

A Space and Time Efficient Coding
Algorithm for Lattice Computations

Deb Dutta Ganguly and Sanjay Ranka

October 1990

School of Computer and Information Science
Syracuse University

Suite4-116
Center for Science and Technology

Syracuse, NY 13244-4100

(315) 443-2368

SU-CIS-90-35

A Space and Time Efficient Coding
Algorithm for Lattice Computations

Deb Dutta Ganguly and Sanjay Ranka
4-116 CST, School of CIS

Syracuse University
Syracuse, NY 13210

ranka@top.cis.syr .edu
(315)-443-445 7

October 30, 1990

Abstract

This paper presents an encoding algorithm to enable fast computation of
the least upper bound (LUB) and greatest lower bound (GLB) of a partially
ordered set. The algorithm presented reduces the L UB computation to an
OR operation on the codes. The GLB computation is reduced essentially
to an AND operation on the codes. The time complexity of our encoding
algorithm is 0(n + e) where n is the number of nodes and e is the number
of edges. With respect to space requirements the algorithm presented gives
good results for small lattices (code length was 50 bits for a 300 node lattice),
but it gives truly remarkable results for larger lattices (e.g. for a 950 node
lattice it used 110 bits).

Keywords and Phrases

class inheritance, GLB, LUB, lattice, poset.

List of Figures

Figure 1 : A lattice
Figure 2: Adjacency Matrix
Figure 3: Transitive Closure Matrix
Figure 4: Codes after Pass 1
Figure 5: Codes after Pass 2
Figure 6: Codes after Pass 1
Figure 7: Codes after Pass 2
Figure 8: Algorithm Encode
Figure 9: Pass 1
Figure 10: procedure name_children
Figure 11: procedure max_pure....siblings
Figure 12: procedure compute_prefix_len
Figure 13: Pass 2
Figure 14: procedure glb_info
Figure 15: Number of nodes vs. Avg. code length
Figure 16: Number of nodes vs. Avg. computation time

1

1 Introduction

Lattice operations are used to determine object properties by conjunction,
disjunction, or exclusion of certain class properties. In [1] Hassan Ait-Kaci et
al. discuss the applications of lattice computations in languages that support
(multiple) inheritance in partially ordered classes. [2] presents a overview of
the research in partially ordered data types : semantic networks, the first
order approach, the initial algebra approach and the denotational approach.

Kifer and Subrahmanian [3] have developed a theoretical foundation for
multivalued logic programming. They present a procedure for processing
queries to such programs and show that if certain constraints (over lattices)
associated with such queries are solvable, then their proof procedure is effec
tively implementable. Thus, an engine for solving such constraints over lat
tices is critical to the practical implementation of generalized annotated logic
programming of [3]. An important contribution of the Kifer-Subrahmanian
work is that they show that their generalized annotated logic programming
formalism is applicable to various important issues relating to expert systems.
In particular, uncertainty of various different kinds (e.g. bilattices, Bayesian
uncertainty propagation) can be handled in their framework. Additionally,
their framework can be used to reason about databases that contain inconsis
tencies. As inconsistencies can easily arise in knowledge based systems (due
either to errors in the data, or due to genuine differences of opinions amongst
multiple experts), it is vital that databases behave well in the presence of
such inconsistencies. Furthermore, Kifer and Subrahmanian [3] demonstrate
that their framework can also be used for temporal reasoning.

However, the query processing procedure developed by them lacks an im
portant component, viz. their procedure is completely contingent upon cer
tain constraints being solvable. However, no such procedures are developed
by Kifer and Subrahmanian [3]. We address this problem in this paper. The
solution to this problem presented here would make the Kifer Subrahmanian
procedure for processing queries implementable.

We first define a few basic notions [4].
Definition 1 : A binary relation :::; on a set P is called a partial ordering

in P iff :::; is reflexive, anti symmetric and transitive. The ordered pair {P, <)
is called a partially ordered set or a poset.

