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Abstract 

This paper presents a neural network approach to multivariate time-series analysis. 

Real world observations of flour prices in three cities have been used as a benchmark in our 

experiments. Feedforward connectionist networks have been designed to model flour prices 

over the period from August 1972 to November 1980 for the cities of Buffalo, Minneapolis, 

and Kansas City. Remarkable success has been achieved in training the networks to learn 

the price curve for each of these cities, and thereby to make accurate price predictions. 

Our results show that the neural network approach leads to better predictions than the 

autoregressive moving average(ARMA) model of Tiao and Tsay [TiTs 89]. Our method 

is not problem-specific, and can be applied to other problems in the fields of dynamical 

system modeling, recognition, prediction and control. 

Key words and phrases: Neural networks, Multivariate time series, Autoregressive mov­

ing average models, Prediction. 



1 Introduction 

Predicting the future is the prime motivation behind the search for laws that explain certain 

phenomena. As observed by Weigend et al. [WAHR 90], it hinges on two types of knowl­

edge: knowledge of underlying laws, a very powerful and accurate means of prediction, and 

the discovery of strong empirical regularities in observations of a given system. However, 

there are problems with both approaches- discovery of laws underlying the behavior of a 

system is often a difficult task, and empirical regularities or periodicities are not always 

evident, and can often be masked by noise. 

Multivariate time-series analysis is an important statistical tool to study the behavior of 

time dependent data, and forecast future values depending on the history of variations in the 

data. A time-series is a sequence of values measured over time, in discrete or continuous 

time units. By studying many related variables together than by studying just one, a 

better understanding is often obtained. A multivariate time-series consists of sequences 

of values of several contemporaneous variables changing with time. An important case is 

when the variables being measured are significantly correlated, e.g., when similar attributes 

are being measured at different geographic locations. In forecasting new values for each 

variable, better prediction capabilities are available if variations in the other variables are 

also taken into account. Robust forecasting must rely on all available correlations and 

empirical interdependencies among different temporal sequences. 

Many past time-series analysis techniques assume linear relationships among variables 

[BoJe 70]. But in the real world, temporal variations in data do not exhibit simple reg­

ularities, and are difficult to analyze and predict accurately. Linear recurrence relations 

and their combinations for describing the behavior of such data are often found to be in­

adequate. It seems necessary, therefore, that non-linear models be used for the analysis of 

real-world temporal data. But formulation of reasonable non-linear models is an extremely 

difficult task, because of simplifications made in the modeling stage, e.g., omitting param­

eters which are unknown or which do not seem to affect the observed data directly. Also, 

the relationships between known parameters and observed values can only be hypothesized, 

with no simple laws governing their mutual behavior. Hence we resort to a 'neural net­

work' approach for non-linear modeling of multivariate time series; in earlier work, we have 

successfully used this approach in analyzing univariate time series [LMMR 90]. 

Neural networks belong to the class of data-driven approaches, as opposed to model­

driven approaches. The analysis depends on available data, with little rationalization about 

possible interactions. Relationships between variables, models, laws and predictions are 
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constructed post-facto after building a machine whose behavior simulates the data being 

studied. The process of constructing such a machine based on available data is addressed 

by certain general-purpose algorithms like 'back-propagation' [RuHW 86]. 

In this paper, we use neural networks to predict future values of possibly noisy mul­

tivariate time series based on past histories. The particular data analyzed are monthly 

flour prices for Buffalo, Minneapolis and Kansas City over a period of a hundred months. 

For impartial evaluation of the prediction performance of the approach, data for different 

periods are used in the 'training' (modeling) and 'testing' (prediction) phases. The perfor­

mance exceeded expectations, and the root mean squared errors (in prediction) obtained using 

this approach are better than those obtained from the statistical model by at least an order 

of magnitude. We expect such results to be obtained in other applications as well, since 

no specific domain knowledge or expertise was used to tune the performance of the neural 

network. 

Section 2 presents the architecture of the neural network used for our analysis, the 

experiments performed, and the training paradigm used. In section 3, a traditional 'au­

toregressive moving average' (ARMA) model of statistical prediction has been described, 

and its performance compared in section 4 with the network performance. Discussion and 

concluding remarks then follow. 

