
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports

L.C. Smith College of Engineering and Computer
Science

11-1-1990

Forecasting the Behavior of Multivariate Time
Series using Neural Networks
Kanad Charkraborty

Kishan Mehrotra
Syracuse University, mehrtra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Sanjay Ranka
Syracuse University

Follow this and additional works at: http://surface.syr.edu/eecs_techreports
Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE. It has been
accepted for inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more
information, please contact surface@syr.edu.

Recommended Citation
Charkraborty, Kanad; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "Forecasting the Behavior of Multivariate Time
Series using Neural Networks" (1990). Electrical Engineering and Computer Science Technical Reports. Paper 81.
http://surface.syr.edu/eecs_techreports/81

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports/81?utm_source=surface.syr.edu%2Feecs_techreports%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-36

Forecasting the Behavior of Multivariate
Time Series using Neural Networks

Kanad Charkraborty, Kishan Mehrotra, Chilukuri K. Mohan, San jay Ranka

November 1990

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

SU-CIS-90-36

Forecasting the Behavior of Multivariate
Time Series using Neural Networks

K. Charkraborty, K. Mehrotra, C. Mohan, and S. Ranka

November 1990

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Forecasting the Behavior of Multivariate Time

Series using Neural Networks

Kanad Chakraborty, Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka

4-116 Center for Science and Technology,

School of Computer and Information Science,

Syracuse University, Syracuse, NY 13244-4100

315-443-2368

(e-mail : kanad/kishan/mohan/ranka@top.cis.syr.edu)

December 4, 1990

Abstract

This paper presents a neural network approach to multivariate time-series analysis.

Real world observations of flour prices in three cities have been used as a benchmark in our

experiments. Feedforward connectionist networks have been designed to model flour prices

over the period from August 1972 to November 1980 for the cities of Buffalo, Minneapolis,

and Kansas City. Remarkable success has been achieved in training the networks to learn

the price curve for each of these cities, and thereby to make accurate price predictions.

Our results show that the neural network approach leads to better predictions than the

autoregressive moving average(ARMA) model of Tiao and Tsay [TiTs 89]. Our method

is not problem-specific, and can be applied to other problems in the fields of dynamical

system modeling, recognition, prediction and control.

Key words and phrases: Neural networks, Multivariate time series, Autoregressive mov­

ing average models, Prediction.

1 Introduction

Predicting the future is the prime motivation behind the search for laws that explain certain

phenomena. As observed by Weigend et al. [WAHR 90], it hinges on two types of knowl­

edge: knowledge of underlying laws, a very powerful and accurate means of prediction, and

the discovery of strong empirical regularities in observations of a given system. However,

there are problems with both approaches- discovery of laws underlying the behavior of a

system is often a difficult task, and empirical regularities or periodicities are not always

evident, and can often be masked by noise.

Multivariate time-series analysis is an important statistical tool to study the behavior of

time dependent data, and forecast future values depending on the history of variations in the

data. A time-series is a sequence of values measured over time, in discrete or continuous

time units. By studying many related variables together than by studying just one, a

better understanding is often obtained. A multivariate time-series consists of sequences

of values of several contemporaneous variables changing with time. An important case is

when the variables being measured are significantly correlated, e.g., when similar attributes

are being measured at different geographic locations. In forecasting new values for each

variable, better prediction capabilities are available if variations in the other variables are

also taken into account. Robust forecasting must rely on all available correlations and

empirical interdependencies among different temporal sequences.

Many past time-series analysis techniques assume linear relationships among variables

[BoJe 70]. But in the real world, temporal variations in data do not exhibit simple reg­

ularities, and are difficult to analyze and predict accurately. Linear recurrence relations

and their combinations for describing the behavior of such data are often found to be in­

adequate. It seems necessary, therefore, that non-linear models be used for the analysis of

real-world temporal data. But formulation of reasonable non-linear models is an extremely

difficult task, because of simplifications made in the modeling stage, e.g., omitting param­

eters which are unknown or which do not seem to affect the observed data directly. Also,

the relationships between known parameters and observed values can only be hypothesized,

with no simple laws governing their mutual behavior. Hence we resort to a 'neural net­

work' approach for non-linear modeling of multivariate time series; in earlier work, we have

successfully used this approach in analyzing univariate time series [LMMR 90].

