Syracuse University
SURFACE

Resolutions of Subsets of Finite Sets of Points in Projective Space

Steven P. Diaz
Syracuse University

Anthony V. Geramita
Queen's University - Kingston, Ontario and Universita Di Genova
Juan C. Migliore
University of Notre Dame

Follow this and additional works at: https://surface.syr.edu/mat
Part of the Mathematics Commons

Recommended Citation

Diaz, Steven P.; Geramita, Anthony V.; and Migliore, Juan C., "Resolutions of Subsets of Finite Sets of Points in Projective Space" (1999). Mathematics - Faculty Scholarship. 134.
https://surface.syr.edu/mat/134

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

RESOLUTIONS OF SUBSETS OF FINITE SETS OF POINTS IN PROJECTIVE SPACE

STEVEN P. DIAZ, ANTHONY V. GERAMITA, AND JUAN C. MIGLIORE

Abstract

Given a finite set, X, of points in projective space for which the Hilbert function is known, a standard result says that there exists a subset of this finite set whose Hilbert function is "as big as possible" inside X. Given a finite set of points in projective space for which the minimal free resolution of its homogeneous ideal is known, what can be said about possible resolutions of ideals of subsets of this finite set? We first give a maximal rank type description of the most generic possible resolution of a subset. Then we show that this generic resolution is not always achieved, by incorporating an example of Eisenbud and Popescu. However, we show that it is achieved for sets of points in projective two space: given any finite set of points in projective two space for which the minimal free resolution is known, there must exist a subset having the predicted resolution.

1. Introduction

We work over an algebraically closed field, k. Let $X=\left\{P_{1}, \ldots, P_{d}\right\}$ be a finite set of d distinct points in projective n-space over k, \mathbb{P}^{n}. Associated to X we have its homogeneous ideal $I(X) \subset k\left[x_{0}, \ldots, x_{n}\right]=S$ and its homogeneous coordinate ring $S(X)=S / I(X)$. A fundamental invariant of X is its Hilbert function, h_{X}, defined to be the Hilbert function of $S(X)$:

$$
h_{X}(t)=\operatorname{dim}_{k} S(X)_{t} .
$$

Lacking some uniformity property such as the Uniform Position Property (UPP), the subsets of X of fixed cardinality may have different Hilbert functions. Given this, it is somewhat surprising at first glance that there is always at least one subset with a predetermined Hilbert function. Indeed, one of the fundamental results about Hilbert functions of subsets of X is the following:

Lemma 1.1. Fix an integer $e, 1 \leq e<d$. Then there exists a subset Y of X of exactly e points such that

$$
h_{Y}(t)=\min \left\{h_{X}(t), e\right\} .
$$

Proof. This is very well known. See for instance GMR, Lemma 2.5 (c). See also Remark 4.5.

The Hilbert function is a very coarse measure of the properties of X. Related finer measures that are often studied are the graded Betti numbers and twists of the minimal graded free resolution of $S(X)$ or equivalently $I(X)$.

$$
\begin{equation*}
0 \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow I(X) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $F_{i}=\oplus_{j=1}^{r_{i}}\left(S\left(-\gamma_{i j}\right)\right)^{\alpha_{i j}}$. The $\gamma_{i j}$ are the twists and the $\alpha_{i j}$ are the graded Betti numbers. Since Lemma 1.1 is so useful for Hilbert functions, one may wonder whether there is a corresponding result for resolutions.

In section 2 we state a natural first guess at a possible generalization of Lemma 1.1 to resolutions. The guess is stated in terms of Koszul cohomology. The basic idea of the guess is that at least one subset of X of each cardinality should behave as generically as possible subject to some obvious constraints imposed by being a subset of X. The guess is very similar to the Minimal Resolution Conjecture of Lorenzini L2] except that the Minimal Resolution Conjecture does not deal with subsets.

In section 3 we show that the guess of section 2 is incorrect. In fact a counterexample to the Minimal Resolution Conjecture provided in EP is used to construct a counterexample to the guess. While the Minimal Resolution Conjecture did not turn out to be true in full generality, it is true in many cases and is perhaps a good first start at understanding the true situation. (The end of the introduction to HS contains a good list of references to results about the Minimal Resolution Conjecture.) One might still hope that the guess of section 2 would behave similarly. We make this hope more precise with some questions at the end of section 3.

In sections 4 and 5 we answer these questions for \mathbb{P}^{2} by showing that the guess is true for sets of points in \mathbb{P}^{2} (a place where the Minimal Resolution Conjecture of Lorenzini is also known to be true). A variety of tools are used to carry this out. We divide the problem into four cases, depending on the number of minimal generators of $I(X)$ in the maximum possible degree. The three easiest of these cases are treated in section 4 . The most difficult is the case where $I(X)$ has two minimal generators in this degree, and this case is treated in section 5 . Here we combine liaison theory with a careful study of certain sections of a certain twist of $\Omega_{\mathbb{P}^{2}}^{1}$, the sheaf of differential one-forms on \mathbb{P}^{2}.

2. A First Guess

We first recall briefly how the graded Betti numbers of an ideal may be computed using Koszul cohomology; see [G] section 1 for more details. One makes a complex

$$
\begin{align*}
& \cdots \rightarrow \bigwedge^{p+1} S_{1} \otimes I(X)_{q-1} \xrightarrow{d_{p+1, q-1}} \bigwedge^{p} S_{1} \otimes I(X)_{q} \xrightarrow{d_{p, q}} \bigwedge^{p-1} S_{1} \otimes I(X)_{q+1} \tag{2.1}\\
& \xrightarrow{d_{p-1, q+1}} \bigwedge^{p-2} S_{1} \otimes I(X)_{q+2} \rightarrow \ldots
\end{align*}
$$

where $d_{p, q}\left(l_{1} \wedge l_{2} \wedge \cdots \wedge l_{p} \otimes f\right)=\sum_{i=1}^{p}(-1)^{p-i} l_{1} \wedge \cdots \wedge l_{i-1} \wedge l_{i+1} \wedge \cdots \wedge l_{p} \otimes l_{i} f$.
In the resolution (1.1) the exponent of $S(-(p+q))$ in F_{p} is the dimension, as a vector space over k, of the cohomology group

$$
\frac{\operatorname{ker} d_{p, q}}{\operatorname{im} d_{p+1, q-1}}
$$

Of course an exponent of 0 means that $S(-(p+q))$ does not appear. One certainly knows the dimensions of the vector spaces $\bigwedge^{i} S_{1}$. If one also knew the Hilbert function of X and thus the dimensions of the vector spaces $I(X)_{j}$, then to compute all the graded Betti numbers and twists for $I(X)$ it would be sufficient to know the ranks of all the maps $d_{i, j}$. Thus, our guess will combine Lemma 1.1 with a guess about these ranks.

As before $X=\left\{P_{1}, \ldots, P_{d}\right\}$ consists of d distinct points. We assume that the Hilbert function and resolution of X are known. We fix an integer $1 \leq e<d$. We guess that there should exist a subset Y of X of exactly e points such that the graded Betti numbers and twists of the graded minimal free resolution of $I(Y)$ are determined as follows in (a) and (b).
(a) The Hilbert function of Y is as in Lemma 1.1. Since $Y \subset X$, for each i, $I(X)_{i} \subset I(Y)_{i}$ and we may compare the complex (2.1) for $I(X)$ and the corresponding one for $I(Y)$ by the following commutative diagram.

$$
\begin{gathered}
\cdots \rightarrow \bigwedge^{p} S_{1} \otimes I(X)_{q} \xrightarrow{d_{p, q}} \bigwedge^{p-1} S_{1} \otimes I(X)_{q+1} \rightarrow \ldots \\
\bigcap \rightarrow \bigwedge^{p} S_{1} \otimes I(Y)_{q} \xrightarrow{e_{p, q}} \bigwedge^{p-1} S_{1} \otimes I(Y)_{q+1} \rightarrow \ldots
\end{gathered}
$$

Assuming (a), we know the dimensions of all the $I(Y)_{j}$. We then guess that the ranks of the $e_{i, j}$ will be as follows
(b) Of course $e_{0, p+q}$ is the zero map. Having determined the rank of $e_{i, p+q-i}$, the rank of $e_{i+1, p+q-i-1}$ is as large as possible subject to the two constraints:
(i) ker $e_{i+1, p+q-i-1}$ must contain ker $d_{i+1, p+q-i-1}$
(ii) im $e_{i+1, p+q-i-1}$ must be contained in $\operatorname{ker} e_{i, p+q-i}$.