2 Methodology 

2.1 Neural Networks 

(Artificial) Neural networks are computing systems containing many simple non-linear com­

puting units or nodes interconnected by links. In a 'feedforward' network, the units can 

be partitioned into layers, with links from each unit in the kth layer being directed (only) 

to each unit in the (k + l)th layer. Inputs from the environment enter the first layer, and 

outputs from the network are manifested at the last layer. A d - n - 1 network, shown in 

Figure 1, refers to a network with d inputs, n units in the intermediate 'hidden' layer, and 

one unit in the output layer [WAHR 90]. A weight or 'connection strength' is associated 

with each link, and a network 'learns' or is trained by modifying these weights, thereby 

modifying the network function which maps inputs to outputs. 

We use such d - n - 1 networks to learn and then predict the behavior of multivariate 
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Output Layer 

Hidden Layer 

Input Layer 

Figure 1: A feedforward neural net with one hidden layer 

time series. The hidden and output nodes realize non-linear functions of the form 

where wi's denote real-valued weights of edges incident on a node,() denotes the adjustable 

'threshold' for that node, and m denotes the number of inputs to the node from the previous 

layer. 

2.2 Experiments 

In our experiments, we have analyzed a trivariate time series Xr = {(xt, Yt, Zt) : t = 
1, 2, ... , T}, where T ranges upto 100. The data used are logarithms of the indices of 
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monthly flour prices for Buffalo (xt), Minneapolis (Yt) and Kansas City (zt), over the period 

from August 1972 to November 1980, obtained from [TiTs 89]. In all cases, we train the 

network over a certain part of our data, and once training is completed, "test" the network 

over the remaining data- i.e. make the network predict the socalled "future" values. 

Both one-lag and multi-lag output predictions are done for the given models. In one-lag 

prediction, we forecast flour prices of each year based on actual past values only. In multi­

lag prediction, on the other hand, we append the predicted values to our input database 

and use these values also to predict future values. For instance, if the network is used to 

predict a value n 6 from observed input data i1, ... is, then the next network prediction n7 

is made using inputs i2, ... , is, n6 , and the subsequent network prediction ns is made using 

inputs i 3, i4, is, n6 , n7 • With one-lag prediction, on the other hand, the prediction at the 

eighth instant is made using only the actual input data values i3, i4, is, i6, i7. The following 

three sets of experiments were performed in this study. 

1. Separate Modeling : Each univariate time series XT = {xt : t = 1, 2, ... , T}, YT = 
{Yt : t = 1, 2, ... , T}, and ZT = {zt : t = 1, 2, ... , T}, was analyzed separately, 

without utilizing their interdependencies. For example, only the values of x11 ... , Xk 

were used to predict Xk+I· A separate neural network was used for each of the 

three series, as illustrated in Figure 2 and trained with about 90 input data values, 

ranging from August 1972 to January 1980. The training phase is followed by output 

prediction for the next ten time points (for February 1980 to November 1980) using the 

weights and thresholds generated during training. These predictions were compared 

with the test data set to judge the performance of the network. Experiments were 

performed with 2-2-1, 4-4-1, 6-6-1 and 8-8-1 networks. The learning and prediction 

capabilities of the networks were found to be poor, and consequently, the separate 

modeling and prediction approach was abandoned in favor of combined modeling, 

described below. 

2. Combined Modeling : We obtained vastly improved performance using (for each se­

ries) information from all series, instead of treating each series in isolation. This is 

illustrated in Figure 3, in which Xt+l is shown as being learned/predicted using six 

preceding values from all the three series. Similar diagrams can be drawn for the Yt+I 

and Zt+l also. For instance, previous x,y and z values were used in predicting a new 

z value. Furthermore, for the data studied, there was an implicit ordering between 

the three series: Xt values were available before Yt values, and Yt values were available 

before Zt values, and (naturally) all these were available before Xt+I values. So in 
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the neural network corresponding to each series, inputs reflected the past histories of 

that series as well as the others. For instance, in the d - n - 1 feedforward network 

used to predict Yt, if d = 5, the chosen input values would be Xt, Zt-1, Yt-h Xt-h Zt-2· 

As in the previous case, the training set consisted of the first 90 items of trivariate 

data, and the results shown in Figures 4 through 21 compare performance of an 8-8-1 

network with that of a classical autoregressive moving average (ARMA) model. In 

all the graphs shown, the y-axis is labeled "LFPI", an abbreviation for "Logarithms 

of monthly Flour Price Indices". 

