zi)l+1 = dim I(X)l+1 + 1, and by assumption

dim I(X)l+1 = dimµl,X(S1 ⊗ I(X)l) + 1,

we see that for every i the kernel of µl,Zi
must have dimension at least two larger

than the dimension of the kernel of µl,X . That is, there must be two degree one
relations of the form

Li,1F1 + · · · + Li,tFt + Li,t+1Gi = 0

Mi,1F1 + · · · + Mi,tFt + Mi,t+1Gi = 0.

These relations must be linearly independent of each other and no linear combina-
tion of the two of them can involve only F ’s and not Gi. From this one can see
that all 2d of these relations (as you vary i) are linearly independent elements of

7



the kernel of the multiplication map S1 ⊗ Sl → Sl+1 which remain independent
modulo the kernel of µl,X .

Using our assumption on the codimension of the image of µl,X in I(X)l+1 we
conclude that this image has codimension d + 1 in Sl+1. Comparing µl,X with the
multiplication map S1 ⊗ Sl → Sl+1 we see that dim S1 ⊗ Sl = dimS1 ⊗ I(X)l + 3d.
However, from the previous paragraph we know that the dimension of the kernel
of S1 ⊗ Sl → Sl+1 is at least 2d larger than the dimension of the kernel of µl,X .
Counting dimensions we get that S1 ⊗ Sl → Sl+1 is not surjective. But, it is a well
known triviality that S1 ⊗ Sl → Sl+1 is surjective. This contradiction finishes case
2.

Case 3. The image of µl,X has codimension two in I(X)l+1. This will involve
quite a bit more work and will be done in section 5.

Case 4. The image of µl,X has codimension c ≥ 3 in I(X)l+1. Let Zi, Fi, Gi,
J and Ji be as in case 2. The codimension of the image of µl,X in I(Zi)l+1 is
c+1 ≥ 4. We want to show that there is a Zi with truncated Hilbert function, such
that I(Zi) has c − 3 minimal generators in degree l + 1. By Claim 4.4, if Zi does
not have truncated Hilbert function then Ji = J in degrees ≥ l. Hence J and Ji

have the same number of minimal generators in degree l +1, and by Claim 4.3, the
same is true of Zi and X . So just as in case 2, it is enough to prove the existence of
a Zi with the right number of minimal generators, and it will automatically have
truncated Hilbert function.

The proof will be by induction on d. Hence we can assume that the theorem
is true for all the Zi, but suppose that it fails for X . In this case we conclude
that for each i = 1, . . . , d we have at least one degree one relation of the form
Li,1F1 + · · ·+Li,tFt +Li,t+1Gi = 0. If there were always two or more such relations
we could arrive at a contradiction as in case 2, so assume for i = 1 there is only
one such relation.

As indicated above, we may assume that the theorem holds for Z1. Thus we
can find Pj , j ∈ {2, . . . , d} such that Z1,j = Z1 − {Pj} satisfies the conclusion
of the theorem with respect to Z1. A basis for I(Z1)l consists of F1, . . . , Ft, G1

and a basis for I(Z1,j)l consists of F1, . . . , Ft, G1, Gj . The relations Li,1F1 + · · · +
Li,tFt + Li,t+1Gi = 0 for i = 1, j say that the codimension of the image of µl,Z1

in I(Z1)l+1 is exactly c − 1 ≥ 2 (because we assumed only one such relation) and
the codimension of the image of µl,Z1,j

in I(Z1,j)l+1 is at least c − 2 ≥ 1. But the
assumption that Z1,j ⊂ Z1 satisfies the theorem says that the codimension of the
image of µl,Z1,j

in I(Z1,j)l+1 is c − 3. This contradiction finishes case 4.

Remark 4.5. The proof of Lemma 1.1 is surprisingly simple. The idea is to start
with a subset Y ′ of X (beginning with any single point) and add one point of X
at a time in such a way that at each step, the new subset Y has the predicted
Hilbert function. This is done by considering the linear system of hypersurfaces of
any degree t containing Y ′. If the general element of this linear system vanishes on
all of X then consider degree t + 1. If not, there is some point P of X not in the
base locus of this linear system, and we take Y = Y ′ ∪ P .