Definition 2: Let {P, <) be a partially ordered set and let A~ P. Any

2

element x E Pis an upper bound for A, if for all a E A, a:::; x. Similarly any
element x E P is a lower bound on A if for all a E A, x :::; a.

Definition 3: Let (P, :::;} be a partially ordered set and let A ~ P. An
element x E P is a least upper bound for A if x is an upper bound for A and
x :::; y for every upper bound y for A. Similarly, the greatest lower bound for
A is an element x E P such that x is a lower bound and y < x for all lower
bounds y.

A least upper bound if it exists is unique and the same is true for a great
est lower bound. The least upper bound is abbreviated as "LUB" and the
greatest lower bound is abbreviated as "GLB".

Definition 4: A lattice is a partially ordered set (L, <) in which every
pair of elements a, b E L has a greatest lower bound and a least upper bound.

Lattices can be encoded by a brute-force approach using transitive closure
(Section 2), such that the AND operation on two codes gives the LUB. This
method uses n bits to encode each node of a lattice with n nodes. The total
amount of space required is thus O(n2). This may be prohibitive for large
lattices. [1] presents an algorithm which uses "modulation" to reduce the
code-length. Our algorithm is simpler and has O(n +e) time complexity.
The LUB operations can still be completed by OR operations. The GLB
computation is reduced to an AND operation on the codes followed by a
simple step. The algorithm gives good results for small lattices (average
code length was 50 for a 300 node lattice), but it gives truly remarkable
results for larger lattices (e.g. for a 950 node lattice it used 110 bits for
encoding).

Section 3 describes a simple version of the algorithm when applied on
a tree. Section 4 discusses the changes necessary to apply the same basic
paradigm for poset encoding. Section 5 describes the algorithm and section
6 proves its correctness. Section 7 discusses the implementation. Section 8
concludes the paper.

3

Figure 1 : A lattice

2 Transitive Closure

In this section we discuss the transitive closure technique for encoding
lattices. Consider the lattice in Figure 1. Its adjacency matrix A is shown
in Figure 2. The edges are directed downwards. The adjacency matrix has a
'1' in the row headed by x under the column headed by y iff there is an edge
from x to y in the lattice . Otherwise a position in the adjacency matrix has
a '0'. A row headed by x is a representation of the set of all the immediate
lower bounds of x. Similarly a column headed by y can be viewed as a
representation of the set of all the immediate upper bounds of y. Since we
are interested in L UB here, we will take the latter view.

Next the transitive closure A* of A is calculated by matrix multiplication.
This is given by:

A*= Ui=o Ai

4

a b c d e f g h
a 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0 0
d 1 0 0 0 0 0 0 0
e 1 0 0 0 0 0 0 0
f 0 1 1 0 0 0 0 0
g 0 0 1 1 1 0 0 0
h 0 0 0 0 0 1 1 0

Figure 2: Adjacency Matrix
of the lattice in Figure 1

a b c d e f g h
a 1 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 0
c 1 0 1 0 0 0 0 0
d 1 0 0 1 0 0 0 0
e 1 0 0 0 1 0 0 0
f 1 1 1 0 0 1 0 0
g 1 0 1 1 1 0 1 0
h 1 1 1 1 1 1 1 1

Figure 3: Transitive Closure Matrix
of the lattice in Figure 1

This computation converges in O(log2 n) matrix multiplications of n x n
boolean matrices. First A1 =I U A is calculated, from this A2 and so on till
two consecutive matrices are the same. A* is shown in Figure 3. Clearly the
1's in the column headed by y indicate the upper bounds of y. Now an AND
operation on two columns will yield the set of the common upper bounds.
For example AND of the columns under 'b' and 'c' gives [00000101]T which
is the code under the column headed by node 'f' the common upper bound
and the LUB. Note that in a lattice it is possible for two nodes to have more
than one LUB. In that case the AND of the codes will yield a code which
represents the set of all common upper bounds.

This method uses n bits to encode each node of a lattice with n nodes. The
total amount of space required is thus O(n2) bits. This may be prohibitively
high for large lattices.