3. Single Modeling : Success of the above experiments suggested the use of one single 

neural network (with only one set of weights) to learn all three series together, as 

shown in Figure 22. The trivariate series was reformulated as a (longer) univariate 

time series { xb Yt, Zt, x2, y2, z2, ... }, and the generic name { ut} was given to this se­

ries. Here, the training set consisted of the first 270 observations of the reformulated 

series. However, this model performed poorly with respect to both training and pre­

diction, and was consequently rejected. The poor performance in this case indicates 

that the superposition of three time series is much more difficult to learn than a single 

one. Perhaps the reason is that in using the same set of weights to predict all three 

series, there is an implicit erroneous assumption that all three series are expected to 

fit the same model. 
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zt-1-Q~>o -- zt 
Zt-2-Q 

Figure 2: Separate Architectures Schema 

Output Layer 

Hidden Layer 

Input Layer 

Figure 3: Combined Architectures Schema 
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Figure 4: Combined Network Modeling: Buffalo (training) 
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Figure 5: ARMA Modeling: Buffalo (90 months) 
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Figure 6: Combined Network Modeling: Minneapolis (training) 
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Figure 7: ARMA Modeling: Minneapolis (90 months) 
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Figure 8: Combined Network Modeling: Kansas City (training) 
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Figure 9: ARMA Modeling: Kansas City (90 months) 
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Figure 10: Network Prediction, one-lag (Buffalo) 
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Figure 11: ARMA Prediction, one-lag (Buffalo) 
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Figure 12: Network Prediction, multi-lag (Buffalo) 
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Figure 13: ARMA Prediction, multi-lag (Buffalo) 
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Figure 14: Network Prediction, one-lag (Minneapolis) 
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Figure 15: ARMA Prediction, one-lag (Minneapolis) 
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Figure 16: Network Prediction, multi-lag (Minneapolis) 
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Figure 17: ARMA Prediction, multi-lag (Minneapolis) 
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Figure 18: Network Prediction, one-lag (Kansas City) 
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Figure 19: ARMA Prediction, one-lag (Kansas City) 
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Figure 20: Network Prediction, multi-lag (Kansas City) 
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Figure 21: ARMA Prediction, multi-lag (Kansas City) 

2.3 Procedure for '!raining the Networks 

We used the error back-propagation algorithm of Rumelhart et al. [RuHW 86] to train 

the networks, with the goal of minimizing the mean squared deviation between the desired 

target values and network outputs, averaged over all the training inputs. In each step 

in the training phase, a d-tuple (recent history) of normalized flour-prices, is presented 
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Output Layer 

Hidden Layer 

Input Layer 

Figure 22: Single Architecture 

to the network. The network is asked to predict the next value in the time sequence 

for the chosen city. The error between the value predicted (by the network) and the 

value actually observed (known data) is then measured and propagated backwards along 

the feedforward connections. The weights of links between units are modified to various 

extents, using a technique which apportions 'blame' for the error to various nodes and links, 

as prescribed by the back-propagation algorithm. If the mean squared error exceeds some 

small predetermined value, a new 'epoch' (cycle of presentations of all training inputs) is 

started after termination of the current epoch. 

The parameters of the back-propagation algorithm are the 'learning rate' and 'momen­

tum', which roughly describe the relative importance given to the current and past error­

values in modifying connection strengths. For better performance in our experiments, we 

found that it was best to use a small learning rate in training the network. In all training 

cases we chose a learning rate of 0.3, and an associated momentum term of 0.6. The number 

of epochs varied between 25000 to 50000 in all cases. 
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3 Statistical Model 

As shown in [TiTs 89], the autoregressive moving average (ARMA) model of prediction in­

volves computation of the overall order of the temporal process with the help of normalized 

criterion and root tables, followed by estimation of unknown parameters. For this example, 

it was found that a trivariate ARMA(1,1) model or AR(2) model would be appropriate for 

the data. Subsequently, Tiao and Tsay [TiTs 89] obtained the model described below. 