One would naturally wonder if the same approach, building up to X point by
point rather than taking point after point away from X , would similarly be an easier
approach to Theorem 4.2. In fact this seems to not work. Consider, for instance, a
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set of points with the following configuration:

•1

•2

•3 •4 •5

(i.e. points 1, 2, and 3 are collinear and points 3, 4 and 5 are collinear). If we
build up X starting with point 3, it is of course possible to do so in such a way
that at each step the subset obtained has the right (truncated) Hilbert function.
For example, the sequence 3, 1, 4, 2, 5 works. However, it is impossible to find a
sequence beginning with 3 such that at each step the subset has the right minimal
free resolution according to Theorem 4.2. Indeed, the only subset of X consisting of
four points and having the right number of minimal generators is the set of points
labeled 1, 2, 4 and 5.

5. The Final Case

This section is devoted to proving case 3 of the proof of Theorem 4.2. We are thus
assuming that X has two minimal generators in degree l + 1, and we are trying to
show that there is a subset Zi of cardinality d−1 having truncated Hilbert function
and no minimal generator in degree l+1. With this assumption on X , the following
fact is proved exactly as in case 2 in the preceding section: If a subset Zi of d − 1
points exists with no minimal generator in degree l + 1 then it must have truncated
Hilbert function.

We begin by taking care of a special subcase. For the following lemma we will
actually need to use the truncated Hilbert function to find the desired subset, so
we have to be a little careful.

Lemma 5.1. Assume that X satisfies case 3, i.e. the image of µl,X has codimen-
sion two in I(X)l+1. If the base locus of I(X)l is one-dimensional then X contains
a subset, Z, of cardinality d− 1 which satisfies the rank condition asserted in The-
orem 4.2, namely I(Z) has no minimal generators in degree l + 1.

Proof. By Lemma 1.1, there is at least one subset Zi whose Hilbert function is the
truncation of that of X . We will find our desired Z from among these subsets, so
from now on we will assume that this is the Hilbert function of Z. Then we have
that the ideal of X agrees with that of Z in degrees ≤ l − 1 and Z and X both
impose independent conditions on curves of degree l. It follows that

dim I(X)l + 1 = dim I(Z)l,
dim I(X)l+1 + 1 = dim I(Z)l+1

We are assuming, furthermore, that X has precisely two minimal generators in
degree l + 1. We need to show that Z can be chosen with no minimal generator in
degree l + 1.

The assumption about the dimension of the zero locus means that I(X)l has a
GCD, F . Let k be the degree of F . By abuse of notation we will use F both for
the curve in P

2 and for the polynomial.

Claim 5.2. k ≤ 2.

Proof. We will use ideas from [BGM] Proposition 2.3 (closely related to work of
Davis [D]). Let X1 be the subset of X lying on F and let X2 be the subset not

9



lying on F . We have I(X1) = [I(X) + (F )]sat and I(X2) = [I(X) : F ], which is
already saturated. For k ≤ t ≤ l we have

∆hX2
(t − k) = ∆hX(t) − k.(5.1)

Notice that I(X)l = F · I(X2)l−k. From this we deduce two things. First, X2

imposes independent conditions on forms of degree l − k since X does on forms of
degree l. Second, rk µl,X = rk µl−k,X2

.
Let J be the ideal generated by I(X)≤l. We have just seen that dimJl =

dim I(X2)l−k. In degree l + 1 we have the inequality dimJl+1 ≤ dim I(X2)l−k+1,
where the failure to be an equality is measured by the number of minimal generators
of I(X2) in degree l − k + 1. Let h(S/J, t) be the corresponding Hilbert function
and consider ∆h(S/J, l + 1). From the above considerations, one can check that

∆h(S/J, l + 1) ≥ k + ∆hX2
(l − k + 1)

= k.