3 Tree Encoding

In this section we will discuss a coding algorithm for a tree which forms the
basis of our lattice encoding algorithm. The algorithm works in two passes.
In Pass 1, the lattice is swept layer1 by layer from layer 0, the bottommost

1 the word layer has been used for trees here (as opposed to the usual 'level') and lattices
in subsequent sections to maintain consistency.

5

layer of minimal elements, to the topmost layer of maximal elements. At each
layer the nodes are encoded such that the sibling nodes get distinct codes. In
Pass 2, the lattice is swept from the top to down. Now the non-sibling nodes
are distinguished by prefixing them with their respective parent's codes. The
bitwise-OR of any two codes yields the code of the LUB.

In Pass 1 if there are n nodes with a common parent then an n bit code
of the form 2i,O ~ i ~ n- 1 is used i.e., '1' at the ith position and 'O's
at all other positions. Thus, at layer 0 the children of the same parent are
assigned distinct codes. Then at every subsequent layer for each node such
a code is prefixed to the bit-wise OR of the children's codes. For instance,
the bitwise OR of node a's code (01) and node b's code (10) is 11, to which
01 is prefixed yielding node i's code (0111) in the left most subtree in Figure
4. The prefixing ensures that we can distinguish the codes of siblings. In
Pass 1 the nodes with the same parent are assigned distinct codes but the
nodes with different parents may still have identical codes. Pass 2 makes
them distinct. Figure 4 illustrates the result of applying Pass 1 to the binary
tree shown.

Pass 2 starts at layer n-2, where layer n is the topmost (maximal) layer. It
prefixes the existing codes to yield the final codes. Let d = length(parent.code)
- length(current.code). Each code is prefixed by the leftmost d bits of its
parent. Thus yielding the codes in the Figure 5.

Example: Consider the nodes a and din Figure 5. The bitwise OR of
their codes is 011111, which is the code of m, the LUB of nodes a and d.

Our encoding algorithm ensures that the LUB of two nodes has a '1' at
all the positions at which the bitwise OR of the codes of the two nodes has
a 1 and may be a few more. Now consider the nodes a and bin Figure 5.
The bitwise OR of their codes is 011101. Nodes i,m,o subsume this code, of
these node i is at the lowest layer hence it is the LUB.

3.1 Analysis of Tree Encoding

For a tree with a constant branching factor b the above algorithm will use b
bits at each layer. If the tree has !layers then b x 1 bits would be required
for encoding each node of the tree. Thus when b = 2 the entire tree uses
2 x l bits. If the tree has n nodes then in terms of the n only 2 x log2 n
bits are used. The entire tree would use 2n x log2 n bits compared to n 2

bits used by the Transitive Closure method. The algorithm works well for a

6

Figure 4 : Codes after Pass 1

7

00 00 CD
010101 010110 011001 011010 100101 100110 101001 101010

Figure 5 : Codes after Pass 2

8

tree, but cannot be directly used on a lattice. The main difference between
a lattice and a tree, in the context of this algorithm, is that every node in
a tree has an indegree2 of one (pure nodes) whereas in a lattice some nodes
can have an indegree greater than one (impure nodes). This necessitates a
few modifications to the above algorithm. We discuss the basic modification
in the next section.

4 Lattice Encoding

In this section we discuss the basic modification required for applying the
above paradigm to a lattice. We observed that the problem arises because
of the impure nodes. To overcome this problem we assign distinct prefixes
to the impure nodes in Pass 1 which are not used again.