In other words rank $e_{i+1, p+q-i-1}$ is the smaller of
(i') $\operatorname{dim} \bigwedge^{i+1} S_{1} \otimes I(Y)_{p+q-i-1}-\operatorname{dim} \operatorname{ker} d_{i+1, p+q-i-1}$ and
(ii') dim $\operatorname{ker} e_{i, p+q-i}$.

3. A Counter-Example to the First Guess

As mentioned in the introduction this guess is similar to the Minimal Resolution Conjecture of Lorenzini. They are both Maximal Rank Conjectures in that they conjecture that certain vector space maps have ranks as large as possible. It is not surprising, therefore, that one can construct a counterexample to the guess out of a counterexample to the Minimal Resolution Conjecture.

In the introduction to $[\mathrm{EP}]$ they point out that for 11 general points in \mathbb{P}^{6} the Minimal Resolution Conjecture predicts the resolution to be

$$
\begin{aligned}
0 \rightarrow S(-8)^{4} \rightarrow S(-7)^{18} \rightarrow S(-6)^{25} \oplus S(-5)^{4} & \rightarrow S(-4)^{45} \\
\rightarrow & \\
S(-3)^{46} & \rightarrow S(-2)^{17}
\end{aligned} \rightarrow I \rightarrow 0
$$

whereas the actual resolution is

$$
\begin{aligned}
0 \rightarrow S(-8)^{4} \rightarrow S(-7)^{18} \rightarrow S(-6)^{25} \oplus S(-5)^{5} & \rightarrow S(-5)^{1} \oplus S(-4)^{45} \rightarrow \\
S(-3)^{46} & \rightarrow S(-2)^{17} \rightarrow I \rightarrow 0 .
\end{aligned}
$$

From [1] section 3 or (22 section 3 we know that the Minimal Resolution Conjecture is true for 22 general points in \mathbb{P}^{6}. Thus one can work out that the resolution of 22 general points in \mathbb{P}^{6} is

$$
\begin{aligned}
0 \rightarrow S(-8)^{15} \rightarrow S(-7)^{84} \rightarrow S(-6)^{190} \rightarrow & S(-5)^{216} \rightarrow S(-4)^{120} \rightarrow \\
& S(-2)^{6} \oplus S(-3)^{20} \rightarrow I \rightarrow 0 .
\end{aligned}
$$

Any subset of 11 points of 22 general points is a set of 11 general points. Let us see what the guess predicts as the resolution of 11 points contained in 22 general
points. The crucial term is $S(-5)$ so we compute only that. The relevant Koszul complex to look at is

$$
\begin{equation*}
0 \rightarrow \bigwedge^{3} S_{1} \otimes I_{2} \xrightarrow{d_{3,2}} \bigwedge^{2} S_{1} \otimes I_{3} \xrightarrow{d_{2,3}} \bigwedge^{1} S_{1} \otimes I_{4} \xrightarrow{d_{1,4}} \bigwedge^{0} S_{1} \otimes I_{5} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

When I is the ideal of 22 general points, using that these points have generic Hilbert function $1,7,22,22, \ldots$, one easily computes the dimensions in (3.1) as

$$
0 \rightarrow 210 \xrightarrow{d_{3,2}} 1302 \xrightarrow{d_{2,3}} 1316 \xrightarrow{d_{1,4}} 440 \rightarrow 0 .
$$

To get the known resolution we must then have

$$
\begin{array}{ll}
\text { rank } d_{1,4}=440 & \operatorname{dim} \operatorname{ker} d_{1,4}=1316-440=876 \\
\text { rank } d_{2,3}=876 & \operatorname{dim} \operatorname{ker} d_{2,3}=1302-876=426 \\
\operatorname{rank} d_{3,2}=210 & \operatorname{dim} \operatorname{ker} d_{3,2}=210-210=0
\end{array}
$$

so that $\operatorname{dim} \frac{\operatorname{ker} d_{2,3}}{\operatorname{im} d_{3,2}}=426-210=216$.
When I is the ideal of 11 general points, one again easily computes the dimensions in (3.1) as

$$
0 \rightarrow 595 \xrightarrow{e_{3,2}} 1533 \xrightarrow{e_{2,3}} 1393 \xrightarrow{e_{1,4}} 451 \rightarrow 0
$$

Applying the guess we get

$$
\begin{array}{ll}
\operatorname{rank} e_{1,4}=451 & \operatorname{dim} \operatorname{ker} e_{1,4}=1393-451=942 \\
\operatorname{rank} e_{2,3}=942 & \operatorname{dim} \operatorname{ker} e_{2,3}=1533-942=591 \\
\operatorname{rank} e_{3,2}=591 & \operatorname{dim} \operatorname{ker} e_{3,2}=595-591=4
\end{array}
$$

so that $\operatorname{dim} \frac{\operatorname{ker} e_{2,3}}{\operatorname{im} e_{3,2}}=591-591=0$ and $\operatorname{dim} \frac{\operatorname{ker} e_{3,2}}{\operatorname{im} e_{4,1}}=4-0=4$. That is, the guess predicts the same resolution for 11 general points in \mathbb{P}^{6} as the Minimal Resolution Conjecture, which is wrong.

The guess does give some restrictions on what resolutions of subsets of X can be. Conditions (i) and (ii) must always be satisfied, but the rank could be smaller than this upper bound. Also, because of the inductive nature of the upper bounds, once one $e_{i, j}$ fails to achieve the upper bound, the upper bounds on $e_{i+s, j-s}$ for $s \geq 1$ can change.

The above calculations give some preliminary evidence that the following question may have an affirmative answer. See also Remark 5.6.

Question 3.1. When X is a general set of d points in projective space, does the guess for a subset of $e<d$ points of X always give the same graded Betti numbers as those given by the Minimal Resolution Conjecture for a general set of e points?

Since the known counter-examples to the Minimal Resolution conjecture go wrong in the "middle" of the resolution, it may well be that parts of the Minimal Resolution Conjecture are always true. In particular, it is known that the Cohen-Macaulay Type Conjecture is true (TV, La]), and one naturally wonders if the Ideal Generation Conjecture is true. This leads to the second question:

Question 3.2. Is the guess true at least at the ends of the resolution? In particular, given any finite set of points in \mathbb{P}^{n}, is there always a subset with the predicted minimal generators and the predicted Cohen-Macaulay type?

Note that the guess does not assume that we have a general set of points, or even that we have some sort of uniformity! The next two sections show that Question 3.2 has an affirmative answer for subsets of \mathbb{P}^{2}.

4. The Subset Resolution Theorem for points in \mathbb{P}^{2}

We now restrict our attention to points in \mathbb{P}^{2}. Let $X=\left\{P_{1}, \ldots, P_{d}\right\}$ be a set of d distinct points, with homogeneous ideal $I=I(X) \subset k\left[X_{0}, X_{1}, X_{2}\right]=S$. At first glance the Koszul complex would seem to involve sequences of the form

$$
\begin{aligned}
0 \rightarrow \bigwedge^{3} S_{1} \otimes I_{s-2} \xrightarrow{d_{3, s-2}} \bigwedge^{2} S_{1} \otimes I_{s-1} & \xrightarrow{d_{2, s-1}} \bigwedge^{1} S_{1} \otimes I_{s} \\
& \xrightarrow{d_{1, s}} \bigwedge^{0} S_{1} \otimes I_{s+1} \rightarrow 0
\end{aligned}
$$

However, we know that the graded minimal free resolution for I has only two terms, so we must have that $d_{3, s-2}$ is injective and $\operatorname{ker} d_{2, s-1}=\operatorname{im} d_{3, s-2}$. The only thing in question is the rank of the map $d_{1, s}$. This is just the multiplication map

$$
\begin{aligned}
\mu_{s}: S_{1} \otimes I_{s} & \rightarrow I_{s+1} \\
L \otimes F & \mapsto L F .
\end{aligned}
$$

Definition 4.1. If $Y \subset X$ has the Hilbert function given in Lemma 1.1, we will say that it has truncated Hilbert function.