Neural networks belong to the class of data-driven approaches, as opposed to model­

driven approaches. The analysis depends on available data, with little rationalization about

possible interactions. Relationships between variables, models, laws and predictions are

1

constructed post-facto after building a machine whose behavior simulates the data being

studied. The process of constructing such a machine based on available data is addressed

by certain general-purpose algorithms like 'back-propagation' [RuHW 86].

In this paper, we use neural networks to predict future values of possibly noisy mul­

tivariate time series based on past histories. The particular data analyzed are monthly

flour prices for Buffalo, Minneapolis and Kansas City over a period of a hundred months.

For impartial evaluation of the prediction performance of the approach, data for different

periods are used in the 'training' (modeling) and 'testing' (prediction) phases. The perfor­

mance exceeded expectations, and the root mean squared errors (in prediction) obtained using

this approach are better than those obtained from the statistical model by at least an order

of magnitude. We expect such results to be obtained in other applications as well, since

no specific domain knowledge or expertise was used to tune the performance of the neural

network.

Section 2 presents the architecture of the neural network used for our analysis, the

experiments performed, and the training paradigm used. In section 3, a traditional 'au­

toregressive moving average' (ARMA) model of statistical prediction has been described,

and its performance compared in section 4 with the network performance. Discussion and

concluding remarks then follow.

2 Methodology

2.1 Neural Networks

(Artificial) Neural networks are computing systems containing many simple non-linear com­

puting units or nodes interconnected by links. In a 'feedforward' network, the units can

be partitioned into layers, with links from each unit in the kth layer being directed (only)

to each unit in the (k + l)th layer. Inputs from the environment enter the first layer, and

outputs from the network are manifested at the last layer. A d - n - 1 network, shown in

Figure 1, refers to a network with d inputs, n units in the intermediate 'hidden' layer, and

one unit in the output layer [WAHR 90]. A weight or 'connection strength' is associated

with each link, and a network 'learns' or is trained by modifying these weights, thereby

modifying the network function which maps inputs to outputs.

We use such d - n - 1 networks to learn and then predict the behavior of multivariate

2

Output Layer

Hidden Layer

Input Layer

Figure 1: A feedforward neural net with one hidden layer

time series. The hidden and output nodes realize non-linear functions of the form

where wi's denote real-valued weights of edges incident on a node,() denotes the adjustable

'threshold' for that node, and m denotes the number of inputs to the node from the previous

layer.

2.2 Experiments

In our experiments, we have analyzed a trivariate time series Xr = {(xt, Yt, Zt) : t =
1, 2, ... , T}, where T ranges upto 100. The data used are logarithms of the indices of

3

monthly flour prices for Buffalo (xt), Minneapolis (Yt) and Kansas City (zt), over the period

from August 1972 to November 1980, obtained from [TiTs 89]. In all cases, we train the

network over a certain part of our data, and once training is completed, "test" the network

over the remaining data- i.e. make the network predict the socalled "future" values.

Both one-lag and multi-lag output predictions are done for the given models. In one-lag

prediction, we forecast flour prices of each year based on actual past values only. In multi­

lag prediction, on the other hand, we append the predicted values to our input database

and use these values also to predict future values. For instance, if the network is used to

predict a value n 6 from observed input data i1, ... is, then the next network prediction n7

is made using inputs i2, ... , is, n6 , and the subsequent network prediction ns is made using

inputs i 3, i4, is, n6 , n7 • With one-lag prediction, on the other hand, the prediction at the

eighth instant is made using only the actual input data values i3, i4, is, i6, i7. The following

three sets of experiments were performed in this study.