Pass 1 starts at layer 1 and first the prefix length of the current layer is
calculated. This is the sum of the number of impure nodes and the maximum
number of pure sibling nodes3 (e.g. in Figure 6 at layer 1 there is one node c
which is impure and nodes d and e form the largest set of pure sibling nodes.
Hence the prefix length at this layer is 3). Next the impure nodes are assigned
distinct prefixes of the form 2i, (i.e., a '1' in the ith bit position) which are
not used again (e.g. in Figure 6 node c gets the prefix 100). This gives a
unique identity to the node (lemma 1) since only ancestors and descendants
of this node can now have a 1 at the ith position. While coding the pure
nodes we follow the same strategy as for a tree (e.g. in Figure 6 at layer 1
node cis assigned the code 100 which is not used again). After this at the
next layer each node gets the bitwise OR of its children codes. Then each
code is prefixed similarly. The process continues for every subsequent layer
until we reach the topmost layer. Consider the lattice in Figure 1. Figure
6 illustrates the result of applying Pass 1 of the modified algorithm to the
lattice in Figure 1.

In Pass 2 we prefix the codes of a pure nodes with the leftmost d bits of
its parent, where d = length(parent.code) -length(child.code). The code of
an impure node is prefixed by dO's so that its code length remains same as
that of the other nodes. Thus we get the codes in Figure 7. The part of the

2the number of parents of a node
3 We note that in most cases in practice the number of nodes with in degree greater than

1 is few.

9

Figure 6 : Codes after Pass 1

10

Figure 7 : Codes after Pass 2

code in boldface was added during Pass 2.
Our encoding algorithm ensures that the LUB of two nodes has a '1' at

all the positions at which the bitwise OR of the codes of the two nodes has
a 1 and may be a few more. We say that the LUB subsumes the bitwise OR
of the codes.

Definition 5: b.code subsumes a.code iff

Vi((2i&a.code) = 2i ==> (2i&b.code) = 2i)
; where & denotes the bitwise AND operation

Example : Consider the nodes c and e in Figure 7, the bitwise OR of
their codes is 01101, but there is no node with such a code. So we look for a
node whose code subsumes this code. Nodes g and h both subsume 01101,
since they are both upper bounds of nodes c and e. Of these node g is the

11

Algorithm Encode{L: lattice)
Form.Layers(L: lattice);
Pass1 {L: lattice);
Pass2 (L: lattice);

Figure 8: Algorithm Encode

LUB since it is at a lower layer.
After encoding the codes may be stored in an array sorted lexically by

the codes. A linear search on this array for the L UB code will take 0(n)
time. Alternatively the codes may be stored in a data structure which is the
same as the original lattice. Suppose lub.code is the bitwise-OR of the codes
whose LUB we are computing. We start at the maximal node and move to
the child which subsumes lub.code. We keep moving similarly until we get a
node whose children do not subsume lub.code. This node is the LUB. This
operation would take 0(h) time where h is the height of the lattice.

These modifications and a few more yield the algorithm in the following
section.

5 Algorithm Encode

This section the procedures invoked by Algorithm Encode {figure 8) in detail.
Form.Layers divides the lattice into layers. The layering is done using

a depth first search starting at the minimal node and going upwards. A
layer is a set of incomparable nodes - a cochain, computed as the set of all
the immediate parents that cannot be reached later. Algorithm Encode next
executes Pass! and Pass2. We now describe them in detail.

In a lattice it is possible that some, but not all, of the children of the node
reside in layers below the one immediately below the node's layer. However
the proof of correctness of the algorithm is simplified by the notion that
there exists a continuous path (i.e., a path that does not jump across layers)
between each ancestor-descendant pair. Han edge jumps across layers we

12

int : curr_codeJen, unik[max.noofJayers]
j* The ith element of the array unik(man.noofJayers] stores the bit-position
from which the pure nodes in the ith layer are assigned codes *I

procedure Pass1(L: lattice)
1. int layer ...no, i, d, prefix, virtuaLcode

node n,m
global int : curr_codeJen, unik(max.noofJayers]

2. curr _code_len +- 0
3. For layer _no +- 1 to max_layer do
4. For each node,n, in the layer numbered layer ...no do I* get the bitwise OR

of all the children codes *I
5. n.code +- zero(curr _codeJen) I* initialize n.code to

curr _codeJen long string of O's *I
6. For each node c E children(n) do
7. n.code +- n.code OR c.code
8. endfur
9. If out degree(n) = 1 then
10. If indegree(child(n)) = 1 then
11. i +- left..mosL1(child(n)) I* bit position of

the left most 1 in c~1ild's code *I
12. n.code +- 2i-l OR child(n).code
13. endif
14. endif

endfor 15.
16.
17.
18.