For any subset $Z \subset X$ and any positive integer s, we have a commutative diagram

The subset resolution guess for points in \mathbb{P}^{2} then becomes the following.
Theorem 4.2. Let X be a reduced set of d points in \mathbb{P}^{2}. Fix an integer $m, 1 \leq$ $m<d$. Then there exists a subset $Z \subset X$ of cardinality m and with truncated Hilbert function, as given in Lemma 1.1, and such that for all positive integers s

$$
\begin{aligned}
\operatorname{rank} \mu_{s, Z}=\min \{ & \operatorname{dim} I(Z)_{s+1}, \operatorname{rank} \mu_{s, X}+ \\
& \left.\operatorname{dim} S_{1} \otimes I(Z)_{s}-\operatorname{dim} S_{1} \otimes I(X)_{s}\right\}
\end{aligned}
$$

Proof. First observe that if X is contained in a line then X and all its subsets are complete intersections. The resolution of a complete intersection is well known. We let the reader check the theorem in this case. Thus we may assume that X is not contained in a line.

Now we show that it is enough to prove the theorem for $m=d-1$. To do this, it is enough to show the following. Let $Z \subset X$ be a subset consisting of $m=m_{0}$ points, such that Z has truncated Hilbert function and $\mu_{s, Z}$ has the predicted rank, for any s. Assume that there is a subset $Z_{1} \subset Z$ consisting of $m_{0}-1$ points such that Z_{1} has truncated Hilbert function, and such that for all s, the rank of $\mu_{s, Z_{1}}$ is what is predicted in the theorem if we take $X=Z$ and $d=m_{0}$. Then we have to show that this is the same rank that is predicted by the theorem if we had taken $X=X$ and $Z=Z_{1}$.

The fact that Z has the predicted rank says that for all s, either $\mu_{s, Z}$ is surjective or ker $\mu_{s, Z}=\operatorname{ker} \mu_{s, X}$. By our assumption on Z_{1}, we get that for all s either $\mu_{s, Z_{1}}$ is surjective or ker $\mu_{s, Z_{1}}=\operatorname{ker} \mu_{s, Z}$. For those s with $\mu_{s, Z_{1}}$ surjective we are done. For
those s with ker $\mu_{s, Z_{1}}=\operatorname{ker} \mu_{s, Z}=\operatorname{ker} \mu_{s, X}$ we are done. This leaves only those s for which $\operatorname{ker} \mu_{s, Z_{1}}=\operatorname{ker} \mu_{s, Z}$ but $\operatorname{ker} \mu_{s, Z} \neq \operatorname{ker} \mu_{s, X}$. But if $\operatorname{ker} \mu_{s, Z} \neq \operatorname{ker} \mu_{s, X}$ then $\mu_{s, Z}$ is surjective. Furthermore, the Hilbert function of X in degree s is different from that of Z in degree s. Since Z has truncated Hilbert function, this says that Z imposes m_{0} independent conditions on forms of degree s, and Z_{1} imposes $m_{0}-1$ independent conditions on forms of degree s. Hence $\mu_{s, Z_{1}}$ is surjective. Thus it is enough to prove the theorem for the case $m=d-1$.

Part of the proof will be by induction on d. The reader can easily get this induction argument started by checking directly that the theorem is true for small values of d.

Let l be the smallest positive integer such that X imposes d conditions on forms of degree l. Then $I(X)$ is generated in degrees less than or equal to $l+1$, DGM Prop. 3.7. Let $Z \subset X$ be any subset with $d-1$ points. Then $I(Z)$ is also generated in degrees less than or equal to $l+1$. Thus for $s \geq l+1$ the multiplication map $\mu_{s, Z}$ is surjective and thus satisfies the conclusion of the proposition.

Next consider $s \leq l-1$. From now on, unless specified otherwise, we assume that our subset Z has truncated Hilbert function. Then X imposes at most $d-1$ conditions on forms of degree s. By Lemma 1.1, Z imposes the smaller of $d-1$ and the number of conditions imposed by X on forms of degree s. Thus, $I(X)_{s}=I(Z)_{s}$. This says that $\mu_{s, X}$ and $\mu_{s, Z}$ are the same map. Certainly the conclusion of the proposition follows in this case. We are only left to consider the case $s=l$. We have to show that among subsets with cardinality $d-1$ and with truncated Hilbert function, we can find one with the right number of minimal generators in degree $l+1$.

Consider the diagram (4.1) with $s=l$. Regardless of whether or not Z has truncated Hilbert function, $I(X)_{l}$ has codimension one in $I(Z)_{l}$, and similarly for $l+1$. Let F_{1}, \ldots, F_{t} be a basis for $I(X)_{l}$ and let G be a form of degree l in $I(Z)_{l}-I(X)_{l}$, so that F_{1}, \ldots, F_{t}, G is a basis for $I(Z)_{l}$. The proof breaks down into four cases according to the codimension of the image of $\mu_{l, X}$ in $I(X)_{l+1}$, in other words, the number of generators $I(X)$ needs in degree $l+1$. Note that if $I(X)_{l}$ is zero dimensional then $I(Z)_{l}$ is one dimensional, so $\mu_{l, Z}$ is injective. We may assume that $I(X)_{l}$ has positive dimension.

Case 1. $I(X)$ is generated in degrees $\leq l$. This says that $\mu_{l, X}$ is surjective. We wish to show that $\mu_{l, Z}$ is also surjective, for any Z (hence in particular one with truncated Hilbert function). Since $I(X)_{l+1}$ has codimension one in $I(Z)_{l+1}$ we simply need to find a single form in the image of $\mu_{l, Z}$ not in the image of $\mu_{l, X}$. Let L be a linear form not vanishing on the single point of $X-Z$. Note that G also does not vanish on the single point of $X-Z$. LG is certainly in the image of $\mu_{l, Z}$, but not in the image of $\mu_{l, X}$ because $L G$ does not vanish on all of X.

Case 2. The image of $\mu_{l, X}$ has codimension one in $I(X)_{l+1}$. We need to show that there is at least one subset \mathbb{Z}, with cardinality $d-1$ and truncated Hilbert function, so that $\mu_{l, \mathbb{Z}}$ is surjective. For this case we consider all subsets of X of cardinality $d-1$. Set $Z_{i}=X-\left\{P_{i}\right\}, i=1, \ldots, d$. Let G_{i} be a form of degree l in $I\left(Z_{i}\right)_{l}-I(X)_{l}$. Note that G_{i} is well defined up to elements of $I(X)_{l}$. One can see that $F_{1}, \ldots, F_{t}, G_{1}, \ldots, G_{d}$ form a basis for S_{l}. Indeed, since $I(X)_{l}$ has codimension d in S_{l} there are the right number of them to be a basis, and any linear relation $a_{1} F_{1}+\cdots+a_{t} F_{t}+a_{t+1} G_{1}+\cdots+a_{t+d} G_{d}=0$ would need to have $a_{t+i}=0, i=1, \ldots, d$, since $G_{i}\left(P_{i}\right) \neq 0$ but all the other G 's and F 's vanish at P_{i}.

This would give a linear relation among the F 's which is impossible because they form a basis for $I(X)_{l}$.

We only need to find one Z_{i} such that $\mu_{l, Z_{i}}$ is surjective, and such that Z_{i} has truncated Hilbert function. We will first argue that in this situation, if $\mu_{l, Z_{i}}$ is surjective then Z_{i} must have truncated Hilbert function.

Let L be a general linear form and let

$$
J=\frac{I(X)+(L)}{(L)} \quad J_{i}=\frac{I\left(Z_{i}\right)+(L)}{(L)}
$$

be the corresponding ideals in $R=S /(L) \cong k[x, y]$. Note that L is not a zero divisor on $S / I(X)$ or $S / I\left(Z_{i}\right)$. By slight abuse of notation, we will call the rings $A=R / J$ and $A_{i}=R / J_{i}$ the Artinian reductions of X and Z_{i}, respectively.

Claim 4.3. $I(X)$ and J (resp. $I\left(Z_{i}\right)$ and J_{i}) have the same number of minimal generators, occurring in the same degrees.

Proof. This is standard. See for instance M, p. 28.

Claim 4.4. J_{i} is equal to J in degrees greater than or equal to l if and only if Z_{i} does not have truncated Hilbert function.

Proof. Notice that $J \subset J_{i}$ for all i, and notice that $J_{i}=J$ in degrees $\geq l+1$, so it is enough to prove that $\operatorname{dim} J_{i}=\operatorname{dim} J$ in degree l if and only if Z_{i} does not have truncated Hilbert function.