On the other hand, since I(X) has two minimal generators in degree l +1, we have
2 = dim I(X)l+1 − dimJl+1. This gives

k ≤ ∆h(S/J, l + 1)
= l + 2 − dimJl+1 + dimJl

= l + 2 − [dim I(X)l+1 − 2] + dim I(X)l

= ∆hX(l + 1) + 2
= 2

and this proves the claim.

Claim 5.3. If k = 2 then X1 consists of exactly 2l + 1 points on F . If k = 1 then
X1 consists of exactly l + 1 points on F .

Proof. Let us collect the following facts.

1. The initial degree of I(X) is ≥ 2.
2. ∆hX2

(l − k + 1) = 0 since X2 imposes independent conditions on forms of
degree l − k (k = 1, 2).

3. ∆hX(l + 1) = 0.
4. ∆hX(l) ≥ 2. This follows because we are assuming that X has two minimal

generators in degree l + 1. It can be seen, for example, by applying [C]
Theorem 2.1 (d), since in our situation certainly X is contained in a complete
intersection of type (α, β) with α < β = l + 1.

5. deg X = deg X1 + deg X2.

6.
∑

t

∆hX2
(t) = deg X2.

7.
∑

t

∆hX(t) = deg X .

If one now considers the Hilbert function of the Artinian reduction of S/I(X)
(i.e. the function given by ∆hX(t)) and applies the equation (5.1), in the case
k = 2 (resp. k = 1) one gets from the above facts that deg X1 = 2l + 1 (resp.
deg X1 = l + 1) as claimed.

We consider the cases k = 2 and k = 1 separately. Suppose that X1 consists of
2l+1 points on either a smooth conic or else a union of two lines. In the latter case,
either one point lies at the intersection of the two lines or else there are l points on
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one line and l + 1 points on the other. (Otherwise X fails to impose independent
conditions on forms of degree l.) In any of these cases, the removal of a suitable
point P leaves 2l points which form the complete intersection of F and some curve
G of degree l. Let Z be the subset of X obtained by removing this point.

We know that there exists an element of I(Z)l which is not in I(X)l. We first
claim that such an element must meet F in finitely many points. Certainly the
base locus of the linear system |I(Z)l| cannot contain all of F since then it contains
the deleted point P , contradicting the fact that X imposes independent conditions
on forms of degree l. Hence the assertion is clear if F is irreducible. Suppose that
F = L1L2 is reducible and suppose (without loss of generality) that L1 is in the base
locus of |I(Z)l|. Then any element of this linear system consists of the product of
L1 with a homogeneous polynomial of degree l− 1 containing the remaining points
of X . By construction, the remaining points include l points on L2, so in fact all
of F is in the base locus, a contradiction.

Hence without loss of generality we may assume that the subset of Z lying on F
is the complete intersection of F and a form G ∈ I(Z)l (i.e. G contains all of Z).
Now, if (F1, . . . , Fm) form a basis for I(X)l and (F1, . . . , Fm, G) form a basis for
I(Z)l, then any linear relation

L1F1 + · · · + LmFm + LG = 0

implies L = 0 since no factor of F is a factor of G, and deg F = 2. The conclusion
follows from this fact.

We now turn to the case k = 1. We have that X is the union X = X1∪X2, where
X1 consists of l + 1 points on the line F . Since |I(X)l+1| has a zero-dimensional
base locus, a general element, G, of this linear system does not contain F as a
component. Hence in particular X1 is the complete intersection of F and G. Also,
in particular we have that G ∈ I(X2). We now note that X = X2 ∪ X1 is a liaison
addition (cf. [GM], [S])! Hence its ideal is of the form

I(X) = F · I(X2) + (G).

Since I(X) has two minimal generators of degree l + 1, clearly G must be one of
these and I(X2) must have exactly one minimal generator in degree l (which is the
maximum possible degree).