If layer ...no =I max _layer do

19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
30. endif
3l.endfor

curr _code_/ en +- curr .. code_len + compute_prefixlen(layer ..no)
i +- curr _code_/ en I* the bit position from which coding will
start at this layer; first eacode the impure nodes *I
For each node, n, in the layer numbered layer ...no, do

If indegree(n) > 1 then

end if

n.code +- 2i OR n.code
n.codeJen +- curr _code_len
i+-i-1

endfor I* impure nodes encoding finished *I
unik[layer ..no] ~ i I* the bit position from which the
pure nodes in the l~yer numbered layer JW are assigned codes *I
For each node, m, in the layer numbered layer _rw + 1 do

name_children(m, layer .:no)
endfor

Figure 9: Pass L

will assume that virtual nodes are inserted in each intermediate layer along
the edge from the child to the parent. Each of these virtual nodes can be
seen as having the code of the child. This notion will only be required to
prove correctness of the algorithm.

In Passl the algorithm starts at layer 1 (the minimal node resides in layer
0) and proceeds to the topmost layer, i.e., the layer in which the maximal
node exists. Procedure zero(i) returns a bit pattern of i O's used to initialize
the code. Every node in the current layer first gets the bit-wise OR of the
codes of the children4(lines 6-8 in Figure 9).

Note that if the outdegree of a node is one and the indegree of its only
child is also one then the algorithm of the previous section will assign identical
codes to these two nodes. Lines 9 to 14 in Figure 9 take care of this con
tingency. The call to lefLmosLl{child{n)) returns the bit position at which
a '1' was introduced when child(n) was encoded which is the left most 1 in
its code let this be i. Now line 17 introduces a 1 at position i_ 1 in n.code.
This amounts to inserting a virtual child of n (see below a description of the
manner in which sibling nodes are prefixed by name_children).

The rest of Pass1 (lines 16-30 in Figure 9) is performed for all the layers
except the topmost layer. First the length of the prefix to be attached is
calculated by compute_prefix_len and curr _code_/ en is incremented (lines
17-18 in Figure 9). We will discuss the procedure compute_prefix_len after
discussing Pass1).

Next (lines 16-19 in Figure 9) the nodes with outdegree greater than one
are taken and each one is given a distinct prefix. This ensures that a 1 at
this bit position can be introduced only by this node (see Lemma 1). When
all such nodes have been prefixed the bit-position from which the prefixing
of the pure nodes can start is stored in the array unik (line 31 in Figure
9). Thus the prefixes greater than 2unik[layer-no] are used to uniquely prefix
nodes with indegree greater than one. The prefixes less than or equal to
2unik[layer_no) are used to prefix the nodes with indegree equal to one. Now
(lines 27-29 in Figure 9) the nodes at the next higher layer are taken one after
another (note that each such node has at least one child in currentJayer)
and their children are prefixed, or named, by name..£hildren. This procedure
gives distinct prefixes to the codes of the children of parent that are not yet
prefixed, i.e., the nodes with indegree equal to one. The idea is to make

4 the nodes in the lower layers to which a node is connected

13

procedure name_children(parent : node, layer : int)
int j
global int curr _code_len, unik[max...noof _layers]
node n
If parent .layer ...no =F layer + 1 then return
j +- unik[layer]
For each node n E children(parent) do

If indegree(n) = 1 then
n.code +- 2j OR n.code
n.code_len +- curr _code_len
j +-j-1

Figure 10: procedure name..children

the sibling codes distinct. Note tha.t the parent node is in layer _no+ 1;
thus some, but not all of its children may be at deeper layers than layer _no.
Thus this procedure can be invoked by a child at the deeper layer. We
wish to start encoding the siblings when the sibling at the highest layer calls
name_children. Hence the check at the first line of the procedure.