Consider the Hilbert functions of A and of A_{i} :

$$
\begin{array}{llllllll}
h_{A}: & 1 & a_{1} & a_{2} & \ldots & a_{l-1} & a_{l} & 0 \\
h_{A_{i}}: & 1 & b_{1} & b_{2} & \ldots & b_{l-1} & b_{l} & 0
\end{array}
$$

Since $J \subset J_{i}$ we have $a_{j} \geq b_{j} \geq 0$ for all j. We also have $\sum a_{j}=d$ and $\sum b_{j}=d-1$. It follows that for one value of j, say j_{0}, we have $a_{j_{0}}=b_{j_{0}}+1$, and for all other j we have $a_{j}=b_{j}$. Since Z_{i} has truncated Hilbert function if and only if $j_{0}=l$, this completes the proof of the claim.

It follows from Claims 4.3 and 4.4 that if Z_{i} does not have truncated Hilbert function then it is impossible that X has a minimal generator in degree $l+1$ but Z_{i} does not have a minimal generator in degree $l+1$. So if we prove the existence of a Z_{i} with no minimal generator in degree $l+1$ then the truncated Hilbert function will follow automatically.

Suppose that $\mu_{l, Z_{i}}$ is never surjective. Since $\operatorname{dim} S_{1} \otimes I\left(Z_{i}\right)_{l}=\operatorname{dim} S_{1} \otimes I(X)_{l}+3$, $\operatorname{dim} I\left(Z_{i}\right)_{l+1}=\operatorname{dim} I(X)_{l+1}+1$, and by assumption

$$
\operatorname{dim} I(X)_{l+1}=\operatorname{dim} \mu_{l, X}\left(S_{1} \otimes I(X)_{l}\right)+1
$$

we see that for every i the kernel of $\mu_{l, Z_{i}}$ must have dimension at least two larger than the dimension of the kernel of $\mu_{l, X}$. That is, there must be two degree one relations of the form

$$
\begin{aligned}
L_{i, 1} F_{1}+\cdots+L_{i, t} F_{t}+L_{i, t+1} G_{i} & =0 \\
M_{i, 1} F_{1}+\cdots+M_{i, t} F_{t}+M_{i, t+1} G_{i} & =0
\end{aligned}
$$

These relations must be linearly independent of each other and no linear combination of the two of them can involve only F 's and not G_{i}. From this one can see that all $2 d$ of these relations (as you vary i) are linearly independent elements of
the kernel of the multiplication map $S_{1} \otimes S_{l} \rightarrow S_{l+1}$ which remain independent modulo the kernel of $\mu_{l, X}$.

Using our assumption on the codimension of the image of $\mu_{l, X}$ in $I(X)_{l+1}$ we conclude that this image has codimension $d+1$ in S_{l+1}. Comparing $\mu_{l, X}$ with the multiplication map $S_{1} \otimes S_{l} \rightarrow S_{l+1}$ we see that $\operatorname{dim} S_{1} \otimes S_{l}=\operatorname{dim} S_{1} \otimes I(X)_{l}+3 d$. However, from the previous paragraph we know that the dimension of the kernel of $S_{1} \otimes S_{l} \rightarrow S_{l+1}$ is at least $2 d$ larger than the dimension of the kernel of $\mu_{l, X}$. Counting dimensions we get that $S_{1} \otimes S_{l} \rightarrow S_{l+1}$ is not surjective. But, it is a well known triviality that $S_{1} \otimes S_{l} \rightarrow S_{l+1}$ is surjective. This contradiction finishes case 2.

Case 3. The image of $\mu_{l, X}$ has codimension two in $I(X)_{l+1}$. This will involve quite a bit more work and will be done in section 5 .

Case 4. The image of $\mu_{l, X}$ has codimension $c \geq 3$ in $I(X)_{l+1}$. Let Z_{i}, F_{i}, G_{i}, J and J_{i} be as in case 2 . The codimension of the image of $\mu_{l, X}$ in $I\left(Z_{i}\right)_{l+1}$ is $c+1 \geq 4$. We want to show that there is a Z_{i} with truncated Hilbert function, such that $I\left(Z_{i}\right)$ has $c-3$ minimal generators in degree $l+1$. By Claim 4.4, if Z_{i} does not have truncated Hilbert function then $J_{i}=J$ in degrees $\geq l$. Hence J and J_{i} have the same number of minimal generators in degree $l+1$, and by Claim4.3, the same is true of Z_{i} and X. So just as in case 2 , it is enough to prove the existence of a Z_{i} with the right number of minimal generators, and it will automatically have truncated Hilbert function.

The proof will be by induction on d. Hence we can assume that the theorem is true for all the Z_{i}, but suppose that it fails for X. In this case we conclude that for each $i=1, \ldots, d$ we have at least one degree one relation of the form $L_{i, 1} F_{1}+\cdots+L_{i, t} F_{t}+L_{i, t+1} G_{i}=0$. If there were always two or more such relations we could arrive at a contradiction as in case 2 , so assume for $i=1$ there is only one such relation.

As indicated above, we may assume that the theorem holds for Z_{1}. Thus we can find $P_{j}, j \in\{2, \ldots, d\}$ such that $Z_{1, j}=Z_{1}-\left\{P_{j}\right\}$ satisfies the conclusion of the theorem with respect to Z_{1}. A basis for $I\left(Z_{1}\right)_{l}$ consists of $F_{1}, \ldots, F_{t}, G_{1}$ and a basis for $I\left(Z_{1, j}\right)_{l}$ consists of $F_{1}, \ldots, F_{t}, G_{1}, G_{j}$. The relations $L_{i, 1} F_{1}+\cdots+$ $L_{i, t} F_{t}+L_{i, t+1} G_{i}=0$ for $i=1, j$ say that the codimension of the image of $\mu_{l, Z_{1}}$ in $I\left(Z_{1}\right)_{l+1}$ is exactly $c-1 \geq 2$ (because we assumed only one such relation) and the codimension of the image of $\mu_{l, Z_{1, j}}$ in $I\left(Z_{1, j}\right)_{l+1}$ is at least $c-2 \geq 1$. But the assumption that $Z_{1, j} \subset Z_{1}$ satisfies the theorem says that the codimension of the image of $\mu_{l, Z_{1, j}}$ in $I\left(Z_{1, j}\right)_{l+1}$ is $c-3$. This contradiction finishes case 4.

Remark 4.5. The proof of Lemma 1.1 is surprisingly simple. The idea is to start with a subset Y^{\prime} of X (beginning with any single point) and add one point of X at a time in such a way that at each step, the new subset Y has the predicted Hilbert function. This is done by considering the linear system of hypersurfaces of any degree t containing Y^{\prime}. If the general element of this linear system vanishes on all of X then consider degree $t+1$. If not, there is some point P of X not in the base locus of this linear system, and we take $Y=Y^{\prime} \cup P$.

One would naturally wonder if the same approach, building up to X point by point rather than taking point after point away from X, would similarly be an easier approach to Theorem 4.2. In fact this seems to not work. Consider, for instance, a
set of points with the following configuration:

(i.e. points 1, 2, and 3 are collinear and points 3,4 and 5 are collinear). If we build up X starting with point 3 , it is of course possible to do so in such a way that at each step the subset obtained has the right (truncated) Hilbert function. For example, the sequence $3,1,4,2,5$ works. However, it is impossible to find a sequence beginning with 3 such that at each step the subset has the right minimal free resolution according to Theorem 4.2. Indeed, the only subset of X consisting of four points and having the right number of minimal generators is the set of points labeled 1, 2, 4 and 5.

5. The Final Case

This section is devoted to proving case 3 of the proof of Theorem 4.2. We are thus assuming that X has two minimal generators in degree $l+1$, and we are trying to show that there is a subset Z_{i} of cardinality $d-1$ having truncated Hilbert function and no minimal generator in degree $l+1$. With this assumption on X, the following fact is proved exactly as in case 2 in the preceding section: If a subset Z_{i} of $d-1$ points exists with no minimal generator in degree $l+1$ then it must have truncated Hilbert function.

We begin by taking care of a special subcase. For the following lemma we will actually need to use the truncated Hilbert function to find the desired subset, so we have to be a little careful.