1. Separate Modeling : Each univariate time series XT = {xt : t = 1, 2, ... , T}, YT =
{Yt : t = 1, 2, ... , T}, and ZT = {zt : t = 1, 2, ... , T}, was analyzed separately,

without utilizing their interdependencies. For example, only the values of x11 ... , Xk

were used to predict Xk+I· A separate neural network was used for each of the

three series, as illustrated in Figure 2 and trained with about 90 input data values,

ranging from August 1972 to January 1980. The training phase is followed by output

prediction for the next ten time points (for February 1980 to November 1980) using the

weights and thresholds generated during training. These predictions were compared

with the test data set to judge the performance of the network. Experiments were

performed with 2-2-1, 4-4-1, 6-6-1 and 8-8-1 networks. The learning and prediction

capabilities of the networks were found to be poor, and consequently, the separate

modeling and prediction approach was abandoned in favor of combined modeling,

described below.

2. Combined Modeling : We obtained vastly improved performance using (for each se­

ries) information from all series, instead of treating each series in isolation. This is

illustrated in Figure 3, in which Xt+l is shown as being learned/predicted using six

preceding values from all the three series. Similar diagrams can be drawn for the Yt+I

and Zt+l also. For instance, previous x,y and z values were used in predicting a new

z value. Furthermore, for the data studied, there was an implicit ordering between

the three series: Xt values were available before Yt values, and Yt values were available

before Zt values, and (naturally) all these were available before Xt+I values. So in

4

the neural network corresponding to each series, inputs reflected the past histories of

that series as well as the others. For instance, in the d - n - 1 feedforward network

used to predict Yt, if d = 5, the chosen input values would be Xt, Zt-1, Yt-h Xt-h Zt-2·

As in the previous case, the training set consisted of the first 90 items of trivariate

data, and the results shown in Figures 4 through 21 compare performance of an 8-8-1

network with that of a classical autoregressive moving average (ARMA) model. In

all the graphs shown, the y-axis is labeled "LFPI", an abbreviation for "Logarithms

of monthly Flour Price Indices".

3. Single Modeling : Success of the above experiments suggested the use of one single

neural network (with only one set of weights) to learn all three series together, as

shown in Figure 22. The trivariate series was reformulated as a (longer) univariate

time series { xb Yt, Zt, x2, y2, z2, ... }, and the generic name { ut} was given to this se­

ries. Here, the training set consisted of the first 270 observations of the reformulated

series. However, this model performed poorly with respect to both training and pre­

diction, and was consequently rejected. The poor performance in this case indicates

that the superposition of three time series is much more difficult to learn than a single

one. Perhaps the reason is that in using the same set of weights to predict all three

series, there is an implicit erroneous assumption that all three series are expected to

fit the same model.

5

zt-1-Q~>o -- zt
Zt-2-Q

Figure 2: Separate Architectures Schema

Output Layer

Hidden Layer

Input Layer

Figure 3: Combined Architectures Schema

6

5.4

5.2

LFPI 5

4.8

4.6

5.4

5.2

LFPI 5

4.8

4.6

10 20 30 40 50 60
Time(months)

70 80 90

Figure 4: Combined Network Modeling: Buffalo (training)

10 20 30 40 50 60
Time(months)

70 80

Figure 5: ARMA Modeling: Buffalo (90 months)

7

90

5.4

5.2

LFPI 5

4.8

4.6

10 20 30 40 50 60
Time(months)

70 80 90

Figure 6: Combined Network Modeling: Minneapolis (training)

5.4

5.2

LFPI 5

4.8

4.6

10 20 30 40 50 60
Time(months)

70 80 90

Figure 7: ARMA Modeling: Minneapolis (90 months)

8

5.4

5.2

LFPI 5

4.8

4.6

10 20 30 40 50 60
Time(months)

