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SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 00:1–7

Buffer Overflow and Format

String Overflow

Vulnerabilities

Kyung-Suk Lhee and Steve J. Chapin∗,†

Center for Systems Assurance, Syracuse University, Syracuse, NY 13210

SUMMARY

Buffer overflow vulnerabilities are among the most widespread of security problems.
Numerous incidents of buffer overflow attacks have been reported and many solutions
have been proposed, but a solution that is both complete and highly practical is yet to
be found. Another kind of vulnerability called format string overflow has recently been
found, and though not as popular as buffer overflow, format string overflow attacks are
no less dangerous.
This article surveys representative techniques of exploiting buffer overflow and format

string overflow vulnerabilities and their currently available defensive measures. We also
describe our buffer overflow detection technique that range checks the referenced buffers
at run time. We augment executable files with type information of automatic buffers
(local variables and parameters of functions) and static buffers (global variables in the
data/bss section), and maintain the sizes of allocated heap buffers in order to detect an
actual occurrence of buffer overflow. We describe a simple implementation with which
we currently protect vulnerable copy functions in the C library.

key words: Buffer overflow; format string overflow; array and pointer range checking; Linux, ELF

1. INTRODUCTION

Buffer overflow vulnerability is currently one of the most serious security problems. Various
buffer overflow techniques have been discovered and numerous incidents of buffer overflow
attacks have been reported to date [9, 7, 43]. Many solutions have been proposed, but a
solution that completely eliminates the buffer overflow vulnerability that is also compatible
with the existing environment and performs well is yet to be found. Moreover, another kind of
vulnerability to what is called format string overflow has recently been found. Although not as
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2 K. LHEE AND S. J. CHAPIN

popular as buffer overflow, format string overflow attacks are no less dangerous in effect than
buffer overflow attacks.

Vulnerability to buffer overflow and format string overflow is due to the characteristics of
the C language. For example, an array in C is not a first-class object and is represented as
a pointer. Hence, it is difficult for a compiler to check on whether an operation will overflow
an array. C allows variadic functions such as string format functions. Since the number of
arguments is not known at compile time, a string format function has to rely on the format
string to figure it out at run time. Such characteristics are geared toward convenience and
performance, and are therefore favored for numerous legacy applications. Such vulnerabilities
can be eliminated by programmers through careful programming and by rigorous checking
of array bounds and the like. However, it is unrealistic to assume that all programmers will
follow such a strict programming practice since it would decrease the benefits of convenience
and performance, just as it is unrealistic to assume that they will not make any programming
mistakes.

This article presents some of the well known techniques of exploiting buffer overflow and
format string overflow vulnerabilities and their currently available defensive measures. Many
exploitation techniques of buffer overflow and format string overflow vulnerabilities have been
studied and published, but each of them focuses on a particular technique with platform-
specific details and examples. We discuss them here collectively, considering only their core
ideas, as an introduction to buffer overflow and format string overflow. The exploitation
techniques in this article are by no means exhaustive (which would be impossible), but they
are representative techniques that show the most important classes of attacks.

Like the classification in [13], we loosely categorize the buffer overflow exploitation techniques
based on the data structures and their associated algorithms that are frequent targets of most
exploits. Most of those data structures are code pointers such as function activation record and
function pointers (those used by programmers and those introduced implicitly by compiler and
system libraries). We also discuss the internal data structure of the dynamic memory allocator
(malloc), which is not a code pointer but can be used to influence code pointers.

Defensive techniques against buffer overflow are divided into run-time techniques and
compile-time analysis techniques. Run-time techniques include array/pointer range-checking
techniques and techniques that check at certain points the integrity of systems (such as the
integrity of memory space). Compile-time analysis techniques analyze source codes to detect
possible buffer overflow. We discuss the advantages and disadvantages of run-time and compile-
time techniques. We also describe our buffer overflow detection technique that range checks the
referenced buffers at run time. We augment executable files with type information of automatic
buffers (local variables and parameters of functions) and static buffers (global variables in the
data/bss section), and maintain the sizes of allocated heap buffers in order to detect the
actual occurrence of buffer overflow. Our discussion of format string overflow vulnerability
then follows similarly, but in a smaller scale. Examples throughout this article assume Linux
operating system on x86 architecture.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



BUFFER OVERFLOW AND FORMAT STRING OVERFLOW VULNERABILITIES 3

void func (char *string)
{
char buffer[32];
strcpy(buffer, string);

}
int main(int argc, char **argv)
func(argv[1]);
return 0;

}

Figure 1. A simple buffer overflow vulnerability.

The calling function:
1. Pushes parameters onto the stack
2. Pushes the return address

Function prologue of the called function:

1. Pushes the frame pointer
2. Frame pointer is assigned the stack pointer value
3. Stack pointer is advanced to make room for local
variables

Function epilogue of the called function:

1. Stack pointer is assigned the frame pointer value
2. Saved frame pointer is popped and assigned to the
frame pointer

3. Return address is popped and assigned to the
instruction counter

Figure 2. A function-calling mechanism.

2. BUFFER OVERFLOW VULNERABILITY AND EXPLOITS

Buffer overflow vulnerability in a program can be exploited to overwrite other important data
that is adjacent to the buffer, eventually leading to the changing of normal program behavior.
If the string in Figure 1 is longer than 31, then strcpy not only modifies the buffer but also

the memory area next to it. The memory area next to the buffer holds important information,
the return address. By overflowing the buffer we can alter the return address and thus the
program flow. This example shows that, with the knowledge of the structure of memory space

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



4 K. LHEE AND S. J. CHAPIN

and the algorithm associated with it, buffer overflow vulnerability can be used to change the
intended program behavior. A buffer overflow exploitation requires:

1. Buffer overflow vulnerability in a program, which consists of buffers and operations
that can overflow them. In this example it is the buffer and strcpy.
2. Some knowledge of memory structure of the program and algorithms associated with
it. In this example it is the layout of function activation record in the stack and the
function-calling mechanism in Figure 2.

The knowledge of memory structure and the accompanying algorithm offer an opportunity
to alter the program behavior, whereas the buffer overflow vulnerability provides a means to
achieve it. Techniques in this section basically discuss these two requirements.
We categorize buffer overflow exploitation techniques based on data structures on which

most exploits target, as follows.

1. Function activation record (the return address and the saved frame pointer)
2. Function pointers (function pointer variables and other function pointers that are
implicitly used by the system)
3. Internal data structure in dynamic memory allocator (malloc)

Those data structures are code pointers except for the malloc. We focus on exploiting code
pointers (mostly in order to spawn a root shell). Other data structures can be the primary
target, but such cases are rarer in practice and exploits that alter code pointers are more
illustrative since they immediately take control of the target system.

2.1. Exploits on function activation record

2.1.1. Stack smashing attack

This is the most popular technique, by [1, 26], for exploiting the simple vulnerability in Figure 1
(a vulnerable strcpy). It overflows the buffer with an attack string that consists of 1) the
“shellcode”, and 2) the memory address where the shellcode is to be copied. The shellcode
is an array of character-coded assembly instructions that performs “execve(“/bin/sh”)” to
spawn a shell. The memory address (address of the shellcode) needs to be aligned to overwrite
the return address. The result is that when the function returns it will jump to the shellcode
and spawn a shell. If the process has a root privilege, then it becomes a root shell. Figure 3
illustrates this.
For a local exploitation, an attack can be performed by a small program that spawns the

vulnerable program with the attack code as its command-line argument (or an environment
variable). For a remote exploitation, the attack code can be delivered through an I/O channel
(if a vulnerable function accepts a string from I/O). For the exploit in Figure 3 to succeed,
we need to know the address of the buffer, because it is the memory address with which
we overwrite the return address. Although the address of the buffer on the stack is usually
unknown, there are ways to find (or guess) it. For example, we can observe it by running the
vulnerable program in a debugger. For the same set of input in a similar environment, the

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
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MSB         LSB

buffer
nop’s

shellcode

addr of
buffer

stack
grows down

address
grows up

nop’s

shellcode

nop’s

shellcode

argv[1]

return addr

saved frame ptr

addr of buffer

addr of buffer addr of buffer

Figure 3. The stack smashing attack that exploits the program in Figure 1. It shows the stack frame
before and after strcpy(buffer, argv[1]). We assume that the stack grows down and the address of

buffer is that of its least significant byte (little-endian architecture).

program is likely to follow the same path and yield the same address for the buffer. Even if
not, the observed value would still provide a good starting point for guessing the right value.
Guessing the value is made easier by prepending “no-op”s at the shellcode so that a small
margin of error in guessing the exact address would not matter much.