Lemma 5.1. Assume that X satisfies case 3, i.e. the image of $\mu_{l, X}$ has codimension two in $I(X)_{l+1}$. If the base locus of $I(X)_{l}$ is one-dimensional then X contains a subset, Z, of cardinality $d-1$ which satisfies the rank condition asserted in Theorem 4.2, namely $I(Z)$ has no minimal generators in degree $l+1$.

Proof. By Lemma 1.1, there is at least one subset Z_{i} whose Hilbert function is the truncation of that of X. We will find our desired Z from among these subsets, so from now on we will assume that this is the Hilbert function of Z. Then we have that the ideal of X agrees with that of Z in degrees $\leq l-1$ and Z and X both impose independent conditions on curves of degree l. It follows that

$$
\begin{aligned}
\operatorname{dim} I(X)_{l}+1 & =\operatorname{dim} I(Z)_{l} \\
\operatorname{dim} I(X)_{l+1}+1 & =\operatorname{dim} I(Z)_{l+1}
\end{aligned}
$$

We are assuming, furthermore, that X has precisely two minimal generators in degree $l+1$. We need to show that Z can be chosen with no minimal generator in degree $l+1$.

The assumption about the dimension of the zero locus means that $I(X)_{l}$ has a GCD, F. Let k be the degree of F. By abuse of notation we will use F both for the curve in \mathbb{P}^{2} and for the polynomial.

Claim 5.2. $k \leq 2$.
Proof. We will use ideas from BGM Proposition 2.3 (closely related to work of Davis [D]). Let X_{1} be the subset of X lying on F and let X_{2} be the subset not
lying on F. We have $I\left(X_{1}\right)=[I(X)+(F)]^{\text {sat }}$ and $I\left(X_{2}\right)=[I(X): F]$, which is already saturated. For $k \leq t \leq l$ we have

$$
\begin{equation*}
\Delta h_{X_{2}}(t-k)=\Delta h_{X}(t)-k \tag{5.1}
\end{equation*}
$$

Notice that $I(X)_{l}=F \cdot I\left(X_{2}\right)_{l-k}$. From this we deduce two things. First, X_{2} imposes independent conditions on forms of degree $l-k$ since X does on forms of degree l. Second, rk $\mu_{l, X}=$ rk $\mu_{l-k, X_{2}}$.

Let J be the ideal generated by $I(X)_{\leq l}$. We have just seen that $\operatorname{dim} J_{l}=$ $\operatorname{dim} I\left(X_{2}\right)_{l-k}$. In degree $l+1$ we have the inequality $\operatorname{dim} J_{l+1} \leq \operatorname{dim} I\left(X_{2}\right)_{l-k+1}$, where the failure to be an equality is measured by the number of minimal generators of $I\left(X_{2}\right)$ in degree $l-k+1$. Let $h(S / J, t)$ be the corresponding Hilbert function and consider $\Delta h(S / J, l+1)$. From the above considerations, one can check that

$$
\begin{aligned}
\Delta h(S / J, l+1) & \geq k+\Delta h_{X_{2}}(l-k+1) \\
& =k .
\end{aligned}
$$

On the other hand, since $I(X)$ has two minimal generators in degree $l+1$, we have $2=\operatorname{dim} I(X)_{l+1}-\operatorname{dim} J_{l+1}$. This gives

$$
\begin{aligned}
k & \leq \Delta h(S / J, l+1) \\
& =l+2-\operatorname{dim} J_{l+1}+\operatorname{dim} J_{l} \\
& =l+2-\left[\operatorname{dim} I(X)_{l+1}-2\right]+\operatorname{dim} I(X)_{l} \\
& =\Delta h_{X}(l+1)+2 \\
& =2
\end{aligned}
$$

and this proves the claim.
Claim 5.3. If $k=2$ then X_{1} consists of exactly $2 l+1$ points on F. If $k=1$ then X_{1} consists of exactly $l+1$ points on F.

Proof. Let us collect the following facts.

1. The initial degree of $I(X)$ is ≥ 2.
2. $\Delta h_{X_{2}}(l-k+1)=0$ since X_{2} imposes independent conditions on forms of degree $l-k(k=1,2)$.
3. $\Delta h_{X}(l+1)=0$.
4. $\Delta h_{X}(l) \geq 2$. This follows because we are assuming that X has two minimal generators in degree $l+1$. It can be seen, for example, by applying (C) Theorem 2.1 (d), since in our situation certainly X is contained in a complete intersection of type (α, β) with $\alpha<\beta=l+1$.
5. $\operatorname{deg} X=\operatorname{deg} X_{1}+\operatorname{deg} X_{2}$.
6. $\sum_{t} \Delta h_{X_{2}}(t)=\operatorname{deg} X_{2}$.
7. $\sum_{t} \Delta h_{X}(t)=\operatorname{deg} X$.

If one now considers the Hilbert function of the Artinian reduction of $S / I(X)$ (i.e. the function given by $\Delta h_{X}(t)$) and applies the equation (5.1), in the case $k=2$ (resp. $k=1$) one gets from the above facts that $\operatorname{deg} X_{1}=2 l+1$ (resp. $\left.\operatorname{deg} X_{1}=l+1\right)$ as claimed.

We consider the cases $k=2$ and $k=1$ separately. Suppose that X_{1} consists of $2 l+1$ points on either a smooth conic or else a union of two lines. In the latter case, either one point lies at the intersection of the two lines or else there are l points on
one line and $l+1$ points on the other. (Otherwise X fails to impose independent conditions on forms of degree l.) In any of these cases, the removal of a suitable point P leaves $2 l$ points which form the complete intersection of F and some curve G of degree l. Let Z be the subset of X obtained by removing this point.

We know that there exists an element of $I(Z)_{l}$ which is not in $I(X)_{l}$. We first claim that such an element must meet F in finitely many points. Certainly the base locus of the linear system $\left|I(Z)_{l}\right|$ cannot contain all of F since then it contains the deleted point P, contradicting the fact that X imposes independent conditions on forms of degree l. Hence the assertion is clear if F is irreducible. Suppose that $F=L_{1} L_{2}$ is reducible and suppose (without loss of generality) that L_{1} is in the base locus of $\left|I(Z)_{l}\right|$. Then any element of this linear system consists of the product of L_{1} with a homogeneous polynomial of degree $l-1$ containing the remaining points of X. By construction, the remaining points include l points on L_{2}, so in fact all of F is in the base locus, a contradiction.

Hence without loss of generality we may assume that the subset of Z lying on F is the complete intersection of F and a form $G \in I(Z)_{l}$ (i.e. G contains all of Z). Now, if $\left(F_{1}, \ldots, F_{m}\right)$ form a basis for $I(X)_{l}$ and $\left(F_{1}, \ldots, F_{m}, G\right)$ form a basis for $I(Z)_{l}$, then any linear relation

$$
L_{1} F_{1}+\cdots+L_{m} F_{m}+L G=0
$$

implies $L=0$ since no factor of F is a factor of G, and $\operatorname{deg} F=2$. The conclusion follows from this fact.

We now turn to the case $k=1$. We have that X is the union $X=X_{1} \cup X_{2}$, where X_{1} consists of $l+1$ points on the line F. Since $\left|I(X)_{l+1}\right|$ has a zero-dimensional base locus, a general element, G, of this linear system does not contain F as a component. Hence in particular X_{1} is the complete intersection of F and G. Also, in particular we have that $G \in I\left(X_{2}\right)$. We now note that $X=X_{2} \cup X_{1}$ is a liaison addition (cf. |GM], [S])! Hence its ideal is of the form

$$
I(X)=F \cdot I\left(X_{2}\right)+(G)
$$

Since $I(X)$ has two minimal generators of degree $l+1$, clearly G must be one of these and $I\left(X_{2}\right)$ must have exactly one minimal generator in degree l (which is the maximum possible degree).

Let Z be the subset of X obtained by removing a point, P, of X_{1}. Let Z_{1} be the subset of X_{1} obtained by removing P. Exactly as above, $Z=Z_{1} \cup X_{2}$ is a liaison addition, since the linear system $\left|I(Z)_{l}\right|$ does not have all of F in its base locus. Its ideal is of the form

$$
I(Z)=F \cdot I\left(X_{2}\right)+\left(G^{\prime}\right)
$$

where $\operatorname{deg} G^{\prime}=l, G^{\prime} \in I\left(X_{2}\right)$ and $\left(F, G^{\prime}\right)$ form a complete intersection.
We want to show that P can be removed in such a way that $I(Z)$ has no minimal generator in degree $l+1$.