70 80 90

Figure 8: Combined Network Modeling: Kansas City (training)

5.4

5.2

LFPI 5

4.8

4.6

10 20 30 40 50 60
Time(months)

70 80 90

Figure 9: ARMA Modeling: Kansas City (90 months)

9

I T T T I I I

5.4 r- -

5.2 1- -..... --
LFPI 5 1-

4.8 1- "target" - -
'network" -

4.6 1- -
I I I I I I

91 92 93 94 95 96 97 98 99 100
Time(months)

Figure 10: Network Prediction, one-lag (Buffalo)

I I I I I I I I

5.4 r- -

5.2 r- -
,..... - -

LFPI 5 1- -

4.8 1- "target" - -
"ARMA"-

4.6 - -
I I I I I I I

91 92 93 94 95 96 97 98 99 100
Time(months)

Figure 11: ARMA Prediction, one-lag (Buffalo)

10

5.4 -

5.2 f-
1--.

LFPI 5 1-

4.8 1-

4.6 t-

91

5.4

5.2

LFPI 5

4.8

4.6

I I I

-

-

"target" - -
"network" -

-
I I I _I _j _l _l _l

92 93 94 95 96 97 98 99 100
Time(months)

Figure 12: Network Prediction, multi-lag (Buffalo)

"target" -
"ARMA"-

91 92 93 94 95 96 97 98 99 100
Time(months)

Figure 13: ARMA Prediction, multi-lag (Buffalo)

11

I I I I I I

5.4 r- -

5.2 r-.....

LFPI 5 r- -

4.8 f- "target" - -
"network"-

4.6 r- -
I I I I J _l_ _l I

91 92 93 94 95 96 97 98 99 100
Time(months)

Figure 14: Network Prediction, one-lag (Minneapolis)

5.4

5.2

LFPI 5

4.8 "target" -
"ARMA"-

4.6

91 92 93 94 95 96 97 98 99 100
Time(months)

Figure 15: ARMA Prediction, one-lag (Minneapolis)

12

5.4

5.2

LFPI 5

4.8

4.6

91

5.4

5.2

LFPI 5

4.8

4.6

91

"target" -
"network" -

92 93 94 95 96 97 98 99 100
Time(months)

Figure 16: Network Prediction, multi-lag (Minneapolis)

92 93 94 95 96 97 98 99 100
Time(months)

Figure 17: ARMA Prediction, multi-lag (Minneapolis)

13

5.4

LFPI 5

4.8

4.6

"target" -
"network"-

91 92 93 94 95 96 97 98 99 100

5.4

5.2

LFPI 5

4.8

4.6

91

Time(months)

Figure 18: Network Prediction, one-lag (Kansas City)

92 93

"target" -
"ARMA"-

94 95 96 97
Time(months)

98 99 100

Figure 19: ARMA Prediction, one-lag (Kansas City)

14

5.4

LFPI 5

4.8

4.6

91

5.4

5.2

LFPI 5

4.8

4.6

91

92 93

"target" -
"network"-

94 95 96 97
Time(months)

98 99 100

Figure 20: Network Prediction, multi-lag (Kansas City)

92 93

"target" -
"ARMA"-

94 95 96 97
Time(months)

98 99 100

Figure 21: ARMA Prediction, multi-lag (Kansas City)

2.3 Procedure for '!raining the Networks

We used the error back-propagation algorithm of Rumelhart et al. [RuHW 86] to train

the networks, with the goal of minimizing the mean squared deviation between the desired

target values and network outputs, averaged over all the training inputs. In each step

in the training phase, a d-tuple (recent history) of normalized flour-prices, is presented

15

Output Layer

Hidden Layer

Input Layer

Figure 22: Single Architecture

to the network. The network is asked to predict the next value in the time sequence

for the chosen city. The error between the value predicted (by the network) and the

value actually observed (known data) is then measured and propagated backwards along

the feedforward connections. The weights of links between units are modified to various

extents, using a technique which apportions 'blame' for the error to various nodes and links,

as prescribed by the back-propagation algorithm. If the mean squared error exceeds some

small predetermined value, a new 'epoch' (cycle of presentations of all training inputs) is

started after termination of the current epoch.