In general, a successful exploitation may require detailed information about the target
program and its run-time behavior. Such information can be discovered in various ways,
including the following.

1. Documentation (manuals, technical reports, etc.)
2. Source code
3. Reading binary file or core dump using utility programs such as objdump and nm
4. Using operating system facilities such as /proc file system, ptrace and strace
5. Running programs in a debugger

Even dynamic information such as the return address on the stack or the address of a shared
library function can be observed or guessed by running the program in a similar environment,
since programs usually follow deterministic algorithms. For example, the stack is likely to grow
in the same pattern if the same input is given to the program. A program normally maps its
shared libraries in the same order at the same starting address, yielding the same addresses.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



6 K. LHEE AND S. J. CHAPIN

buffer

shellcode

saved frame ptr

return addr

bogus ret addr

LSB

placeholder

Figure 4. The frame pointer overwrite exploit, showing the stack frame before and after the attack.
The attack code overwrites the buffer and the least significant byte of the saved frame pointer.

2.1.2. The frame pointer overwrite

This technique, by [21], is similar to the stack-smashing attack, but it alters the function
activation record in a different way. It is based on the fact that a function locates the return
address using the frame pointer (function epilogue in Figure 2). By altering the frame pointer
we can trick the function into popping a wrong word instead of the return address. Since we
cannot directly change the frame pointer (a register), we alter the saved frame pointer in the
stack instead. Note that in the stack-smashing attack we alter the return address, since we
cannot directly change the program counter. Figure 4 illustrates this exploit. After a buffer is
overflowed and the saved frame pointer is altered, the overflowed function returns normally to
its calling function, but the calling function now has the wrong frame pointer. When the caller
itself returns, it will pop the word of our choosing into the program counter (for example, the
address of the shellcode).

The attack code consists of the shellcode, a bogus return address (address to the shellcode),
and a byte that alters the least significant byte of the saved frame pointer. Since we need
to change the saved frame pointer by a only small margin, altering its least significant byte
suffices. In this example the buffer is the first local variable that is adjacent to the saved frame
pointer. Assuming little endian byte-ordering in x86, the least significant byte of the saved
frame pointer is the next byte after the buffer. Therefore, such an “off-by-one” vulnerability
can be exploitable.

In the stack-smashing attack we do not need to know the exact address of the buffer, by
prepending “no-op’s” at the shellcode. However, for this exploit we need to know the address
of the placeholder, which implies that we need to know the exact address of the buffer. Also,
a function with a wrong frame pointer cannot locate its local variables correctly, so it may
crash before the exploitation takes effect. Note, however, that such an instability is inherent
in most exploits, since they usually corrupt the state of the process while overflowing buffers.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
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void main (int argc, char **argv)
{
char buf1[1024];
char buf2[256];
strncpy(buf1, argv[1], 1024);
strncpy(buf2, argv[2], 256);
...
func(buf2);

}
void func (char *p)
{
char buf3[263];
sprintf(buf3, “%s”, p);

}

Figure 5. A vulnerable program for the non-terminated memory space exploit. If the buf2 is null-
terminated, then the buf3 cannot be overflowed by sprintf, since the size of the buf3 is bigger than the
size of the buf2. However, if the buf2 is not null-terminated, then the buf3 can be overflowed because
the maximum size of the string p is not the size of the buf2 but the sum of the size of buf1 and the

buf2 (and more if buf1 is also not null-terminated).

The stack-smashing attack, for example, not only overwrites the buffer and the return address,
but everything between them.

2.1.3. Non-terminated adjacent memory spaces

Most buffer overflow attacks exploit unsafe string functions in the C library such as strcpy.
There is a safe subset of string functions such as strncpy that limits the copy operation up to
the number given by programmers. Those functions are definitely safer, but they can give a
false sense of security if not used carefully. The technique in this section shows how to exploit
them [42]. Figure 5 is an example of using strncpy in an unsafe way. The problem is that
strncpy does not null terminate the output string if the source string is longer than the given
maximum size. In the main in Figure 5, buf1 and buf2 cannot be overflowed, but they will not
be null-terminated either if their source strings are longer than their limits; func takes buf2 as
the source string and, since buf2 is smaller than buf3, users might think that buf3 is safe as
long as buf2 is not overflowed. However, that will not be true if buf2 is not null terminated.

2.1.4. Return-into-libc

Return-into-libc exploitation techniques by [37, 45, 28] also alter the return address, but the
control is directed to a C library function rather than to a shellcode. Figure 6 shows an example

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
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stack
pointer

buffer

saved frame ptr

padding

return addr addr of system

placeholder

& of "/bin/sh"

return addr

parameter

before overflow
after overflow,
right before returning

right after returning

treats the stack this wayinto system()
into system(); system()

Figure 6. Return-into-libc example that exploits the program in Figure 1.

that exploits the vulnerable program in Figure 1 to spawn a shell by overwriting the return
address with the address of system. The attack code includes the address of system and the
parameter to system (pointer to string “/bin/sh”).

This exploit needs to know the exact address of the string “/bin/sh” and the address
of system. The string “/bin/sh” can be supplied through a command-line argument or an
environment variable. In most cases where the C library is linked dynamically, finding the
address of system requires finding out where in the address space the C library is mapped,
and to find the offset to system within the C library [45]. The address where the C library is
mapped can be found at the /proc directory or by running the program on a debugger. The
offset to system within the C library can be read from the C library object file. This scheme
is valid unless shared libraries are mapped at random addresses [29].

If the attack depends on string functions (such as strcpy) in delivering the attack code,
then the attack code cannot contain a null byte. In fact, defensive techniques in [36, 22] map
shared libraries such that their addresses always contain null bytes. Nonetheless, return-into-
libc can still be effective with a small modification based on the following observation. An
ELF program contains the Procedure Linkage Table (PLT) [41], which is used to call shared
library functions. When calling a shared library function, the corresponding PLT entry is used
instead of the real address of the function since the real address is not known at compile time.
Unlike shared libraries, PLT is in a fixed location with not much chance of having null bytes.
Therefore, we can use the PLT entry instead of the real address [45] to bypass such protection.
The requirement is that system (or any other function in a shared library to which we wish to
direct the control) has to be called somewhere in the program so that it does have an entry in
the PLT.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



BUFFER OVERFLOW AND FORMAT STRING OVERFLOW VULNERABILITIES 9

stack
pointer

right before returning
into seuid()

buffer

saved frame ptr

padding

return addr addr of setuid

addr of system

& of ’0’

& of "/bin/sh"

ret addr (setuid)

param (setuid)

param (system)

before overflow right after returning
into setuid(); setuid() treats
the stack this way

Figure 7. Return-into-libc example that chains two functions in a row; setuid is called to regain the
root privilege, and system is called to spawn a shell.

stack
pointer

buffer

saved frame ptr

padding

return addr addr of strcpy

& data segment

& data segment

& of shellcode

ret addr (strcpy)

param 1 (strcpy)

param 2 (strcpy)

Figure 8. Return-into-libc example with shellcode. When returned to strcpy, strcpy copies the shellcode
to a data segment and then returns to the data segment.