Claim 5.4. The following are equivalent:
(1) $I(Z)$ has a minimal generator in degree $l+1$.
(2) $I\left(X_{2}\right)$ has a minimal generator in degree l other than G^{\prime}.
(3) G^{\prime} is not a minimal generator for $I\left(X_{2}\right)$.

Proof. The equivalence of (2) and (3) is clear since we have already observed that $I\left(X_{2}\right)$ has exactly one minimal generator in degree l. The fact that (1) implies
(2) follows from the equation $I(Z)=F \cdot I\left(X_{2}\right)+\left(G^{\prime}\right)$. Now assume (2), and let H be the minimal generator in $I\left(X_{2}\right)$ other than G^{\prime}. We want to show that $F H$ is a minimal generator for $I(Z)$. Suppose not, and let F_{1}, \ldots, F_{k} be a basis for $I\left(X_{2}\right)_{l-1}$. Then we have

$$
F H=L G^{\prime}+\sum_{i=1}^{k} L_{i} F F_{i}
$$

or equivalently

$$
F\left(H-\sum_{i=1}^{k} L_{i} F_{i}\right)=L G^{\prime}
$$

Since F does not divide G^{\prime}, we get that $H=G^{\prime}+\sum L_{i} F_{i}$ up to scalar multiples, contradicting the assumption that H is a minimal generator for $I\left(X_{2}\right)$ other than G^{\prime}.

As a result of Claim 5.4 we have in particular that $I(Z)$ has a minimal generator in degree $l+1$ if and only if G^{\prime} is not a minimal generator of $I\left(X_{2}\right)$. We want to show that we can find the subset Z with no minimal generator in degree $l+1$. We thus have to show that among the $l+1$ collinear points of $G \cap F$, there is at least one point P whose removal leads to a $G^{\prime} \in I\left(X_{2}\right)_{l}$ as above which is not in the image of $\mu_{l-1, X_{2}}$. We will do this by contradiction. Let P_{1}, \ldots, P_{l+1} be the points of $G \cap F$. For each $i, 1 \leq i \leq l+1$, let $G_{i} \in I\left(X_{2} \cup P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_{l+1}\right)_{l} \subset I\left(X_{2}\right)_{l}$ such that G_{i} does not contain F as a factor, as was done with G^{\prime} above. Note that G_{1}, \ldots, G_{l+1} are linearly independent in S_{l}, as was done in Case 2 in the previous section.

We want to show that it is impossible for G_{1}, \ldots, G_{l+1} to all be in the image of $\mu_{l-1, X_{2}}$. Suppose otherwise. Note that F is a non zero-divisor of $S / I\left(X_{2}\right)$, and let

$$
J=\frac{I\left(X_{2}\right)+(F)}{(F)} \quad \text { and } \quad R=S /(F)
$$

We may view R / J as the Artinian reduction of $S / I\left(X_{2}\right)$, and in particular J has a minimal generator in degree l since we saw that $I\left(X_{2}\right)$ must have a minimal generator in degree l. On the other hand, if we let \bar{G}_{i} be the image of G_{i} in R, the same argument as above gives that the \bar{G}_{i} are linearly independent in $J_{l} \subset R_{l}$. Note that $\operatorname{dim} J_{l}=l+1$, so the \bar{G}_{i} form a basis. If the G_{i} are all in the image of $\mu_{l-1, X_{2}}$ then none of the \bar{G}_{i} is a minimal generator of J, so J has no minimal generator in degree l, a contradiction. This concludes the proof of Lemma 5.1.

Let Z_{i}, F_{i}, and G_{i} be as in case 2 . As noted above, the truncated Hilbert function will follow immediately once we find the Z_{i} with no minimal generator in degree $l+1$. Since we are assuming that the proposition fails for X, we conclude that for each $i=1, \ldots, d$ we have at least one degree one relation of the form

$$
\begin{equation*}
L_{i, 1} F_{1}+\cdots+L_{i, t} F_{t}+L_{i, t+1} G_{i}=0 \tag{5.2}
\end{equation*}
$$

where $L_{i, t+1} \neq 0$. If there were always two or more such relations we could arrive at a contradiction as in case 2 . So for some i 's there must be exactly one such relation.

As a result of Lemma 5.1, we may assume that the base locus of $\left|I(X)_{l}\right|$ is zerodimensional. Consequently we may choose homogeneous polynomials $H, K \in I(X)$ each of degree $\leq l$ which form a regular sequence, hence link X to a zeroscheme D.

Note that we may choose H and K to be minimal generators of $I(X)$. Without loss of generality, say $\operatorname{deg} K \leq \operatorname{deg} H \leq l$.

Claim 5.5. The ideal $I(D)$ of D contains a form of degree less than $\operatorname{deg}(K)$.
Proof. We use the Cayley-Bacharach Theorem DGO Thm. 3(b). The first difference function for the Hilbert function of the complete intersection $H \cap K$ is:

$$
1,2,3, \ldots, \operatorname{deg} K, \operatorname{deg} K, \ldots, \operatorname{deg} K, \operatorname{deg} K-1, \operatorname{deg} K-2, \ldots, 3,2,1,
$$

with $\operatorname{deg} K$ repeated $\operatorname{deg} H-\operatorname{deg} K+1$ times. The first difference function for the Hilbert function of X does not reach 0 until degree $l+1$. Since $\operatorname{deg} H \leq l$, when we subtract these and read backwards to get the first difference function for D we see its maximum is less than $\operatorname{deg} K$.

Now we wish to use liaison theory to compare the resolutions of $I(X)$ and $I(D)$. We follow the presentation in CGO. Suppose the resolution for $I(X)$ is

$$
0 \rightarrow \bigoplus_{i=1}^{e+1} S\left(-m_{i}\right) \stackrel{\varphi}{\longrightarrow} \bigoplus_{i=1}^{e+2} S\left(-d_{i}\right) \rightarrow I(X) \rightarrow 0
$$

with $d_{1} \geq d_{2} \geq \cdots \geq d_{e+2}, m_{1} \geq m_{2} \geq \cdots \geq m_{e+1}$. By our assumptions on generators of $I(X)$ in degree $l+1$ we have that $d_{1}=d_{2}=l+1, d_{3} \leq l$. The map φ is given by a matrix of forms

$$
\mathcal{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1, e+1} & a_{1, e+2} \\
a_{21} & a_{22} & \ldots & & \\
\vdots & \vdots & & \vdots & \vdots \\
a_{e+1,1} & a_{e+1,2} & \ldots & a_{e+1, e+1} & a_{e+1, e+2}
\end{array}\right]
$$

As in CGO we use $\partial \mathcal{A}$ to denote the integer matrix whose (i, j) entry is $\operatorname{deg} a_{i j}=$ $u_{i j}=\max \left\{0, m_{i}-d_{j}\right\}$.

$$
\partial \mathcal{A}=\left[\begin{array}{ccc}
u_{11} & \ldots & u_{1, e+2} \\
\vdots & \vdots & \\
u_{e+1,1} & \ldots & u_{e+1, e+2}
\end{array}\right]
$$

The fact that $I(X)$ has generators in degree $l+1$ says that X has defining equations of high degree as defined in CGO after Prop. 1.2, so that Cor. 2.5 of CGO says $u_{1,1}=1$. This together with inequalities found in Remark 2.2 of CGO and the previously mentioned facts about d_{1}, d_{2}, d_{3} says that $\partial \mathcal{A}$ has the form
$\left[\begin{array}{ccc|c}1 & & 1 \\ 1 & & 1 & \\ & \vdots & & \\ 1 & & 1 & \\ \hline 0 & & 0 & B \\ 0 & \vdots & 0 & \end{array}\right]$
where all entries of A are greater than one. Applying the description of liaison of CGO section 3 we get the corresponding matrix for $I(D)$ by eliminating from $\partial \mathcal{A}$ the columns corresponding to H and K, taking the transpose, and reversing the order of columns and rows to get something that looks like

$\left[\right.$| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B^{\prime} | | | | A^{\prime} | |
| 0 | | 0 | 1 | | 1 |
| 0 | \cdots | | | \cdots | |
| 0 | | 0 | 1 | | 1 |$]$

where all the entries of A^{\prime} are greater than 1 . One way to look at this is to say that the two minimal generators of $I(X)$ of maximal degree $l+1$ induce two degree 1 relations among the forms of lowest degree in $I(D)$.