Let Z be the subset of X obtained by removing a point, P , of X1. Let Z1 be the
subset of X1 obtained by removing P . Exactly as above, Z = Z1 ∪ X2 is a liaison
addition, since the linear system |I(Z)l| does not have all of F in its base locus. Its
ideal is of the form

I(Z) = F · I(X2) + (G′)

where deg G′ = l, G′ ∈ I(X2) and (F, G′) form a complete intersection.
We want to show that P can be removed in such a way that I(Z) has no minimal

generator in degree l + 1.

Claim 5.4. The following are equivalent:

(1) I(Z) has a minimal generator in degree l + 1.
(2) I(X2) has a minimal generator in degree l other than G′.
(3) G′ is not a minimal generator for I(X2).

Proof. The equivalence of (2) and (3) is clear since we have already observed that
I(X2) has exactly one minimal generator in degree l. The fact that (1) implies
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(2) follows from the equation I(Z) = F · I(X2) + (G′). Now assume (2), and let
H be the minimal generator in I(X2) other than G′. We want to show that FH
is a minimal generator for I(Z). Suppose not, and let F1, . . . , Fk be a basis for
I(X2)l−1. Then we have

FH = LG′ +

k
∑

i=1

LiFFi,

or equivalently

F

(

H −

k
∑

i=1

LiFi

)

= LG′.

Since F does not divide G′, we get that H = G′ +
∑

LiFi up to scalar multiples,
contradicting the assumption that H is a minimal generator for I(X2) other than
G′.

As a result of Claim 5.4 we have in particular that I(Z) has a minimal generator
in degree l + 1 if and only if G′ is not a minimal generator of I(X2). We want to
show that we can find the subset Z with no minimal generator in degree l + 1. We
thus have to show that among the l+1 collinear points of G∩F , there is at least one
point P whose removal leads to a G′ ∈ I(X2)l as above which is not in the image of
µl−1,X2

. We will do this by contradiction. Let P1, . . . , Pl+1 be the points of G∩F .
For each i, 1 ≤ i ≤ l+1, let Gi ∈ I(X2∪P1∪· · ·∪Pi−1∪Pi+1∪· · ·∪Pl+1)l ⊂ I(X2)l

such that Gi does not contain F as a factor, as was done with G′ above. Note that
G1, . . . , Gl+1 are linearly independent in Sl, as was done in Case 2 in the previous
section.

We want to show that it is impossible for G1, . . . , Gl+1 to all be in the image of
µl−1,X2

. Suppose otherwise. Note that F is a non zero-divisor of S/I(X2), and let

J =
I(X2) + (F )

(F )
and R = S/(F ).

We may view R/J as the Artinian reduction of S/I(X2), and in particular J has
a minimal generator in degree l since we saw that I(X2) must have a minimal
generator in degree l. On the other hand, if we let Ḡi be the image of Gi in R,
the same argument as above gives that the Ḡi are linearly independent in Jl ⊂ Rl.
Note that dimJl = l + 1, so the Ḡi form a basis. If the Gi are all in the image
of µl−1,X2

then none of the Ḡi is a minimal generator of J , so J has no minimal
generator in degree l, a contradiction. This concludes the proof of Lemma 5.1.

Let Zi, Fi, and Gi be as in case 2. As noted above, the truncated Hilbert function
will follow immediately once we find the Zi with no minimal generator in degree
l + 1. Since we are assuming that the proposition fails for X , we conclude that for
each i = 1, . . . , d we have at least one degree one relation of the form

Li,1F1 + · · · + Li,tFt + Li,t+1Gi = 0(5.2)

where Li,t+1 6= 0. If there were always two or more such relations we could arrive
at a contradiction as in case 2. So for some i’s there must be exactly one such
relation.

As a result of Lemma 5.1, we may assume that the base locus of |I(X)l| is zero-
dimensional. Consequently we may choose homogeneous polynomials H, K ∈ I(X)
each of degree ≤ l which form a regular sequence, hence link X to a zeroscheme D.
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Note that we may choose H and K to be minimal generators of I(X). Without
loss of generality, say deg K ≤ deg H ≤ l.

Claim 5.5. The ideal I(D) of D contains a form of degree less than deg(K).