Now we are in a position to discuss the computation of prefix length in
Passl. This ta.sk is carried out by the procedure compute..prefix_len. It
uses the procedure max..pure....siblings, which we will discuss first.

The children with indegree equal to one are called pure children. Proce
dure noof _pure..children(n: node) returns the number of pure children of a
node n. Procedure max..pure_children uses this procedure to compute the
cardinality of the largest set of pure sibling nodes at the given layer.

Procedure compute..prefix_len first initializes len to the number of nodes
with indegree greater than one in the layer (noof_indgr_gt_1). Next the max
imum number of pure sibling nodes are determined. This will turn out to be
one if there is only one pure node in the layer. Thus name..children would
prefix the pure node with a 1 in the right most bit position allowed in this
layer, say i. Now if the pure node's parent has outdegree one then, while

15

procedure max_pure....siblings(j : layer)
int noof _siblings
node m
noof _siblings +-- 0
For each node,m, in layer j + 1 do

If noo f _pure_children(m) > noo f _siblings
then noo f _siblings +-- noo f _pure_children(m)

return(noo f _siblings)

Figure 11: procedure max_pure....siblings

encoding the parent Algorithm Encode would (lines 9-14 in Figure 9) try to
place a 1 at bit position i - 1. Placing a 1 at this bit position may incorrectly
relate the parent node to a node at layer _no - 1. Hence a check is made to
see if max_pure....siblings indeed returns 1. If it does then a check is be made
to see if the parent has outdegree 1. If it does then len in incremented by 2
otherwise it is incremented by the value returned by man_pure....siblings.

Pass2 is extremely simple. It starts at the layer just below the topmost
layer and goes down to the bottom most layer. For each node the d(ifference)
between the parent's code length and the node's code length is calculated.
If the indegree of the node is greater than one then the code is prefixed by
d zeroes (zero(i : int) returns a string of i zeroes) otherwise the code is
prefixed by the first d bits of the parent (first(d, q) returns the leftmost d
bits of q.code). This completes the discussion of Algorithm Encode. In the
next section we analyze its time complexity.

5.1 Analysis of Algorithm Encode

Let n be the total number of nodes in the lattice. Let ni denote the number
of nodes in layer i. Further let e he the total number of edges in the lattice
and ei he the number of edges originating from the nodes in layer i. Note
that Li ni = n and Li ei = e. We will assume that the nodes are stored in

16

procedure compute_prefix_len(i: layer)
int len
len ~ noof _indgr _gt_1(i) /* each impure node must be prefixed uniquely* I
If (max_pure...siblings(i) = 1)

then I* only 1 pure node say n in layer i *I
If outdegree(parent(n)) = 1 then

len~ len+ 2
else len ~ len+ 1

else len ~ len + max...pure...siblings(i)
return(len)

Figure 12: procedure compute_prefix_len

procedure Pass2(L: lattice)
For layer ...:no ~ maxJayer - 1 downto 0 do

For each node, n, in layer _no do
d ~ parent.code_len - n.code_len
If indegree(n) > 1 then

prefix ~ zero(d)
else

prefix ~ first(d,parent.code)
n.code ~ concatenate(prefix, n.code)

Figure 13: Pass2

17

an array sorted according to layers. The ordering inside a particular layer
does not matter. This ordering can be performed in O(n +e) time from a
graph represented using adjacency lists.

We will first analyze Passl. Consider the steps performed by Pass1
at layer i. First each node gets the bitwise-OR of all its children codes
(lines 4 to 15 in Figure 9). This involves exactly ei steps. After this
compute_:prefix_len is called (line 17 in Figure 9).

Procedure compute_prefix_len (Figure 12) first determines the number of
impure nodes in layer i. This takes one run through the layer and thus takes
O(ni) time. It then calls max_pure..siblings. Procedure max_pure..siblings
(Figure 11) checks every node which is a child of a node in layer i + 1. This
takes O(ei+I) time. Thus compute_prefix_len takes O(ni + ei+I) in layer i.