First, each trivariate input vector has to be transformed by premultiplication with a 

3 x 3 matrix T, called the transformation matrix. The transformed data conforms to a 

trivariate ARMA(1,1) model of the form 

where the transformed series Yt = Tzt is a 3 x 1 (trivariate) column vector, B represents the 

usual backshift operator, and the 3 x 1 column vectors at comprise the error components 

of the model. The matrix coefficients (I- ~1B) and (I- E>1B) represent the autoregressive 

and moving average components respectively. The estimated values of the 3 x 3 matrices 

~ll E>1, and the 3 x 1 vector c are given in [TiTs 89]. 

In the trivariate ARMA model, the mean squared errors are obtained from the trivariate 

at's, after premultiplying each such vector, fort = 1, 2 ... by the inverse of the transforma­

tion matrix T. The manner of computing the at vectors is as follows. We initialize a1 to 

zero, and then, by using known values of Yt, at, compute Yt+l by the recipe of the model, 

for t = 1, 2 ... 89. The error vector at is obtained at each step by taking the difference 

between the computed and the actual values of Yt, for t = 2, 3 ... 90. One-lag prediction 

is merely a continuation of the above process fort= 91,92 ... , and multi-lag prediction is 

performed in a similar fashion but without considering the contribution of the at vectors 

for t = 91,92 ... to the model, because these can be computed only by using both actual 

and predicted data, and we are not permitted to use the former. 

4 Analysis of Experimental Results 

The mean squared errors for three different sets of experiments are listed in Table 1. The 

values correspond respectively to the mean squared errors observed for (a) the first 90 

trivariate data items, which correspond to the training data for the combined modeling 

networks, (b) one-lag, and (c) multi-lag predictions of the combined modeling network and 

ARMA models. The mean squared errors for the ARMA model are generally several orders 
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of magnitude larger than those of the networks. Table 2 gives the respective coefficients of 

variation. The mean values of the data we worked with, viz. natural logarithms of monthly 

flour price indices for Buffalo, Minneapolis and Kansas City, were 5.021, 4.997 and 5.027 

respectively. 

The performance of the neural networks did not vary much for different choices of input 

sizes in the training and prediction phases of our experiments, and so the following results 

are fairly representative. Also, experiments showed that perturbing the choice of initial 

random weights of the network did not make any significant difference to the performance 

of the networks in learning the time series. The vastly improved performance of combined 

modeling over separate modeling, the results for which did not deserve mention in this 

paper, suggests the existence of high positive correlations between the temporal patterns 

for the three cities. 

Table 1: Mean-Squared Errors x 103 

Network Modeling/Prediction ARMA Modeling/Prediction 

Cities Training One-lag Multi-lag Training One-lag Multi-lag 

Buffalo 0.103 0.087 0.107 2.549 2.373 72.346 

Minneapolis 0.090 0.072 0.070 5.097 4.168 137.534 

Kansas City 0.383 1.353 1.521 8.645 7.497 233.413 

Table 2· Coefficients of Variation x 103 

Network Modeling/Prediction ARMA Modeling/Prediction 

Cities Training One-lag Multi-lag Training One-lag Multi-lag 

Buffalo 2.021 1.857 2.059 10.054 9.701 53.564 

Minneapolis 1.898 1.697 1.674 14.285 12.917 74.204 

Kansas City 3.892 7.316 7.757 18.493 17.222 96.096 

5 Discussion 

Most statistical models for learning and predicting time series are based only on linear 

recurrences. Though computationally inexpensive, such functions do not often accurately 

represent temporal variations. Nonlinear functions, on the other hand, are more useful for 

tracing temporal sequences. This is probably the main reason for the significantly better 
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performance of the neural network approach (with nonlinearities at each node) as compared 

to statistical modeling. 

In any non-trivial time series, new values depend not only on the immediately prior 

value, but also on many preceding values. Using too few inputs can result in inadequate 

modeling, whereas too many inputs can excessively complicate the model. In the context 

of neural networks, too many inputs would imply slower training and slower convergence, 

and may in fact worsen the generalization capabilities (applicability to test cases) of the 

network. Weigend et al. [WAHR 90] have given a rule of thumb for determining the number 

of weights in the network as a function of the number of training samples. But this rule 

was found to be too restrictive for the data set of 100 patterns we worked with, and hence 

had to be disregarded. 