The parameters of the back-propagation algorithm are the 'learning rate' and 'momen­

tum', which roughly describe the relative importance given to the current and past error­

values in modifying connection strengths. For better performance in our experiments, we

found that it was best to use a small learning rate in training the network. In all training

cases we chose a learning rate of 0.3, and an associated momentum term of 0.6. The number

of epochs varied between 25000 to 50000 in all cases.

16

3 Statistical Model

As shown in [TiTs 89], the autoregressive moving average (ARMA) model of prediction in­

volves computation of the overall order of the temporal process with the help of normalized

criterion and root tables, followed by estimation of unknown parameters. For this example,

it was found that a trivariate ARMA(1,1) model or AR(2) model would be appropriate for

the data. Subsequently, Tiao and Tsay [TiTs 89] obtained the model described below.

First, each trivariate input vector has to be transformed by premultiplication with a

3 x 3 matrix T, called the transformation matrix. The transformed data conforms to a

trivariate ARMA(1,1) model of the form

where the transformed series Yt = Tzt is a 3 x 1 (trivariate) column vector, B represents the

usual backshift operator, and the 3 x 1 column vectors at comprise the error components

of the model. The matrix coefficients (I- ~1B) and (I- E>1B) represent the autoregressive

and moving average components respectively. The estimated values of the 3 x 3 matrices

~ll E>1, and the 3 x 1 vector c are given in [TiTs 89].

In the trivariate ARMA model, the mean squared errors are obtained from the trivariate

at's, after premultiplying each such vector, fort = 1, 2 ... by the inverse of the transforma­

tion matrix T. The manner of computing the at vectors is as follows. We initialize a1 to

zero, and then, by using known values of Yt, at, compute Yt+l by the recipe of the model,

for t = 1, 2 ... 89. The error vector at is obtained at each step by taking the difference

between the computed and the actual values of Yt, for t = 2, 3 ... 90. One-lag prediction

is merely a continuation of the above process fort= 91,92 ... , and multi-lag prediction is

performed in a similar fashion but without considering the contribution of the at vectors

for t = 91,92 ... to the model, because these can be computed only by using both actual

and predicted data, and we are not permitted to use the former.

4 Analysis of Experimental Results

The mean squared errors for three different sets of experiments are listed in Table 1. The

values correspond respectively to the mean squared errors observed for (a) the first 90

trivariate data items, which correspond to the training data for the combined modeling

networks, (b) one-lag, and (c) multi-lag predictions of the combined modeling network and

ARMA models. The mean squared errors for the ARMA model are generally several orders

17

of magnitude larger than those of the networks. Table 2 gives the respective coefficients of

variation. The mean values of the data we worked with, viz. natural logarithms of monthly

flour price indices for Buffalo, Minneapolis and Kansas City, were 5.021, 4.997 and 5.027

respectively.

The performance of the neural networks did not vary much for different choices of input

sizes in the training and prediction phases of our experiments, and so the following results

are fairly representative. Also, experiments showed that perturbing the choice of initial

random weights of the network did not make any significant difference to the performance

of the networks in learning the time series. The vastly improved performance of combined

modeling over separate modeling, the results for which did not deserve mention in this

paper, suggests the existence of high positive correlations between the temporal patterns

for the three cities.