It is also possible to call two functions in a row by supplying a valid address in the return
address placeholder in Figure 6. Such a function chaining is illustrated in Figure 7, in which
setuid and system are called in a row.
A C library function can also be chained with a shellcode [45]. In the exploit in Figure 8,

strcpy copies the shellcode into data segment and returns to the shellcode. Since the shellcode
is executed from a non-stack area, this technique bypasses the non-executable stack patch from
the Openwall Project [36].

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
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stack
pointer

buffer

saved frame ptr

return addr

addr of func2

padding

param 1 (func1)

param 2 (func1)

padding

param 1 (func2)

addr of func1

(1)

(2)

(3)

(4)

28 (0x1c) bytes
available for
parameters
to func1

ret
add  0x1c, %esp

function epilogue
without frame pointer

addr of epilogue

addr of epilogue

Figure 9. The stack pointer lifting method. The first instruction of the function epilogue moves up
the stack pointer, and the second instruction is a return. The program returns to func1 since the
return address is overwritten. (1) the stack pointer right after the program returns to the func1 ; (2)
after func1 returns to the epilogue; (3) after the add instruction of the epilogue; (4) after the return

instruction of the epilogue (returned to func2 ).

Generally, chaining multiple functions this way is limited due to the difficulty in placing their
return addresses and parameters. For example, calling the second function is not possible if
both functions need more than two parameters; system in Figure 7 will crash when it returns,
since its return address placeholder is occupied by the parameter of setuid. The following two
methods in [28] show how to chain multiple functions without such limitation by moving the
stack pointer to accommodate parameters each time a function in the chain is called.
The first method, the stack pointer lifting method, exploits a function epilogue that does not

use the frame pointer (i.e., the program was compiled with such optimization flag turned on).
A function epilogue without a frame pointer does the following:

1. Pops local variables by increasing the stack pointer by the total size of the local
variables
2. Return address is popped

The idea is that a function returns to such epilogue instead of returning to the next function
in the chain in order to first lift the stack pointer to skip the parameters. Figure 9 illustrates
this.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
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padding

fake frame ptr 2

param 2 (func1)

param 1 (func1)

addr of func 1

address of func 2

addr of epilogue

addr of epilogue

addr of epilogue

fake frame ptr 1

fake frame ptr 0

(2), (3) pop

padding

fake frame ptr 2

param 2 (func1)

param 1 (func1)

addr of func 1

addr of epilogue

addr of epilogue

(1) pop

addr of epilogue

fake frame ptr 0

fake frame ptr 1

address of func 2

(1) lift

(1) pop

(1) rtn, (2) lift

(2) pop, (3) lift

(2) rtn, (3) pop

(3) rtn

(4) lift

(4) pop

(4) rtn

frame
pointer

points
to

points
to

right after the
stack pointer value,

named operation

buffer

saved frame ptr

return addr

ret
leave

function epilogue
with frame pointer

Figure 10. The frame faking method. The first instruction of the function epilogue (leave) assigns the
stack pointer with the frame pointer value (thus effectively “lifting” the stack pointer) and restores
the previous frame pointer from the stack. The lifting the stack pointer and the popping the frame
pointer are named as lift and pop in the diagram. The second instruction is a return (named as rtn).
(1) The corrupted function pops the frame pointer and returns to the epilogue; (2) The epilogue lifts
the stack pointer, pops the frame pointer and returns to func1 ; (3) func1 begins execution by pushing
the frame pointer. It lifts the stack pointer, pops the frame pointer and returns to the epilogue; (4)

The epilogue lifts the stack pointer, pops the frame pointer and returns to func2.

The second method, the frame faking method, exploits a function epilogue that uses a frame
pointer (program that was compiled without such optimization). A function epilogue with a
frame pointer does the following:

1. The stack pointer is assigned the current frame pointer value
2. Previous frame pointer is popped and assigned to the frame pointer
3. Return address is popped

Since the stack pointer is assigned the frame pointer value, by changing the frame pointer we
can again lift the stack pointer. As with the first method, a function returns to an epilogue
instead of to the next function. Figure 10 illustrates this.

2.2. Exploits on function pointers

Below we discuss exploitation techniques that target function pointers rather than the return
address. Function pointers are convenient as low level constructs and so are used in many C
programs. They are also used implicitly by the compiler, such as in the procedure linkage table

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



12 K. LHEE AND S. J. CHAPIN

char buffer[64] = “”;
int (fptr)(char*) = NULL;
void main (int argc, char **argv)
{
...
strcpy(buffer, argv[1]);
(void)(*fptr)(argv[2]);

}

Figure 11. A vulnerable function pointer in the (initialized) data section.

in ELF binaries or the virtual function pointer in C++ programs. The function pointers can
be anywhere in the memory space and not just the stack, which opens other possibilities of
exploitation.

2.2.1. User function pointers in heap and data section

This section discusses a technique, by [10], that overflows non-stack area. Figure 11 shows a
program that allocates a buffer and a function pointer in the data section. This program is
vulnerable since strcpy can overflow the buffer and alter the function pointer. The function
pointer is overwritten with a code pointer (address of a shellcode or system). The attack takes
effect when the function pointer is called.
In this example the corrupted function is called right after the attack code has been delivered

through strcpy, but it does not have to be so immediate. If the function pointer is a global
variable, then it can be corrupted inside one function and called by another. In contrast,
exploits that target the return address always have function scope.

2.2.2. The dtors section

This technique, by [30], exploits function pointers created implicitly by the GNU C compiler;
gcc provides a number of C language extensions that include function attributes which specify
special attributes when making function declarations [39]. For example, we can declare a
destructor function as follows:

static void end(void) attribute ((destructor));

The function declared as a destructor is automatically called after main has completed or exit
has been called; gcc implements it by storing pointers to destructor functions in the dtors
section, which are walked through when the process exits. To exploit this, we overflow a buffer
to overwrite an entry in the dtors section with a code pointer; the dtors section always exists
even if no destructor functions are declared by the programmer. Figure 12 shows a vulnerable
program to this technique and Figure 13 shows some of the sections in the executable file. From

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



BUFFER OVERFLOW AND FORMAT STRING OVERFLOW VULNERABILITIES 13

static char buffer[32] = “”;
int main(int argc, char **argv)
{
strcpy(buffer, argv[1]);
return 0;

}

Figure 12. A vulnerable program for a dtors exploit. We overflow the buffer placed in the data section
to overwrite an entry in the dtors section. We supply the argv[1] with 82 bytes (the first destructor
pointer would be stored four bytes after the beginning of the dtors section) of padding characters +

the address of a shellcode.

Idx Name Size V MA LMA Fileoff Algn

...

13 .rodata ...

14 .data 00000040 08049500 08049500 00000500 2 ∗ ∗5
...

17 .dtors 00000008 0804954c 0804954c 0000054c 2 ∗ ∗2
18 .got 00000024 08049554 08049554 00000554 2 ∗ ∗2
...

21 .bss 00000018 08049640 08049640 00000640 2 ∗ ∗2
ALLOC

...

Figure 13. The sections of the vulnerable program in Figure 12. Note that the data section precedes
the dtors section by 78 bytes and the got section by 84 bytes; the bss (uninitialized static data) section
follows dtors and the got sections, so variables in bss cannot overflow the dtor or the got sections.

Figure 13 it is apparent that the buffer in the data section is adjacent to the dtors section,
hence can overflow the dtors section.