Different types of connectionist models have been proposed for learning temporal vari­

ations of data. It has generally been held in the past that recurrent networks are more 

suitable for learning temporal data. There were two reasons why recurrent networks were 

not used for modeling the trivariate data on flour-prices- we observed experimentally that 

unfolding them into simple feedforward networks would cause worse training and output 

predictions than single hidden layer feedforward nets; the network would become inher­

ently slower because of much greater amount of computation involved. It may be noted 

in passing that an unfolded version of a recurrent network is an approximation of it and 

implementing an exact recurrent network is a computationally expensive task. The main 

reason for this is that the units in hidden layers must be made to iterate among themselves 

till their outputs converge, and there is no way of knowing a priori how many iterations 

it would take before all the hidden units have stable outputs. Simple feedforward nets are 

much less computationally intensive and give good performance in less time. 

A potential objection to the claim of improved pedormance using the neural network 

approach, in comparison to the statistical approach, is that neural networks are more 

complex and have many more parameters (weights and thresholds): would a more complex 

statistical model pedorm equally well? The answer is essentially methodological. Often, 

the real-world phenomena being modeled are so complex that it is impossible to theorize 

and generate statistical models. A large investment of experts' domain-specific research 

studies must precede the formulation of an adequate model for each separate phenomenon. 

When a large number of parameters are involved, it is difficult to predict data even when the 

laws which govern their behavior are known, e.g., in the gravitational interactions between 

a large number of bodies. With neural networks, on the contrary, an essentially similar 
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architecture can be quickly modified and trained for a variety of different phenomena. The 

procedure is data-driven rather than model-driven and gives good results in many cases 

despite the unavailability of a good theory /model underlying the observed phenomenon. 

We now evaluate the neural network approach with respect to the following criteria for 

a good model suggested in the literature [Harv 89]: 

1. Parsimony: The neural network does contain a large number of parameters and is 

hence not parsimonious. However, the method of training does not impose any exter­

nal biases, and networks started with different random weights successfully converged 

to approximate the time series very well. 

2. Data coherence: The neural network model provides a very good fit with the data, 

as shown by the low mean-squared-error values for the training samples. 

3. Consistency with prior knowledge: No explicit theory was constructed using the neural 

networks, hence this criterion is largely irrelevant. In the best neural network model, 

the assumption that flour prices become known in a fixed order ( Xt, Y1, Zt, x2, •.. ) is 

consistent with the information that the data are available slightly earlier for some 

cities than for others. 

4. Data admissibility: The values in a time series predicted by the neural networks are 

always close to the immediately preceding values, and do not violate any obvious 

definitional or reasonable constraints. 

5. Structural stability: The neural networks satisfy this criterion, because they give a 

good fit for test data, which are outside the set of training samples. 

6. Encompassing: The results obtained using the neural networks are better than those 

obtained using the alternative ARMA models. However, no theory is directly sug­

gested by the neural networks developed so far. The design of forecasting models 

utilizing the parameters of the trained neural networks is currently under way. 

5.1 Conclusions 

We have presented a neural network approach to multivariate time-series analysis. In our 

experiments, real world observations of flour prices in three cities have been used to train 

and test the predictive power of feedforward neural networks. Remarkable success has been 

achieved in training the networks to learn the price curve for each of these cities, and thereby 
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to make accurate price predictions. Our results show that the neural network approach leads 

to better predictions than a well-known autoregressive moving average (ARMA) model 

[TiTs 89]. We obtained a very close fit during the training phase, and the networks we 

developed consistently outperformed statistical models during the prediction phase. Our 

methodology is not problem specific, and can be applied to other problems in the fields of 

dynamical system modeling, recognition, prediction and control. 

We are currently exploring the combination of statistical and neural approaches for 

time-series analyses. We expect that model-based statistical preprocessing can further 

improve the performance or help in obtaining faster convergence of neural networks in the 

task of time series predictions. 
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