Proof. We use the Cayley-Bacharach Theorem [DGO] Thm. 3(b). The first differ-
ence function for the Hilbert function of the complete intersection H ∩ K is:

1, 2, 3, . . . , deg K, deg K, . . . , deg K, deg K − 1, deg K − 2, . . . , 3, 2, 1,

with deg K repeated deg H − deg K + 1 times. The first difference function for the
Hilbert function of X does not reach 0 until degree l + 1. Since deg H ≤ l, when
we subtract these and read backwards to get the first difference function for D we
see its maximum is less than deg K.

Now we wish to use liaison theory to compare the resolutions of I(X) and I(D).
We follow the presentation in [CGO]. Suppose the resolution for I(X) is

0 →

e+1
⊕

i=1

S(−mi)
ϕ

−→

e+2
⊕

i=1

S(−di) → I(X) → 0

with d1 ≥ d2 ≥ · · · ≥ de+2, m1 ≥ m2 ≥ · · · ≥ me+1. By our assumptions on
generators of I(X) in degree l + 1 we have that d1 = d2 = l + 1, d3 ≤ l. The map
ϕ is given by a matrix of forms

A =











a11 a12 . . . a1,e+1 a1,e+2

a21 a22 . . .
...

...
...

...
ae+1,1 ae+1,2 . . . ae+1,e+1 ae+1,e+2











As in [CGO] we use ∂A to denote the integer matrix whose (i, j) entry is deg aij =
uij = max{0, mi − dj}.

∂A =







u11 . . . u1,e+2

...
...

ue+1,1 . . . ue+1,e+2






.

The fact that I(X) has generators in degree l+1 says that X has defining equations
of high degree as defined in [CGO] after Prop. 1.2, so that Cor. 2.5 of [CGO] says
u1,1 = 1. This together with inequalities found in Remark 2.2 of [CGO] and the
previously mentioned facts about d1, d2, d3 says that ∂A has the form









































1 1
1 1

...
1 1

A

0 0
...

0 0

B








































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where all entries of A are greater than one. Applying the description of liaison of
[CGO] section 3 we get the corresponding matrix for I(D) by eliminating from ∂A
the columns corresponding to H and K, taking the transpose, and reversing the
order of columns and rows to get something that looks like





















B′ A′

0 0
. . .

0 0

1 1
. . .

1 1





















where all the entries of A′ are greater than 1. One way to look at this is to say that
the two minimal generators of I(X) of maximal degree l + 1 induce two degree 1
relations among the forms of lowest degree in I(D).

We can also use H and K to link Zi and D∪{Pi} for each i = 1, 2, . . . , d. (Here
and subsequently, we abuse notation somewhat and write D ∪ {Pi} for the scheme
residual to Zi, even when Pi is a common component of X and D.) Unfortunately,
H and K may not be minimal generators for Zi, so we have to argue slightly
differently to get the desired matrix for I(D∪{Pi}). We have seen that if there is a
Zi with no minimal generator in degree l+1 then it has truncated Hilbert function,
and it is the subset that we are seeking. Hence without loss of generality we may
assume that Zi has at least one minimal generator in degree l + 1, and, as above,
it has a degree matrix of the form





































1
...
1

Ai

0
...
0

Bi





































where all entries of Ai are greater than or equal to one. As a result, the minimal
free resolution for I(Zi) has the form

0 →

f+1
⊕

i=1

S(−ni)
ϕ

−→

f+2
⊕

i=1

S(−ei) → I(Zi) → 0

with l + 1 = e1 ≥ e2 ≥ · · · ≥ ef+2, l + 2 = n1 ≥ n2 ≥ · · · ≥ nf+1. (This can also be
deduced directly by considering the regularity of I(Zi).) Now we link using K and
H with k = deg K ≤ h = deg H < l + 1. Let C be the complete intersection of H
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and K. We get a commutative diagram

0 →

f+1
⊕

i=1

S(−ni)
ϕ

−→

f+2
⊕

i=1

S(−ei) → I(Zi) → 0

↑ ↑ ↑
0 → S(−h − k) → S(−h) ⊕ S(−k) → I(C) → 0

and by the usual mapping cone trick (cf. [M] Proposition 5.2.10) we get a resolution
for I(D ∪ {Pi}) of the form

0 →

f+2
⊕

i=1

S(ei − h − k) →

f+1
⊕

i=1

S(ni − h − k) ⊕ S(−h) ⊕ S(−k) → I(D ∪ {Pi}) → 0.