Table 1: Mean-Squared Errors x 103

Network Modeling/Prediction ARMA Modeling/Prediction

Cities Training One-lag Multi-lag Training One-lag Multi-lag

Buffalo 0.103 0.087 0.107 2.549 2.373 72.346

Minneapolis 0.090 0.072 0.070 5.097 4.168 137.534

Kansas City 0.383 1.353 1.521 8.645 7.497 233.413

Table 2· Coefficients of Variation x 103

Network Modeling/Prediction ARMA Modeling/Prediction

Cities Training One-lag Multi-lag Training One-lag Multi-lag

Buffalo 2.021 1.857 2.059 10.054 9.701 53.564

Minneapolis 1.898 1.697 1.674 14.285 12.917 74.204

Kansas City 3.892 7.316 7.757 18.493 17.222 96.096

5 Discussion

Most statistical models for learning and predicting time series are based only on linear

recurrences. Though computationally inexpensive, such functions do not often accurately

represent temporal variations. Nonlinear functions, on the other hand, are more useful for

tracing temporal sequences. This is probably the main reason for the significantly better

18

performance of the neural network approach (with nonlinearities at each node) as compared

to statistical modeling.

In any non-trivial time series, new values depend not only on the immediately prior

value, but also on many preceding values. Using too few inputs can result in inadequate

modeling, whereas too many inputs can excessively complicate the model. In the context

of neural networks, too many inputs would imply slower training and slower convergence,

and may in fact worsen the generalization capabilities (applicability to test cases) of the

network. Weigend et al. [WAHR 90] have given a rule of thumb for determining the number

of weights in the network as a function of the number of training samples. But this rule

was found to be too restrictive for the data set of 100 patterns we worked with, and hence

had to be disregarded.

Different types of connectionist models have been proposed for learning temporal vari­

ations of data. It has generally been held in the past that recurrent networks are more

suitable for learning temporal data. There were two reasons why recurrent networks were

not used for modeling the trivariate data on flour-prices- we observed experimentally that

unfolding them into simple feedforward networks would cause worse training and output

predictions than single hidden layer feedforward nets; the network would become inher­

ently slower because of much greater amount of computation involved. It may be noted

in passing that an unfolded version of a recurrent network is an approximation of it and

implementing an exact recurrent network is a computationally expensive task. The main

reason for this is that the units in hidden layers must be made to iterate among themselves

till their outputs converge, and there is no way of knowing a priori how many iterations

it would take before all the hidden units have stable outputs. Simple feedforward nets are

much less computationally intensive and give good performance in less time.

A potential objection to the claim of improved pedormance using the neural network

approach, in comparison to the statistical approach, is that neural networks are more

complex and have many more parameters (weights and thresholds): would a more complex

statistical model pedorm equally well? The answer is essentially methodological. Often,

the real-world phenomena being modeled are so complex that it is impossible to theorize

and generate statistical models. A large investment of experts' domain-specific research

studies must precede the formulation of an adequate model for each separate phenomenon.

When a large number of parameters are involved, it is difficult to predict data even when the

laws which govern their behavior are known, e.g., in the gravitational interactions between

a large number of bodies. With neural networks, on the contrary, an essentially similar

19

architecture can be quickly modified and trained for a variety of different phenomena. The

procedure is data-driven rather than model-driven and gives good results in many cases

despite the unavailability of a good theory /model underlying the observed phenomenon.

We now evaluate the neural network approach with respect to the following criteria for

a good model suggested in the literature [Harv 89]:

1. Parsimony: The neural network does contain a large number of parameters and is

hence not parsimonious. However, the method of training does not impose any exter­

nal biases, and networks started with different random weights successfully converged

to approximate the time series very well.

2. Data coherence: The neural network model provides a very good fit with the data,

as shown by the low mean-squared-error values for the training samples.

3. Consistency with prior knowledge: No explicit theory was constructed using the neural

networks, hence this criterion is largely irrelevant. In the best neural network model,

the assumption that flour prices become known in a fixed order (Xt, Y1, Zt, x2, •..) is

consistent with the information that the data are available slightly earlier for some

cities than for others.

4. Data admissibility: The values in a time series predicted by the neural networks are

always close to the immediately preceding values, and do not violate any obvious

definitional or reasonable constraints.