We can also use H and K to link Z_{i} and $D \cup\left\{P_{i}\right\}$ for each $i=1,2, \ldots, d$. (Here and subsequently, we abuse notation somewhat and write $D \cup\left\{P_{i}\right\}$ for the scheme residual to Z_{i}, even when P_{i} is a common component of X and D.) Unfortunately, H and K may not be minimal generators for Z_{i}, so we have to argue slightly differently to get the desired matrix for $I\left(D \cup\left\{P_{i}\right\}\right)$. We have seen that if there is a Z_{i} with no minimal generator in degree $l+1$ then it has truncated Hilbert function, and it is the subset that we are seeking. Hence without loss of generality we may assume that Z_{i} has at least one minimal generator in degree $l+1$, and, as above, it has a degree matrix of the form
$\left[\begin{array}{c|c}1 & \\ \vdots & A_{i} \\ 1 & \\ \hline 0 & B_{i} \\ \vdots & \end{array}\right]$
where all entries of A_{i} are greater than or equal to one. As a result, the minimal free resolution for $I\left(Z_{i}\right)$ has the form

$$
0 \rightarrow \bigoplus_{i=1}^{f+1} S\left(-n_{i}\right) \stackrel{\varphi}{\longrightarrow} \bigoplus_{i=1}^{f+2} S\left(-e_{i}\right) \rightarrow I\left(Z_{i}\right) \rightarrow 0
$$

with $l+1=e_{1} \geq e_{2} \geq \cdots \geq e_{f+2}, l+2=n_{1} \geq n_{2} \geq \cdots \geq n_{f+1}$. (This can also be deduced directly by considering the regularity of $I\left(Z_{i}\right)$.) Now we link using K and H with $k=\operatorname{deg} K \leq h=\operatorname{deg} H<l+1$. Let C be the complete intersection of H
and K. We get a commutative diagram

$$
\begin{array}{ccccccc}
0 & \rightarrow & \bigoplus_{i=1}^{f+1} S\left(-n_{i}\right) & \xrightarrow{\varphi} & \bigoplus_{i=1}^{f+2} S\left(-e_{i}\right) & \rightarrow & I\left(Z_{i}\right)
\end{array} \rightarrow \quad 0
$$

and by the usual mapping cone trick (cf. (M] Proposition 5.2.10) we get a resolution for $I\left(D \cup\left\{P_{i}\right\}\right)$ of the form

$$
0 \rightarrow \bigoplus_{i=1}^{f+2} S\left(e_{i}-h-k\right) \rightarrow \bigoplus_{i=1}^{f+1} S\left(n_{i}-h-k\right) \oplus S(-h) \oplus S(-k) \rightarrow I\left(D \cup\left\{P_{i}\right\}\right) \rightarrow 0
$$

This is not necessarily minimal. It may be that zero, one or two terms can be split off, depending on whether neither, one or both of H and K are minimal generators of $I\left(Z_{i}\right)$, respectively. However, by the assumption that $k \leq h<l+1$, we see that in any case the smallest term $S\left(e_{1}-h-k\right)$ is not split off. It follows that the degree matrix for $I\left(D \cup\left\{P_{i}\right\}\right)$ is of the form

$$
\left[\begin{array}{c|c}
B_{i}^{\prime} & A_{i}^{\prime} \\
\hline 0 \cdots 0 & 1 \cdots 1
\end{array}\right]
$$

where all the entries of A_{i}^{\prime} are greater than or equal to one. In this case we can say that the minimal generator of $I\left(Z_{i}\right)$ of maximal degree $l+1$ induces a degree 1 relation among the forms of lowest degree in $I\left(D \cup\left\{P_{i}\right\}\right)$.

Putting these facts together we get the following. Let v be the lowest degree of forms in $I(D)$. We have two independent degree 1 relations among $I(D)_{v}$. For each $i=1,2, \ldots, d$ there exists a linear combination (depending on i) of these two relations that becomes a degree 1 relation on $I\left(D \cup\left\{P_{i}\right\}\right)_{v}$.

We will convert this to a question about sections of twisted bundles of differential forms on \mathbb{P}^{2}. The basic idea is fairly standard; see for instance section 9 or [B] section 1. Let $\Omega_{\mathbb{P}^{2}}^{1}$ represent the sheaf of differential one-forms on \mathbb{P}^{2}. Consider the dual of the Euler sequence twisted by $v+1$ (cf. [H] Theorem II.8.13):

$$
\begin{equation*}
0 \rightarrow \Omega_{\mathbb{P}^{2}}^{1}(v+1) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(v)^{\oplus 3} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(v+1) \rightarrow 0 \tag{5.3}
\end{equation*}
$$

Taking cohomology, we obtain

$$
0 \rightarrow H^{0}\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{2}}^{1}(v+1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(v)^{\oplus 3}\right) \xrightarrow{\alpha} H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(v+1)\right) \rightarrow \cdots
$$

The map α is given by $\alpha\left(f_{1}, f_{2}, f_{3}\right)=x_{0} f_{1}+x_{1} f_{2}+x_{2} f_{3}$. A degree 1 relation among elements of $I(D)_{v}$ can be written as $x_{0} g_{1}+x_{2} g_{2}+x_{2} g_{3}=0$ where $g_{i} \in I(D)_{v}$ and therefore represents an element of the kernel of α vanishing on D. By exactness it is the image of an element of $H^{0}\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{2}}^{1}(v+1)\right)$ vanishing on D. The same argument applies to relations on $I\left(D \cup\left\{P_{i}\right\}\right)_{v}$. We deduce that the two degree one relations among $I(D)_{v}$ correspond to two linearly independent sections, call them s_{1} and s_{2}, in $H^{0}\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{2}}^{1}(v+1)\right)$ that vanish on D, and the degree one relation on $I\left(D \cup\left\{P_{i}\right\}\right)_{v}$ corresponds to a linear combination of s_{1} and s_{2} that also vanishes at P_{i}. (When $P_{i} \in \operatorname{Support}(D)$ this must be interpreted appropriately in terms of ideals.) The
locus of points where sections of vector bundles fail to be linearly independent can be analyzed using Chern classes.

Set $Y=\left\{P \in \mathbb{P}^{2} \mid s_{1}(P)\right.$ and $s_{2}(P)$ are linearly dependent $\}$. Note that since s_{1} and s_{2} are linearly independent as elements of $H^{0}\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{2}}^{1}(v+1)\right), Y \neq \mathbb{P}^{2}$. From [F] Example 14.3.2 we see that the class of Y with an appropriate scheme structure is the first Chern class of $\Omega_{\mathbb{P}^{2}}^{1}(v+1)$. Another way to see this is to observe that $s_{1} \wedge s_{2}$ is a nonzero section of the line bundle $\bigwedge^{2}\left(\Omega_{\mathbb{P}^{2}}^{1}(v+1)\right)$. From the Whitney sum formula [|] Theorem 3.2(e) applied to the Euler sequence (5.3) we get that the first Chern class of $\Omega_{\mathbb{P}^{2}}^{1}(v+1)$ is $2 v-1$ times a line. In other words, Y is a curve of degree $2 v-1$. Certainly Y passes through D because s_{1} and s_{2} vanish at D, and Y passes through $X=\left\{P_{1}, \ldots, P_{d}\right\}$ because for each i some linear combination of s_{1} and s_{2} vanishes at P_{i}.