2.2.3. Global offset table, exit handler functions and setjmp/longjmp buffer

Figure 13 shows that next to the dtors section is the got section, which holds the global offset
table that stores addresses that need to be resolved at run time (addresses of objects in shared
libraries, such as the C library). In particular, the global offset table contains addresses of
shared library functions. As mentioned in Section 2.1.4, programs call the procedure linkage
table entry instead of the real function in shared library. In an entry in the procedure linkage
table is a jump instruction to the corresponding global offset table entry that holds the real
address of the shared library function. Therefore, it is clear that the got section is as vulnerable

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



14 K. LHEE AND S. J. CHAPIN

static char buffer[32] = “”;
int main(int argc, char **argv)
{
strcpy(buf, argv[1]);
printf(buf);
return 0;

}

Figure 14. A vulnerable program for got exploit. We overflow the buffer in the data section to overwrite
the printf entry in got. Specifically, we supply the argv[1] with 84 bytes of padding characters and

the address of a shellcode.

as the dtors section. Unlike destructor functions, however, functions in the got section are not
called automatically. In order for an attack to take effect, a corrupted entry in got has to be
called somewhere in the program after the overflow. For example, we can exploit the vulnerable
program in Figure 14 by overflowing the buffer in the data section to overwrite the got entry
of printf that is called after strcpy.
Besides the destructor functions, programmers can register exit handler functions [5] using

the C library function atexit. Exit handler functions, too, are automatically called when exit is
called or when main returns, and implemented similarly as the destructor functions (a table of
function pointers is maintained). The table of pointers to exit handler functions is as vulnerable
as the dtors section or the got section. However, the vulnerable program in Figure 12 may
not be exploited since the table of pointers would be located far from the buffer. The table of
pointers to exit handler functions is a C library object, and the C library is usually mapped
in the address space too far away to be reached directly from the buffer in the data section
(unless the C library is statically linked) [5]. We discuss this exploit later in Section 2.4, where
we discuss overwriting data indirectly via pointers.
setjmp/longjmp uses a buffer (jmp buf ) to save register values for performing nonlocal goto.

Since jmp buf saves the program counter, we can exploit this by overflowing jmp buf and
overwriting the saved program counter with, for example, the address of the shellcode. This
exploit will take effect when longjmp is called with the overwritten jmp buf [10].

2.2.4. C++ virtual function pointer

This technique, by [31], exploits a table of function pointers and a pointer to that table,
VTABLE and VPTR, respectively, created implicitly by the C++ compiler. VTABLE and
VPTR are used to implement virtual functions in C++ programs. Pointers to the virtual
functions defined in a class are stored in the VTABLE. An object instantiated from the class
contains a VPTR (a pointer to the VTABLE) through which it calls virtual functions. For
example, a call to the virtual function whose pointer is in the third entry of the VTABLE
would be compiled as the code below. Figure 15 illustrates this.
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object variables VPTR

addr of virtual func 2

addr of virtual func 1

...

Figure 15. A conceptual view of an allocated object (with VPTR) and the VTABLE of the
corresponding class.

buffer VPTR

VPTRshellcode* * *

Figure 16. An example of a virtual function pointer exploit. An object is overflowed with a bogus
VTABLE, a shellcode, and a pointer that overwrites the VPTR.

call *(VPTR + 8)

The exploit in Figure 16 overflows a variable in the object in order to alter the VPTR to
make it point to the supplied bogus VTABLE. The bogus VTABLE contains pointers to the
shellcode so that when a virtual function is called the shellcode is executed.

2.3. Exploits on malloc internal data structure

This section discusses a vulnerability in the dynamic memory allocator in the GNU C library
(Doug Lea’s Malloc), by [20] . Memory blocks (called chunks) that are allocated and deallocated
dynamically via malloc and free are managed by linked lists. Each memory block carries its
own management data, such as its size and pointers to other chunks, as a typical linked list
data structure would do (Figure 17).
The vulnerability is that the user data and the management data are adjacent in a chunk.

This is comparable to the vulnerability in the stack, in which local variables and the return
address are adjacent. Just as we can alter the return address by overflowing a stack variable,
we can alter the management data by overflowing a heap variable. This is referred to as a
channeling problem [33] or a problem of storing management information in-band [2]. Unlike
the return address, however, those management data are not code pointers, so altering them
does not directly change the program control. Here we exploit the management data to
ultimately change other code pointers.
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size

prev_size

fd

bk

user data

size

prev_size

fd

bk

user data

addr that is
returned to user

0

4

8

12

next chunk

chunk

Figure 17. Memory block (chunk) managed by malloc. It shows that the memory block also includes
internal data structure such as size of the chunk, size of the adjacent chunk, forward pointer, and

backward pointer to other chunks.

Free chunks are managed by doubly linked lists called bins, each of which contains chunks of
a certain size range. When a free chunk is taken from a bin, a macro unlink is called to adjust
the forward and backward pointers of the neighboring chunks. When a free chunk is placed
into a bin, a macro frontlink is called 1) to locate the correct bin, 2) to locate the neighboring
chunks, and 3) to adjust forward and backward pointers of the neighbors and itself. The next
two examples exploit the unlink and frontlink macro.

2.3.1. Unlink exploit

The unlink macro and the exploit are shown in Figure 18. The idea is that the fd and bk field
of a free chunk P is altered so that when unlink is called with P, a code pointer is overwritten
with the address of the shellcode. The exploit will take effect when the corrupted code pointer
is called. A vulnerable program, for example, calls free(P ′) where P ′ is a chunk physically
adjacent to the corrupted chunk P ; free(P ′) in turn calls unlink(P) in order to merge them
into a bigger free chunk, since P is a free chunk.
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corrupted
chunk

{

}

   FD = P−>fd;      (2)

#define unlink(P, BK, FD)

   BK = P−>bk;     (1)
0

12 code pointer

prev_size

size

fd

bk

0

12

4

8

code pointer

prev_size

size

fd

bk

FD

PP

   FD−>bk = BK; (3)
   BK−>fd = FD;  (4)

shellcode

shellcode

shellcode

BK−>fd = FD

(3)

(1), (2) (3), (4)

(4)

FD

BK BK

(1)

(2)

Figure 18. The unlink macro and the exploit. The fd field of the free chunk P is altered to point to
a code pointer (minus 12), and the bk field is altered to point to the shellcode. Note that, after the
exploit, a word in the shellcode is also overwritten at (4). For this, the first instruction of the shellcode

should be a jump over the overwritten word.

2.3.2. Frontlink exploit

Figure 19 shows the frontlink macro and the exploit. The idea is to alter the fd field of a
free chunk (to make it point to a fake chunk) so that when frontlink(P) is called (to place a
free chunk P in a free list), a code pointer is overwritten with P. The vulnerable program, for
example, calls free(P ′) where P ′ is in the same size range as the corrupted free chunk P. In
addition, we need to be able to alter the word at P (with, for example, a jump instruction to
the shellcode), since the corrupted code pointer is overwritten with P.

2.4. Indirect alteration via pointer

In this section we discuss techniques, by [8], that exploit pointers to overwrite indirectly the
code pointers discussed earlier. For such an exploit we need to be able to overwrite a pointer as
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a fake
chunk

prev_size

size

fd

bk

code pointer

(1) FD = FD−>fd

prev_size

size

fd

bk

code pointer

(2) BK = FD−>bk

prev_size

size

fd

bk

(3) BK−>fd = P

#define frontlink(A, P, S, IDX, BK, FD)
{
   if (S < MAX_SMALLBIN_SIZE) {
      /* P goes to smallbin */
   }
   else {

      ...
      if (FD == BK) {
         mark_binlock(A, IDX);
      }
      else {
         while (FD != BK && S < chunksize(FD)) {

         }

      }
      P−>bk = BK;
      P−>fd = FD;

   }
}

            FD = FD−>fd;             (1)

      FD−>bk = BK−>fd = P;    (3)

         BK = FD−>bk;               (2)

P

FD

      /* the bin should contain the corrupted free chunk */
      /* locate the bin of right size for P */

BK BK

Figure 19. The frontlink macro and the exploit. fd field of a free chunk is altered to point to a fake
chunk, so that when while loop exits FD also points to the fake chunk (1). Note that the bk field of
the fake chunk points to a code pointer (to be altered) − 8. For this exploit, the size of the fake chunk

should not be larger than the size of P (S in the while loop).
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void f (char **argv)
{
char *p;
char buffer[32];
...
strcpy(buffer, argv[1]);
strcpy(p, argv[2]);

}

Figure 20. A program vulnerable to the indirect return address exploit and the indirect exit handler
exploit.

well as to overwrite a code pointer through that pointer. Such vulnerability is hard to find in
real programs. On the other hand, such vulnerability is more subtle, thus harder to discover.
Also, memory space of the target process is more vulnerable since we can alter memory area
that is far from the overflowed buffer.