5. Structural stability: The neural networks satisfy this criterion, because they give a

good fit for test data, which are outside the set of training samples.

6. Encompassing: The results obtained using the neural networks are better than those

obtained using the alternative ARMA models. However, no theory is directly sug­

gested by the neural networks developed so far. The design of forecasting models

utilizing the parameters of the trained neural networks is currently under way.

5.1 Conclusions

We have presented a neural network approach to multivariate time-series analysis. In our

experiments, real world observations of flour prices in three cities have been used to train

and test the predictive power of feedforward neural networks. Remarkable success has been

achieved in training the networks to learn the price curve for each of these cities, and thereby

20

to make accurate price predictions. Our results show that the neural network approach leads

to better predictions than a well-known autoregressive moving average (ARMA) model

[TiTs 89]. We obtained a very close fit during the training phase, and the networks we

developed consistently outperformed statistical models during the prediction phase. Our

methodology is not problem specific, and can be applied to other problems in the fields of

dynamical system modeling, recognition, prediction and control.

We are currently exploring the combination of statistical and neural approaches for

time-series analyses. We expect that model-based statistical preprocessing can further

improve the performance or help in obtaining faster convergence of neural networks in the

task of time series predictions.

References

[BoJe 70]

[Harv 89]

[LaFa 87]

G.E.P.Box, G.M.Jenkins, Time Series Analysis: forecasting and control,

Holden-Day, San Francisco, 1970.

A.C.Harvey, Forecasting, Time Series Models and the Kalman Filter, Cam­

bridge Univ. Press, U.K., 1989.

A.S.Lapedes, R.M.Farber, Nonlinear signal processing uszng neural net­

works: prediction and system modeling, Technical Report LA-UR-87-2662,

Los Alamos National Laboratory, 1987.

[LMMR 90] M.Li, K.Mehrotra, C.K.Mohan, S.Ranka, Forecasting Sunspot Numbers Using

Neural Networks, Proc. IEEE Symp. on Intelligent Control, Sept. 1990.

[RuHW 86] D.E.Rumelhart, G.E.Hinton, R.J.Williams, Learning internal representations

by error propagation, in Parallel Distributed Processing (eds: D.E.Rumelhart,

J.L. McClelland), MIT Press, 1986.

[TiTs 89] G.C,Tiao, R.S.Tsay, Model Specification in Multivariate Time Series, J.R.

Statist. Soc. B(1989) 51, No. 2, pp 157-213.

[WAHR 90] A.S.Weigend, B.A.Huberman, D.E.Rumelhart, Predicting the Future: A Con­

nectionist Approach, submitted to the International Journal of Neural Sys­

tems, April1990.

21

	Syracuse University
	SURFACE
	11-1-1990

	Forecasting the Behavior of Multivariate Time Series using Neural Networks
	Kanad Charkraborty
	Kishan Mehrotra
	Chilukuri K. Mohan
	Sanjay Ranka
	Recommended Citation

	SU-CIS-90-36_001c
	SU-CIS-90-36_002c
	SU-CIS-90-36_003c
	SU-CIS-90-36_004c
	SU-CIS-90-36_005c
	SU-CIS-90-36_006c
	SU-CIS-90-36_007c
	SU-CIS-90-36_008c
	SU-CIS-90-36_009c
	SU-CIS-90-36_010c
	SU-CIS-90-36_011c
	SU-CIS-90-36_012c
	SU-CIS-90-36_013c
	SU-CIS-90-36_014c
	SU-CIS-90-36_015c
	SU-CIS-90-36_016c
	SU-CIS-90-36_017c
	SU-CIS-90-36_018c
	SU-CIS-90-36_019c
	SU-CIS-90-36_020c
	SU-CIS-90-36_021c
	SU-CIS-90-36_022c
	SU-CIS-90-36_023c
	SU-CIS-90-36_024c
	SU-CIS-90-36_025c