We need to know more about the local nature of Y near the points of the complete intersection $H \cap K$, which we denote by C. By abuse of notation we also let Y represent a polynomial generating the homogeneous ideal of Y. We consider the ideals $I(X), I(D)$ and $I(C)$. Let Q be a point of C. The subscript Q on an ideal or polynomial means we are considering the corresponding ideal or function in the local ring of \mathbb{P}^{2} at Q.
(a) Suppose $Q \in X, Q \notin \operatorname{Support}(D)$. Then $Y_{Q} \in I(X)_{Q}=I(C)_{Q}$.
(b) Suppose $Q \in \operatorname{Support}(D), Q \notin X$. Choose local coordinates x, y on \mathbb{P}^{2} centered at Q and trivialize $\Omega_{\mathbb{P}^{2}}^{1}(v+1)$ locally near Q. Then each s_{i} is given locally by a pair of functions $s_{i}(x, y)=\left(s_{i, 1}(x, y), s_{i, 2}(x, y)\right), i=1,2$. Saying that s_{i} vanishes on D is saying that $s_{i, j}(x, y) \in I(D)_{Q}$ for both $j=1$ and $j=2$. The local equation of Y near Q is the determinant

$$
\left|\begin{array}{ll}
s_{1,1}(x, y) & s_{1,2}(x, y) \\
s_{2,1}(x, y) & s_{2,2}(x, y)
\end{array}\right|=s_{11} s_{22}-s_{12} s_{21}
$$

Thus $Y_{Q} \in I(D)_{Q}^{2} \subset I(C)_{Q}$ since $I(D)_{Q}=I(C)_{Q}$.
(c) Suppose $Q \in X \cap \operatorname{Support}(D)$. We continue with the notation of (b). Some linear combination of s_{1} and s_{2} vanishes on the residual scheme to $X-Q$ in C, which we called $D \cup\{Q\}$ by abuse of notation. In the determinant replacing s_{1} by this linear combination and s_{2} by some other independent linear combination we get that $Y_{Q} \in I(C)_{Q} \cdot I(D)_{Q} \subset I(C)_{Q}$.

Putting the three local calculations (a), (b) and (c) together, we get that globally $Y \in I(C)$, so we may write $Y=S H+T K$. Again consider Q a point of $\operatorname{Support}(D)$. Whether we are in case (b) or (c), we have $Y_{Q} \in I(C)_{Q} \cdot I(D)_{Q}$. Because $I(C)_{Q}=$ $\left\langle H_{Q}, K_{Q}\right\rangle$, we may write $Y_{Q}=a H_{Q}+b K_{Q}$, where $a, b \in I(D)_{Q}$. On the other hand, of course we also have $Y_{Q}=S_{Q} H_{Q}+T_{Q} K_{Q}$. This gives $\left(S_{Q}-a\right) H_{Q}=$ $\left(b-T_{Q}\right) K_{Q}$. The local ring of \mathbb{P}^{2} at Q is a unique factorization domain, and H_{Q} and K_{Q} have no common factors. We conclude that K_{Q} divides $S_{Q}-a$, so that $S_{Q}-a \in I(C)_{Q} \subset I(D)_{Q}$, giving $S_{Q} \in I(D)_{Q}$. Similarly, $T_{Q} \in I(D)_{Q}$. Since this is true locally for all $Q \in \operatorname{Support}(D)$, we conclude that globally $S, T \in I(D)$. Furthermore, since $Y \neq \mathbb{P}^{2}, S$ and T cannot both be zero.

From Claim 5.5, we see that H and K both have degree greater than $v=$ smallest degree of a form in $I(D)$. Since Y has degree $2 v-1$, both S and T have degree less than $v-1$, meaning that they could not be in $I(D)$. This final contradiction completes the proof of Theorem 4.2.

Remark 5.6. It should be noted that Theorem 4.2 gives another proof of the Minimal Resolution conjecture for general sets of points in \mathbb{P}^{2}. (Other solutions can be found in GGR, GMa, GM. See also L2.)

To see this first note that by GMa Prop. 1.4, any set, \mathbb{X}, of $\binom{d+2}{2}$ points in \mathbb{P}^{2} not lying on a curve of degree d, always has resolution

$$
0 \rightarrow S(-(d+2))^{d+1} \longrightarrow S(-(d+1))^{d+2} \longrightarrow I(\mathbb{X}) \rightarrow 0
$$

Thus, if \mathbb{Z} is a general set of $t=\binom{d+1}{2}+r$ points in $\mathbb{P}^{2}, 0<r<d+1$, then \mathbb{Z} satisfies the minimal resolution conjecture if and only if the multiplication map

$$
\mu_{d, \mathbb{Z}}: S_{1} \otimes I(\mathbb{Z})_{d} \longrightarrow I(\mathbb{Z})_{d+1}
$$

has maximal rank (see e.g. GMa section 2), i.e.

$$
\begin{equation*}
\operatorname{rank} \mu_{d, \mathbb{Z}}=\min \left\{\operatorname{dim} I(\mathbb{Z})_{d+1}, 3 \operatorname{dim} I(\mathbb{Z})_{d}\right\} \tag{5.4}
\end{equation*}
$$

Now, (5.4) follows immediately from Theorem 4.2 once we note that since $I(\mathbb{X})_{d}=0$ then both rank $\mu_{d, \mathbb{X}}=0$ and $\operatorname{dim}\left(S_{1} \otimes I(\mathbb{X})_{d}\right)=0$.

References

[B] E. Ballico, Generators for the Homogeneous Ideal of s General Points in \mathbb{P}^{3}, J. Algebra 105 (1987), 46-52.
[BGM] A. Bigatti, A.V. Geramita and J. Migliore, Geometric Consequences of Extremal Behavior in a Theorem of Macaulay, Trans. Amer. Math. Soc. 346 (1994), 203-235.
[C] G. Campanella, Standard Bases of Perfect Homegenous Ideals of Height 2, J. Algebra 101 (1986), 47-60.
[CGO] Ciliberto, C., Geramita, A. V., Orecchia, F., Perfect Varieties with Defining Equations of High Degree, Bollettino Un. Mat. Ital. B(7)1 (1987) no. 3, 633-674.
[D] E. Davis, O-Dimensional Subschemes of \mathbb{P}^{2} : New Application of Castelnuovo's Function, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. Vol. XXXII (1986) - 93-107.
[DGM] Davis, E., Geramita, A., Maroscia, P., Perfect Homogeneous Ideals: Dubreil's Theorems Revisited, Bulletin Des Sciences Mathématiques, 2^{e} série, 108 (1984), 134-185.
[DGO] Davis, E. D., Geramita, A. V., Orecchia, F., Gorenstein Algebras and the CayleyBacharach Theorem, Proceedings of the American Mathematical Society, vol. 93, no. 4, (April 1985), 593-597.
[EP] Eisenbud, D., Popescu, S., Gale Duality and Free Resolutions of Ideals of Points, to appear.
[F] Fulton, W., Intersection Theory, Springer-Verlag, Berlin (1984).
[GGR] A.V. Geramita, D. Gregory and L.G. Roberts, Monomial Ideals and points in projective space, J. Pure Appl. Algebra 40 (1986), 33-62.
[GMa] A.V. Geramita and P. Maroscia, The ideal of forms vanishing at a finite set of points in \mathbb{P}^{n}, J. Algebra 90 (1984), 528-555.
[GM] A.V. Geramita and J. Migliore, A Generalized Liaison Addition, J. Alg. 163 (1994), 139-164.
[GMR] Geramita, A. V., Maroscia, P., Roberts, L. G., The Hilbert Function of a Reduced Kalgebra, J. London Math Soc. (2) 28 (1983), 443-452.
[G] Green, M., Koszul Cohomology and the Geometry of Projective Varieties, J. Differential Geometry 19 (1984), 125-171.
[H] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin (1987).
[HS] Hirschowitz, A., Simpson, C., La Résolution minimale de l'idéal d'un arrangement général d'un grand nombre de points dans \mathbb{P}^{n}, Invent. Math. 126 (1996), 467-503.
[La] Lauze, F., Rang maximal pour $T_{\mathbb{P} n}$, Manuscripta Math. 92 (1997), 525-543.
[L1] Lorenzini, A., Betti numbers of points in projective space, J. Pure Appl. Algebra 63 (1990), 181-193.
[L2] Lorenzini, A., The minimal resolution conjecture, J. Algebra 156 (1993), 5-35.
[M] Migliore, J., "Introduction to Liaison Theory and Deficiency Modules," Birkhäuser, Progress in Mathematics 165, 1998; 224 pp. Hardcover, ISBN 0-8176-4027-4.
[S] P. Schwartau, Liaison Addition and Monomial Ideals, Ph.D. thesis, Brandeis University (1982).
[TV] N.V. Trung and G. Valla, The Cohen-Macaulay type of points in generic position, J. Algebra 125 (1989), 110-119.
(S. P. Diaz) Department of Mathematics, Syracuse University, Syracuse, N.Y. 13244 United States of America

E-mail address: spdiaz@mailbox.syr.edu
(A. V. Geramita) Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

E-mail address: tony@mast.queensu.ca
(A. V. Geramita) Dipartimento Di Matematica, Universitá Di Genova, Genova, Italia E-mail address: geramita@dima.unige.it
(J. C. Migliore) Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556 United States of America

E-mail address: migliore.1@nd.edu