2.4.1. Altering the return address indirectly

This exploit is similar to the stack-smashing attack, but it overwrites the return address
indirectly through a pointer. For such an exploit we need two copy operations as in the
vulnerable program in Figure 20. Figure 21 illustrates this exploit that, since it overwrites only
the return address and not the StackGuard canary word, will not be detected by StackGuard.

2.4.2. Exploiting exit handler functions indirectly

As noted in Section 2.2.3, pointers to exit handler functions are located too far away to be
altered directly. The program in Figure 20 can, however, be used to exploit pointers to exit
handler functions. This is the same as the indirect return address exploit except that the
pointer p is altered to point to the exit handler table rather than to the return address. This
exploit does not alter the return address, so neither StackGuard nor StackShield can detect
this.

2.4.3. Exploiting global offset table indirectly

The global offset table can be overwritten indirectly by exploiting the vulnerable program
in Figure 22 (a vulnerable printf ). We overwrite the got entry of printf with the address
of system so that when printf(“print some string”) is called, system(“print some string”) is
called instead (Figure 23). For this exploit we need to create a shell script file named “print”
in the current working directory, which performs the actual attack. The rest of the string
“some string” is passed as the program arguments to the script file and does no harm unless
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shellcode shellcode shellcode

saved frame ptr

return addr

canary

p

saved frame ptr

return addr

canary

saved frame ptr

canary

paddingpaddingbuffer

strcpy(buffer, argv[1]) strcpy(p, argv[2])before strcpy

& of return addr & of return addr

& of shellcode

Figure 21. The indirect return address exploit on the program in Figure 20. The first strcpy overflows
the buffer and overwrites the pointer p with the address of the return address, so that the second
strcpy overwrites the return address with the address of a shellcode; argv[1] points to the attack code

(thick round box), and argv[2] points to the string, which is the address of the shellcode.

void f (char **argv)
{
char *p;
char buffer[32];
strcpy(buffer, argv[1]);
strcpy(p, argv[2]);
printf(“print some string”);

}

Figure 22. A program vulnerable to the indirect got exploits.

it contains a special shell character. This exploit does not alter the return address, so neither
StackGuard or StackShield can detect this. Note that this exploit does not require executable
stack or heap. If it uses the address of the PLT entry of system instead of the real address
of system, it can also bypass the Openwall project (where the address of system can contain
zero bytes) and PaX (where the address of system is unknown in advance due to the random
mapping of shared libraries) [45].
Alternatively, an exploit that is illustrated in Figure 24 alters the got entry of printf so that

it points to the shellcode. Since this exploit does not alter the return address it bypasses the
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saved frame ptr

p

buffer

return addr

system()

printf()

printf:

system:

system()

printf()

system:

saved frame ptr

padding

return addr

system:

saved frame ptr

padding

return addr

system()

printf()

printf:

system:
GOT

before strcpy strcpy(buffer, argv[1]) strcpy(p, argv[2])

& of GOT printf & of GOT printf

Figure 23. Global offset table entry of printf is altered indirectly such that it points to system instead;
argv[1] points to the attack code (thick round box), and argv[2] points to an address of system.

StackGuard and StackShield. It also bypasses the non-executable stack by Openwall Project
since the shellcode is copied into the got section.

3. DEFENSIVE TECHNIQUES AGAINST BUFFER OVERFLOW

3.1. Run-time detection systems

3.1.1. StackGuard

The stack-smashing attack overwrites the buffer, the return address and everything in between.
StackGuard [11] is a GNU C compiler extension that inserts a canary word between the return
address and the buffer so that an attempt to alter the return address can be detected by
inspecting the canary word before returning from a function. Programs need to be recompiled
with StackGuard in order to be protected.

3.1.2. StackShield

StackShield [38] is also a GNU C compiler extension that protects the return address. When
a function is called, StackShield copies away the return address to a non-overflowable area
it restores the return address upon returning from a function. Even if the return address on
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saved frame ptr

p

return addr
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Figure 24. Global offset table entry of printf is altered indirectly such that it points to the shellcode;
argv[1] and argv[2] point to the attack code (thick round box).

the stack is altered, it has no effect since the original return address is remembered. As with
StackGuard, programs need to be recompiled.

3.1.3. Libsafe

Libsafe [4] is an implementation of vulnerable copy functions in the C library such as strcpy.
In addition to the original functionality of those functions, it imposes a limit on the involved
copy operations such that they do not overwrite the return address. The limit is determined
based on the notion that the buffer cannot extend beyond its stack frame. Thus the maximum
size of a buffer is the distance between the address of the buffer and the corresponding frame
pointer. Libsafe is implemented as a shared library that is preloaded to intercept C library
function calls. Programs are protected without recompilation unless they are statically linked
with the C library or have been compiled to run without the frame pointer (it needs to walk
up the stack using the saved frame pointers in the stack). Libsafe protects only those C library
functions, whereas StackGuard and StackShield protect all functions.

3.1.4. Linux kernel patch from the Openwall Project

The stack-smashing attack injects an attack code into the stack, which is executed when
the function returns. One of the core features of the Linux kernel patch from the Openwall
Project [36] is to make the stack segment non-executable. Another feature is to map into
the address space the shared libraries such that their addresses always contain zero bytes, in
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order to defend from return-into-libc attacks. If the address of a function is to be delivered
through a null-terminated string function (such as strcpy), the zero byte in the middle of the
function address will terminate the copying [37]. It does not impose any performance penalty
or require program recompilation except for the kernel. There are a few occasions that require
the stack to be executable, which include nested functions (a C language extension by the
GNU C compiler) and Linux signal handler (both are emulated by the Linux kernel patch).
Programs that require executable stack can be made to run individually, using the included
utility program.

3.1.5. PaX, RSX and kNoX

PaX [29] is a page-based protection mechanism that marks data pages as non-executable.
Unlike the Linux kernel patch from the Openwall Project, PaX protects the heap as well
as the stack. Since there is no execution permission bit on pages in the x86 processor, PaX
overloads the supervisor/user bit on pages and augments the page fault handler to distinguish
the page faults due to the attempts to execute code in data pages. As a result, it imposes a
run-time overhead due to the extra page faults. PaX is also available as a Linux kernel patch.
As with the Openwall Project, Pax is not completely transparent to existing programs since
some programs require the heap or the stack to be executable. For example, an interpreter such
as Java might cache machine instructions in the heap and execute from there for performance.
Pax also can map the first loaded library at a random location in the address space in order
to defend from return-into-libc exploits (since the address of a C library function cannot be
known in advance) [28].
Other systems that provide non-executable stack and heap on Linux are RSX [32] and

kNoX [22]. They also share the disadvantage of Openwall Project and PaX that programs
requiring executable stack or heap cannot run transparently.

3.2. Range-checking systems

The advantage of the array bounds checking approach is that it completely eliminates the
buffer overflow vulnerability. However, it is also the most expensive solution, particularly for
the pointer and array intensive programs, since every pointer and array operation must be
checked. This may not be suitable for a production system.
The pointer and array access checking technique by Austin et al. [3] is a source-to-source

translator that transforms C pointers into the extended pointer representation called safe
pointer, and inserts access checks before pointer or array dereferences. The safe pointer contains
fields such as the base address, its size, and the scope of the pointer. Those fields are used by
access checks to determine whether the pointer is valid and within the range. Since it changes
pointer representation, it is not compatible with existing programs.
The array bounds and pointer checking technique by Jones and Kelly [19] is an extension

to the GNU C compiler that imposes an access check on C pointers and arrays. Instead of
changing pointer representation, it maintains a table of all the valid storage objects that
hold such information as base address, size, etc. Information concerning the heap variables is
entered into the table via the modified malloc and deleted from the table via the modified
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free. Information about the stack variables is entered into/deleted from the table by the
constructor/destructor function, which is inserted inside a function definition at the point at
which stack variables enter/leave the scope. The access check is done by substituting pointer
and array operations with the functions that perform bounds checks using the table in addition
to the original operation. Since native C pointers are used, this technique is compatible with
existing programs.