Next in Pass! (lines 19 to 25) the impure nodes are encoded. This takes
one run through the layer and thus takes O(ni)· After this (lines 27 to 29)
each node in layer i + 1 is taken and procedure name_children is called each
time. Procedure name_children (Figure 10) works on all the children of the
argument node. Thus in lines 27 to 29 all the children of the nodes in layer
i are encountered, this takes O(ei+l) time.

Thus Pass1 takes ei+O(ni+ei+I)+O(ni)+O(ei+I) time. This simplifies
to 0(ni + ei+l) time for each layer i. Summing over all layers we get the time
complexity of Passl to be O(n +e).

In Pass2 every node is visited exactly once so it takes 9(n) time. Thus
the time complexity of Algorithm Encode is 0(n +e). For sparse lattices, e =
O(n). Thus the algorithm is linear in the number of nodes. The experimental
results (Figure 16) tally with this analytical result.

This concludes the analysis of Algorithm Encode. In the next section we
prove its correctness.

6 Correctness

In this section we prove the correctness of our algorithm and show how the
encoding leads to the reduction of L UB computation to an OR operation on
the codes.

Lemma 1 : If an impure node (in degree greater than one) receives a
prefix in Pass 1 such that the ith bit becomes 1, then only its ancestors and
descendants can have 1 at the ith position in their final codes.

18

Proof : In Pass 1 the impure nodes are taken separately and assigned
distinct prefixes (lines 20-24 in Figure 9). A node with indegree greater than
one is the only node in the layer which has a 1 at the unique position. Hence
only nodes related to it can get the 1 at that position. The ancestors get it
in Pass 1 and the descendants in Pass 2.

0

Lemma 2 : Consider two nodes a, b, such that a.layer ...no< b.layer ...no
but b is not an ancestor of a. Let a' be an ancestor of a in b.layer ...no. Let
a = at,a2 , •• an = a' be a path from a to a'. Finally let all a/s and b have an
indegree 1. If a' and b are non-sibling nodes then b.code does not subsume
a.code.

Proof : The proof is by contradiction. Let us assume that b.code sub
sumes a.code i.e.,

we will refer to this as the subsumption supposition.
d I I I I I I

Let the LUB of no es a and b be node p. Let a =aua2 , •• , an-u an= p,
be a path from a' top. Every a; has an indegree = 1. Further no a;, except
a~= p, is ancestor of node b. If it was then a~ would be the LUB of a' and
b.

Let b = bt, ~' ... , bn = p be a path from node b to node p. Consider nodes
a~_1 and bn_1 • They are children of p, hence they are siblings. They were
given distinct prefixes in Pass 1 by name_children (line 26-27), such that
2i&a~_1 = 2i (1 in the ith bit position). Also 2i&bn_1 = 0. The prefixes of
an-1 and bn-1 will be passed down to node a' and b respectively. The prefix
of a' will be passed down to a during pass 2. Hence node a has 1 at a position
where node b has a 0, contradicting the subsumption supposition.

0

We claim that (we will subsequently prove this) Algorithm Encode en
codes in a way such that node a subsumes node b iff node a is an ancestor of
node b (i.e., if there is a '1' at ith position in a node n's code, then there is a
'1' at the ith position of each of its ancestor's code). Thus the OR operation
on two codes yields a code that has 1 's in these identifying positions. All
the nodes whose codes subsume this code are upper bounds of the two initial

19

nodes. Algorithm Encode imposes a lexical ordering on related nodes ac
cording to layers (if a.layer..no < b.layer..no and a is related to b then a.code
-< b. code, where -< refers to lexical ordering with 0 -< 1). Hence the lexically
least code of these upper bounds refers to the code of the LUB.