This is not necessarily minimal. It may be that zero, one or two terms can be split
off, depending on whether neither, one or both of H and K are minimal generators
of I(Zi), respectively. However, by the assumption that k ≤ h < l + 1, we see that
in any case the smallest term S(e1−h−k) is not split off. It follows that the degree
matrix for I(D ∪ {Pi}) is of the form

















B′
i A′

i

0 · · · 0 1 · · · 1

















where all the entries of A′
i are greater than or equal to one. In this case we can

say that the minimal generator of I(Zi) of maximal degree l + 1 induces a degree
1 relation among the forms of lowest degree in I(D ∪ {Pi}).

Putting these facts together we get the following. Let v be the lowest degree
of forms in I(D). We have two independent degree 1 relations among I(D)v. For
each i = 1, 2, . . . , d there exists a linear combination (depending on i) of these two
relations that becomes a degree 1 relation on I(D ∪ {Pi})v.

We will convert this to a question about sections of twisted bundles of differential
forms on P

2. The basic idea is fairly standard; see for instance [HS] section 9 or
[B] section 1. Let Ω1

P2 represent the sheaf of differential one-forms on P
2. Consider

the dual of the Euler sequence twisted by v + 1 (cf. [H] Theorem II.8.13):

0 → Ω1
P2(v + 1) → OP2(v)⊕3 → OP2(v + 1) → 0(5.3)

Taking cohomology, we obtain

0 → H0(P2, Ω1
P2(v + 1)) → H0(P2,OP2(v)⊕3)

α
−→ H0(P2,OP2(v + 1)) → · · · .

The map α is given by α(f1, f2, f3) = x0f1+x1f2+x2f3. A degree 1 relation among
elements of I(D)v can be written as x0g1 + x2g2 + x2g3 = 0 where gi ∈ I(D)v and
therefore represents an element of the kernel of α vanishing on D. By exactness it is
the image of an element of H0(P2, Ω1

P2(v +1)) vanishing on D. The same argument
applies to relations on I(D ∪ {Pi})v. We deduce that the two degree one relations
among I(D)v correspond to two linearly independent sections, call them s1 and s2,
in H0(P2, Ω1

P2(v+1)) that vanish on D, and the degree one relation on I(D∪{Pi})v

corresponds to a linear combination of s1 and s2 that also vanishes at Pi. (When
Pi ∈ Support(D) this must be interpreted appropriately in terms of ideals.) The
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locus of points where sections of vector bundles fail to be linearly independent can
be analyzed using Chern classes.

Set Y = { P ∈ P
2 | s1(P ) and s2(P ) are linearly dependent }. Note that since

s1 and s2 are linearly independent as elements of H0(P2, Ω1
P2(v+1)), Y 6= P

2. From
[F] Example 14.3.2 we see that the class of Y with an appropriate scheme structure
is the first Chern class of Ω1

P2(v + 1). Another way to see this is to observe that

s1 ∧ s2 is a nonzero section of the line bundle
∧2(Ω1

P2(v + 1)). From the Whitney
sum formula [F] Theorem 3.2(e) applied to the Euler sequence (5.3) we get that the
first Chern class of Ω1

P2(v +1) is 2v− 1 times a line. In other words, Y is a curve of
degree 2v − 1. Certainly Y passes through D because s1 and s2 vanish at D, and
Y passes through X = {P1, . . . , Pd} because for each i some linear combination of
s1 and s2 vanishes at Pi.