Purify, by Hastings and Joyce [16], is a commercially available run-time memory access
error-checking tool. An advantage of Purify is that it inserts access-checking code into the
object code without requiring source code access. It checks all the memory access, memory
allocation/deallocation, and function calls, and it maintains states of memory blocks (allocated,
initialized, etc.) to catch temporal errors such as dangling pointers. Array bounds are checked
by marking both ends of a memory block returned by malloc. Purify, however, lacks type or
scope information that is available only at the source level, so it cannot detect some the errors,
such as buffer overflow within a malloc memory block.

3.3. Static analysis techniques

Static analysis techniques have several advantages over run-time techniques. They do not incur
run-time overhead and they narrow down the vulnerabilities specific to the source program
being analyzed, yielding a more secure program before it is deployed. However, a pure static
analysis can produce many false alarms due to the lack of run-time information. For example,
gets reads its input string from stdin, so the size of the string is not known at compile time.
For such a case a warning is issued as a possible buffer overflow. In fact, all the legitimate copy
operations that accept their strings from unknown sources (such as a command line argument
or an I/O channel) are flagged as possible buffer overflows (since they are indeed vulnerable).
Without further action, those vulnerabilities are identified, but still open to attack.

The integer range analysis by Wagner et al. [43] is a technique that detects possible buffer
overflow in the vulnerable C library functions. A string buffer is modeled as a pair of integer
ranges (lower bound, upper bound) for its allocated size and its current length. A set of
integer constraints is predefined for a set of string operations (e.g., character array declaration,
vulnerable C library functions, and assignment statements involving them). Using those integer
constraints, the technique analyzes the source code by checking each string buffer to find out
if its inferred allocated size is at least as large as its inferred maximum length.

The annotation-assisted static analysis technique by Larochelle and Evans [23] based on
LCLint [14] uses semantic comments, called annotations, provided by programmers to detect
possible buffer overflow. For example, annotations for strcpy contain an assertion that the
destination buffer must be allocated to hold at least as many characters as are readable
in the source buffer. This technique protects any annotated functions, whereas the integer
range analysis only protects C library functions. However, it requires programmers to provide
annotations.
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3.4. Combined static/run-time techniques

The obvious advantage of this approach is that it has access to run-time information as
well as to the contextual information, specific to the source program to be analyzed, from
the static analysis. Solutions based on this approach perform static analysis on the source
programs and insert run-time checks on them if the safety cannot be determined with compile-
time information. Compared with range-checking systems, this approach minimizes run-time
overhead by eliminating unnecessary run-time checks.
CCured, by Necula et al. [27], translates the source program in C into a CCured program.

It extends C pointers into CCured pointer types (safe, sequence, and dynamic) through a
constraint-based type-inference algorithm, and inserts run-time checks according to the class
of the pointers and the operations on them (where static analysis cannot determine safety).
Cyclone, by Jim et al. [18], is a safe dialect of C. It also extends the C pointer type so

that an efficient run-time check can be performed, depending on the use of pointers (a “never-
NULL” pointer indicates that a NULL-pointer check is unnecessary, and a fat pointer carries
bounds information to enable bounds checks). Other enhancements by Cyclone include 1)
prevention of dangling pointers through the programmer-supplied annotations (region analysis)
and through the scoped dynamic memory management (growable region) that frees the region
block automatically rather than by free; and 2) protecting variadic functions using tagged
union (stacked parameters for printf carry their type information). A disadvantage is that
programs have to be ported to Cyclone.

3.5. Intrusion detection techniques using system call trace

These are anomaly detection techniques that compare the sequence of system calls executed
by the program with the predefined “normal” sequence of system calls, introduced by Forrest
et al. [15]. These techniques are based on the assumption that a serious attack has to use
the underlying operating system facilities, which are accessed through system calls. Most
buffer overflow attacks discussed in this paper spawn a process by executing exec or system
system call, which is likely to deviate from the normal sequence of system calls. Therefore,
this approach is highly effective in detecting such attacks. They can also detect various kinds
of intrusions (such as Trojan horses), not just buffer overflow attacks. However, they model
normal program behavior as a sequence of system calls, ignoring other aspects of program
behavior. While this simplified model can detect most intrusions, it can be bypassed by, for
example, mimicry attacks [44], in which the attack is made to behave like the predefined model
(i.e., the sequence of system calls executed by the attack does not deviate from the model).
The three techniques introduced here are different from each other in the way in which they
define normal behavior, which affects accuracy and run-time overhead.
Forrest et al. define normal program behavior as a set of fixed-length system call sequences

(referred to as N-grams by Sekar et al. [34]), which is built from the observed sequence of
system calls in the learning stage.
Sekar et al. [34] define normal program behavior as finite state automata, which is also built

from the observed sequence of system calls in the learning stage. Finite state automata has a
number of advantages over the N-gram, which include the following:

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7



26 K. LHEE AND S. J. CHAPIN

1. FSA provides a compact way to model a program, whereas N-grams can be quite large.
2. Matching FSA is faster than looking up what may be a large N-grams.
3. FSA is more accurate. For example, an invalid subsequence of system calls S0S3S4S2

is regarded as normal if trigrams include S0S3S4 and S3S4S2. FSA does not have such
problems.
4. Accuracy of N-grams depends on their size. If too small, they would miss out on many
valid system call sequences. If too big, they would become too inclusive to be effective
in detecting anomalies. FSA does not have such intricacy.

Learning FSA from a sequence of system calls is difficult. For example, it is difficult to find
out from a sequence of system calls S0S1S2S4S2 whether the two occurrences of S2 are from
the same state or not. Sekar et al. obtain the necessary state information using the program
counter, in addition to the system calls. That is, the two occurrences of S2 are from the same
state if they are associated with the same program counter.

Wagner and Dean [44] provide four ways to define normal program behavior, using static
analysis rather than observing a sequence of system calls in the learning stage. Static analysis
can yield a more accurate model of normal program behavior than program learning, since
static analysis can uncover all the possible paths in the program, whereas program learning can
miss program paths that are rarely executed. The four methods of defining normal program
behavior are the following:

1. A trivial model is a set of system calls that can be called in the program. This method
is less accurate since it ignores the sequencing information of system calls. It becomes
too inclusive to be effective if the set includes too many system calls, so this method
does not scale well to large programs.
2. The callgraph model is a non-deterministic finite automaton built from the control-flow
graph of the program. Unlike FSA by Sekar et al., an NDFA built from static analysis
does not produce false alarms. However, the callgraph model is still imprecise, since it
cannot express the calling context (a term by Horwitz et al. [17]) of function calls. For
example, when a function f1 is returned it should return to the calling function (say,
f0). Since a callgraph treats all the functions that call f1 as return points, it can include
impossible paths that can be exploited.
3. The abstract stack model is a non-deterministic push-down automaton that expresses
function calls and system calls in a program. This approach solves the calling context
problem. However, matching NDPDA can be too expensive, because for each system call
there can be multiple choices (that is, there is more than one transition from a state on
the same input). Naively listing all the possible transitions would not work, because the
list can grow exponentially.
4. The digraph model is a digram, which is the same method used by [15].

3.6. A lightweight range-checking system

We describe our solution that range-checks the referenced buffers at run time [24]. It is a small
extension to the GNU C compiler, which augments an executable file with a data structure that
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Figure 25. A type table consists of a function array and variable arrays.

describes type information of automatic buffers (local variables and parameters of functions)
and static buffers (global variables in the data/bss section). The data structure, called the type
table, can then be looked up at run time. We provide wrapper functions for the vulnerable
copy functions in the C library (such as strcpy), which look up the type table before calling the
real functions. Sizes of heap buffers are maintained in a separate table by intercepting malloc,
realloc, and free.
The type table keeps information of the functions and their automatic/static variables, as

illustrated in Figure 25. We look up the type table and find the size of an automatic buffer as
follows:

1. Locate the stack frame that contains the buffer by chasing the saved frame pointers
in the stack.
2. Look up the type table for the function that allocated the buffer, using the return
address in the next stack frame as a key.
3. Look up the type table for the buffer, using the pointer in the function entry, the frame
pointer offset in the variable entry, and the address of the buffer.

A (local) type-table constructor function is appended to each object file, so that the (global)
type table of a process is built at run time (Figure 26). The modified compilation process for
appending a constructor function is illustrated in Figure 27. The main reason for the use of
the constructor function is to include dynamically linked object files.
There are several advantages to our approach. The compilation is transparent, using the

makefile in the source distribution. Type table-appended object files are compatible with native
object files. Since the type table is built at run time, both statically and dynamically linked
objects are protected. Most important, our approach is insensitive to which attack was chosen,
since it detects the actual occurrences of buffer overflows (a characteristic of range-checking
systems), whereas other defensive techniques can be bypassed, as discussed in Section 2. Our
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table 3

table 1

shared lib
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Figure 26. An executable file and a process.

parse
stabs
statements

compile
(cc1 −g)

src.i

ctor

src.s

src.i

cc1 wrapper

compile and assemble

src.o

ctor

preprocess (cpp0)

src.c

__attribute__ ((constructor))
static void ctor()

{
   // make local table
   Typetable tab = ...;

  // append it to global table
   global_ctor(tab);
}

Figure 27. In the dashed line the compilation stage (cc1 ) of gcc is intercepted so that a preprocessed
source file is precompiled with the debugging option turned on. The stabs debugging statements in the
resulting assembly file are then parsed to produce the constructor function. The constructor function
(on the right) is attributed so that it runs before main does (a gcc extension to the C language).
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approach is lightweight since we check only the vulnerable copy functions in the C library.
Although this is not as complete as the range-checking systems in Section 3.2, it is highly
effective and efficient for the detection of security-relevant buffer overflows. Run-time overhead
incurred by each wrapper function is rather high, particularly if the length of the input string
is short (for example, strcpy with an 8-character string as the input yielded 500% overhead).
However, overhead from real world programs was mostly negligible (for example, a test run of
the original enscript program took three minutes and one seconds, while type table-appended
enscript took three minutes and ten seconds, that is, 5% overhead. Both programs called the
(wrapped) C library functions 6,345,760 times).

4. FORMAT STRING OVERFLOW VULNERABILITY

String format functions in the C library take variable number of arguments, one of which is
the format string that is always required. The format string can contain two types of data:
printable characters and format-directive characters. To access the rest of the parameters
that the calling function pushed on the stack, the string format function parses the format
string and interprets the format directives as they are read. For example, printf in Figure 28
parses the format string “format %s%d” and retrieves two parameters from the stack, a string
pointer and an integer, in addition to printing the string “format ”. The number and types
of the parameters pushed on the stack must match the directives in the format string. If the
number of directives is less than the number of parameters, then the string format function will
“underflow” the stack (its activation record). If the number of directives exceed the number of
parameters, then it will “overflow” the stack. If a wrong directive is given for the corresponding
parameter, the string format function will misinterpret the parameter. Therefore, if users can
control the format string, then they can exploit the behavior of string format functions and
alter the memory space of the process; printf shown in Figure 28 is safe, since the format
string is static. However, printf in Figure 29 is vulnerable, since the format string is supplied
by users.

Format string overflow attacks are similar to buffer overflow attacks, since they also can
alter the memory space and execute arbitrary code, but it is a different kind of attack that
exploits the vulnerability of variadic functions such as string format functions.

4.1. Format string overflow exploitation

The four techniques below, by [33, 40], show how to exploit format string overflow vulnerability.

4.1.1. Viewing the memory

The printf below prints the values of five consecutive words in the stack (as eight-digit padded
hexadecimal numbers). We can walk up the stack this way and view the contents of the stack.

printf(“%08x %08x %08x %08x %08x”);
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saved frame ptr

return addr

local variables

i

s

format string ptr

"format %s%d"

Figure 28. Activation record of printf(“format %s%d”, s, i) that has three parameters: the format
string pointer, a string pointer, and an integer. A format function uses an internal stack pointer to

access the parameters in the stack as it encounters the directives in the format string.

void vulnfunc (char *user)
{
...
printf(user);

}

Figure 29. A vulnerable function that has user-supplied (or user-alterable) format string. The printf
is most likely expecting printable characters only. It would be safe if it is called as printf(“%s”, user)

instead.

4.1.2. Overwriting a word in the memory

The %n directive writes an integer value, the number of characters that is written by the
format function so far, at the location pointed by the corresponding parameter. The following
printf writes at 0x08480110 a small integer value. The five %08x’s are used to pop the internal
stack pointer so that it points to the format string itself when %n is processed (assuming that
the format string itself is stored in the stack prior to this function). Figure 30 illustrates this.

printf(“\x10\x01\x48\x08%08x%08x%08x%08x%08x%n”);

The printf above writes 44 at 0x08480110 (four characters for “\x10\x01\x48\x08” and
eight characters for each “%08x”). We can control the number of characters to be written
(thus the value we write at 0x08480110) by using the minimum field width specifier if the
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saved frame ptr

return addr

format string ptr

local variables
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x   8   0   %

x   8   0   %

x   8   0   %

x   8   0   %

x   8   0   %

 MSB         LSB

     \0  s   %

stack ptr
internal

when
processing
%n

Figure 30. Writing an integer value at an arbitrary memory location.

value of the specifier is not too large. However, many implementations of the C library cannot
handle an arbitrarily large value of width specifier.

4.1.3. Overflowing a buffer using minimum field width specifier

This is similar to the stack-smashing attack, since it overflows a buffer and overwrites the return
address with the address of a code pointer. It overflows the buffer using the minimum field
width specifier of a format directive. In the function in Figure 31, safebuf cannot be overflowed
through the parameter user due to the use of snprintf, so the stack-smashing attack cannot
exploit this program. The safebuf, however, is the format string of the next sprintf, so it will be
interpreted before it is copied to vulnbuf. For example, a format string “%512d” (the content
of safebuf ) will result in printing 512 characters to vulnbuf due to the minimum field width
specifier 512, which in effect overflows vulnbuf. Figure 31 shows the exploit that overflows the
vulnbuf and overwrites the return address with the address of a shellcode.
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   snprintf(safebuf, 512, "%s", user);

void func(char *user)
{
   char safebuf[512];
   char vulnbuf[512];

   sprintf(vulnbuf, safebuf);
}

snprintf(safebuf, 512,
               "%s", user)

d    3    1    5

nop’s

shellcode

%   a   a   a

bf  ff d3  3c

       a   a   a

saved frame ptr

return addr

bf  ff  d3  3c

nop’s

shellcode

%   a   a   a
d    3    1    5

bf  ff  d3  3c

vulnbuf[512]

saved frame ptr

return addr

safebuf[512]

vulnbuf[512]

nop’s

shellcode

an integer
value (513
characters)

interpreted

before snprintf sprintf(vulnbuf, safebuf)

user %   a   a   a

d   3   1   5

bf  ff d3  3c

nop’s

shellcode

%   a   a   a

d   3   1   5

bf  ff d3  3c

nop’s

shellcode

%   a   a   a

d   3   1   5

bf  ff d3  3c

nop’s

shellcode

Figure 31. A program vulnerable to the minimum field width specifier and the exploit.