We need to know more about the local nature of Y near the points of the complete
intersection H ∩ K, which we denote by C. By abuse of notation we also let Y
represent a polynomial generating the homogeneous ideal of Y . We consider the
ideals I(X), I(D) and I(C). Let Q be a point of C. The subscript Q on an ideal
or polynomial means we are considering the corresponding ideal or function in the
local ring of P

2 at Q.

(a) Suppose Q ∈ X , Q /∈ Support(D). Then YQ ∈ I(X)Q = I(C)Q.
(b) Suppose Q ∈ Support(D), Q /∈ X . Choose local coordinates x, y on P

2

centered at Q and trivialize Ω1
P2(v + 1) locally near Q. Then each si is given

locally by a pair of functions si(x, y) = (si,1(x, y), si,2(x, y)), i = 1, 2. Saying
that si vanishes on D is saying that si,j(x, y) ∈ I(D)Q for both j = 1 and
j = 2. The local equation of Y near Q is the determinant

∣

∣

∣

∣

s1,1(x, y) s1,2(x, y)
s2,1(x, y) s2,2(x, y)

∣

∣

∣

∣

= s11s22 − s12s21.

Thus YQ ∈ I(D)2Q ⊂ I(C)Q since I(D)Q = I(C)Q.

(c) Suppose Q ∈ X ∩ Support(D). We continue with the notation of (b). Some
linear combination of s1 and s2 vanishes on the residual scheme to X − Q
in C, which we called D ∪ {Q} by abuse of notation. In the determinant
replacing s1 by this linear combination and s2 by some other independent
linear combination we get that YQ ∈ I(C)Q · I(D)Q ⊂ I(C)Q.

Putting the three local calculations (a), (b) and (c) together, we get that globally
Y ∈ I(C), so we may write Y = SH+TK. Again consider Q a point of Support(D).
Whether we are in case (b) or (c), we have YQ ∈ I(C)Q · I(D)Q. Because I(C)Q =
〈HQ, KQ〉, we may write YQ = aHQ + bKQ, where a, b ∈ I(D)Q. On the other
hand, of course we also have YQ = SQHQ + TQKQ. This gives (SQ − a)HQ =
(b − TQ)KQ. The local ring of P

2 at Q is a unique factorization domain, and HQ

and KQ have no common factors. We conclude that KQ divides SQ − a, so that
SQ − a ∈ I(C)Q ⊂ I(D)Q, giving SQ ∈ I(D)Q. Similarly, TQ ∈ I(D)Q. Since
this is true locally for all Q ∈ Support(D), we conclude that globally S, T ∈ I(D).
Furthermore, since Y 6= P

2, S and T cannot both be zero.
From Claim 5.5, we see that H and K both have degree greater than v = smallest

degree of a form in I(D). Since Y has degree 2v − 1, both S and T have degree
less than v − 1, meaning that they could not be in I(D). This final contradiction
completes the proof of Theorem 4.2.

16



Remark 5.6. It should be noted that Theorem 4.2 gives another proof of the
Minimal Resolution conjecture for general sets of points in P

2. (Other solutions
can be found in [GGR], [GMa], [GM]. See also [L2].)

To see this first note that by [GMa] Prop. 1.4, any set, X, of
(

d+2

2

)

points in P
2

not lying on a curve of degree d, always has resolution

0 → S(−(d + 2))d+1 −→ S(−(d + 1))d+2 −→ I(X) → 0.

Thus, if Z is a general set of t =
(

d+1

2

)

+ r points in P
2, 0 < r < d + 1, then Z

satisfies the minimal resolution conjecture if and only if the multiplication map

µd,Z : S1 ⊗ I(Z)d −→ I(Z)d+1

has maximal rank (see e.g. [GMa] section 2), i.e.

rank µd,Z = min{ dim I(Z)d+1, 3 dim I(Z)d }.(5.4)

Now, (5.4) follows immediately from Theorem 4.2 once we note that since
I(X)d = 0 then both rank µd,X = 0 and dim(S1 ⊗ I(X)d) = 0.
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