4.1.4. Overwriting a code pointer using %n format directive

As mentioned before, we cannot write an arbitrarily large integer value using the minimum
field width specifier while exploiting a %n directive. However, we can write an arbitrary value
that fits in a byte, since it will not be that large. To write an arbitrary integer value, therefore,
we write a byte at a time, from the least significant byte to the most significant one. For
example, we can write 0x80402010 by writing 0x10, 0x20, 0x40 and 0x80. Figure 32 illustrates
this.
Note that, since we are writing four times within one string format function in Figure 32,

the number of characters written so far is strictly increasing and so is the value of each write.
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printf("%16u%n%16u%n%32u%n%64u%n",
           1, (int *)&foo[0], 1, (int *)&foo[1],
           1, (int *)&foo[2], 1, (int *)&foo[3]);

MSB             LSB

(1) (2)

&foo[0] &foo[1]

80   40   20   10

(3) (4)

&foo[2] &foo[3]

00   00   00   10 00   00   20   10

00

00   40   20   10

00   00 00   00   00

Figure 32. The four-stage word overwrite. Four bytes are written for each write (by %n directive,
inner square box). The first %16u writes 16 characters to stdout, so the following %n writes 16
(hexadecimal 0x10) at &foo[0]. The first parameter (integer 1) is a dummy parameter for %16u, so
its value is unimportant. The next parameter &foo[0] is the address at which we want to overwrite.
For each write we advance this address by one byte. The second %16u writes another 16 characters to
stdout, a total of 32 characters so far. The following %n thus writes 32 (hexadecimal 0x20) at &foo[1],

and so on.

This can be overcome with minor modification, since for each write only the least significant
byte is important. For example, we can write 0x10204080 by writing 0x80, 0x140, 0x220, and
0x310. As in Figure 32, bytes other than the least significant one will be either overwritten
in the next write or will not be used at all. Figure 33 shows an attack code that overwrites a
code pointer using the four-stage overwrite.

5. DEFENSIVE TECHNIQUES AGAINST FORMAT STRING OVERFLOW

5.1. Run-time detection systems

5.1.1. FormatGuard

Exploits from the previous section show that a serious format string attack needs to walk up
the stack to get to the attack code (usually the format string itself, since it is under attackers’
control). In order to do that it is usually necessary to have more directives in the format string
than the number of parameters pushed on the stack.
FormatGuard [12] is an extension to the GNU C library that provides argument-counting

string format functions. Programs need to be recompiled, but without any modification. Calls
to the string format functions in the source code are substituted with safe functions that
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& return addr + 1
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& of return addr

integer

integer

integer

integer

& return addr + 1
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return addr
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(number of characters
are written to stdout)
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(pad,write)
pairs
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internal
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after printf() has read
stackpop characters

after processing
(pad,write) pairs

after reading (int,addr)
pairs (more characters
are written to stdout)

(dummy,addr)

Figure 33. A pure format string overflow exploit. The stack popping directives move the internal stack
pointer so that it points to the beginning of the dummy integer/address pairs. When printf reaches
the pad/write-code pairs, it overwrites the address specified in the dummy/address pairs (since the
internal stack pointer is pointing the dummy/address pair). It overwrites the return address in this

example.
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FormatGuard provides, using the variadic macro feature in the GNU C preprocessor (a macro
that accepts a variable number of arguments much as a function can [39]). For example,

printf(a, b)

is expanded by the macro to

protected printf( PRETTY FUNCTION , 2 - 1, a, b)

where the PRETTY FUNCTION is for error reporting, and the extra parameter 2 − 1 is
the actual number of parameters given to the format function (not counting the format string).
The safe format functions verify that the number of directives in the format string does not
exceed the number of actual parameters.
FormatGuard protects string format functions in the C library, but cannot protect user

written format functions or format functions that use vararg such as vsprintf (in the latter
case it is not possible to find the actual number of parameters at compile time).

5.1.2. Libformat

Libformat [25] is an implementation of a safe subset of C library format functions. The safe
format functions check the format string such that if the format string is in a writable segment
and contains “%n” directives, then it is regarded as the attack. Libformat is implemented as
a shared library that is preloaded to intercept vulnerable format functions in the C library,
so programs need not be recompiled. A downside of Libformat is that the built-in heuristics
can generate false alarms if a legitimate format string is in a writable segment with “%n”
directives. Libformat is ineffective if programs are linked with the C library statically.

5.1.3. Libsafe

Libsafe checks if there are “%n” directives, and if so then it checks if the destination pointer
points to a return address of a saved frame pointer in the stack. Unlike FormatGuard, Libsafe
can protect vsprintf. Libsafe cannot protect programs that are statically linked with the C
library, or compiled to run without the frame pointer.

5.2. Static analysis technique

5.2.1. Static analysis with type qualifiers

The static analysis technique by Shankar et al. [35] extends the C type system with extra
type qualifiers, tainted and untainted. Programmers specify untrusted objects as tainted and
trusted ones as untainted. The following declarations denote that the return value of getchar
cannot be trusted, as well as the command-line arguments to the program. On the other hand,
the format string of printf must come from a trusted source.

tainted int getchar();
int main(int argc, tainted char **argv);
int printf(untainted const char *fmt, ...);
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An untainted object can be assigned to a tainted object, but not vice versa. Not all types
have to be annotated with tainted/untainted for this technique. A small number of key objects
are annotated, and types of other expressions are inferred from those annotated objects. This
technique requires programmers’ efforts, but in a way that is already familiar to them.

6. CONCLUSION

We have presented a variety of techniques that exploit buffer overflow and format string
overflow vulnerabilities to change the normal program flow by altering code pointers. Such
code pointers include the return address, C++ virtual function pointer, setjmp/longjmp buffer,
function pointer variables, and tables of function pointers such as the global offset table, the
destructor function table, and the exit handler table. Those code pointers can be altered
directly by overflowing buffers or indirectly by altering other data structures such as the
function activation record, malloc internal data, and pointer variables. We saw that format
string overflow attacks can be as dangerous as buffer overflow attacks. Code pointers exploited
by buffer overflow attacks can also be exploited by format string overflow attacks.

It should be stressed that those techniques are not the only ways to exploit buffer overflow
and format string overflow vulnerabilities, and they can be used in tandem to yield more
complicated attacks. Also, the code pointers and data structures named in this article are
not all of them; they are just more likely to be found in real world programs. Moreover, code
pointers themselves are not the only targets. Generally speaking, any objects that we can
influence to meet our purpose can be the targets. For example, we could target a file name
pointer if all we want is to read a file. Also, an attack does not have to be a single step if the
situation allows. For example, we could first read the target process’s memory by a format
string overflow attack and subsequently perform the actual attack by a buffer overflow attack
with knowledge of the memory space.

Various kinds of defensive techniques against buffer overflow attacks have been discussed.
Range checking systems can completely eliminate buffer overflow vulnerability, but they are
the slowest, particularly for pointer and array intensive programs. Run-time systems such as
StackGuard focus more on the behavior of known attacks, which enables them to perform
their checking more efficiently. They are faster than range-checking systems, but not all the
attacks can be detected by them. Pure static analysis techniques do not incur such run-time
overhead. However, with only compile-time information they can generate many false alarms.
A characteristic of static analysis techniques is that they can uncover contextual information in
the source program under analysis. The combined static/run-time techniques take advantage of
both static and run-time techniques. We also described our buffer overflow detection technique
that range checks the referenced buffers at run time.

In sum, our discussion of the buffer overflow and format string overflow exploitation reveals
how complex it would be to defend from such vulnerabilities. It seems that a defensive technique
would benefit from the combined static/run-time approach for a sound and complete defense.
We think that our solution can also be used as a building block in that direction.
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