Lemma 3 : Algorithm Encode encodes the nodes such that if two nodes
a and b are unrelated (i.e., they do not form an ancestor-descendant pair)
then

3i I ((2i&a.code) = 2i) and ((2i&b.code) = 0)

Proof : The proof is by contradiction. Let us assume without loss of
generality that a.layer..no ~ b.layer..no. So let us suppose that b.code sub
sumes a.code, i.e.,

as before we will refer to this as the subsumption supposition.
Can in degree(a) > 1 ? If yes, then the prefix assigned to node a in Pass 1

was unique (line 21-24). No node which is unrelated to node a can have a 1
in that position. But we have supposed that there exists such a node namely
node b. This contradicts the subsumption supposition. Hence indegree(a)=1.

Let a' be the ancestor of a in layer b.layer..no. Let a= a1, a2, .. , an= a'
be a path from a to a'. All a/s have indegree = 1, for the following reason.
a2= parent(a) has indegree = 1. If it has indegree greater than 1 then it
would have been given a unique prefix (i.e., 1 at say the ith bit-position)
in Pass 1. Node b is unrelated to node a so it is unrelated to parent(a)
too. So node b can't have a 1 at the ith bit-position. Node a gets 1 in the
ith position in Pass2. This contradicts the subsumption supposition. Hence
indegree(parent(a)) = 1. Proceeding similarly we have that all nodes along
along the path from node a to node a' have indegree = 1.

Now consider 2 separate cases- indegree(b) > 1 and indegree(b)=l.
Case 1 : in degree(b) > 1
In Pass1 (lines 20-22 in Figure 9) node b was assigned a distinct prefix,

such that the ith bit became 1. a' was also assigned a prefix such that the
Ph bit became 1. i# j. b has a 0 at the ph position. But a' has 1 at the jth
position and since a is related to a' in Pass2 the prefix of a' will be passed

20

down to a thus a has 1 at the jth position. (Note that all the nodes along
the path from a' to a have indegree 1, so the prefix will not' be gobbled up
half-way through). This contradicts the subsumption supposition. Hence this
case is proved.

Case 2 : in degree(b) = 1.
2.a) If a' and bare non-sibling nodes then by Lemma 2 this case is proved.
2.b) If a' and b are sibling nodes then name_children assigned them

distinct codes in Pass!. a' has 1 at the ith position where node b has 0. Since
a is related to a' in Pass 2 the prefix of a' will be passed down to a, thus a
also has a 1 at position i. This is a contradiction to subsumption supposition.
This case is proved.

0

It is clear that the code of a node is subsumed by each of its ancestor's
code. Combining this with Lemma 3 we can say that :

Theorem 1 : Algorithm Encode encodes in such a way that only a node's
ancestors subsume its code.

In this section we have proved the correctness of Algorithm Encode. We
will now proceed to make a few additions to the above algorithm so that we
can get the GLB as well.

6.1 GLB Computation

In this section we will discuss procedure glb_info which can be called from
Pass! so that the same set of codes yield the GLB as well.

Consider two nodes a and b. If a.code subsumes b.code then by Theorem 1
a is an ancestor of b, therefore node b is the GLB of nodes a and b. Similarly
if b.code subsumes a.code then a is the GLB. This checking takes 0(1) time.

Now suppose that neither a nor b subsume the other then by Theorem 1
nodes a and b do not form an ancestor-descendant pair. Since we are dealing
with a lattice the GLB of a and b definitely exists and now it must be an
impure node. Thus the GLB must have been uniquely prefixed in Pass 1 (the
minimal node is the only exception to this). Suppose the ith bit became 1
due to the unique prefixing. By Lemma 1 we can say that both a and b have
1 at the ith bit-position.

Let impure_1s store the positions at which a 1 is introduced while encod
ing the impure nodes. Thus bit i of impure_1s is 1 iff a 1 was introduced at

21

/* node n is an impure node which introduces a 1 at bit position i during
Passl. procedure glb_info stores this information*/

procedure glb_info(n :node, i :integer)
global int: impure_ls
global array of nodes : glb[]

impure_1s +-- 2i OR impure_1s
glb[i] +-- n

Figure 14: procedure glb_info

bit position i while encoding an impure node of the lattice. Moreover let glb
be an array which stores the impure node names or indices, such that glb[i]
gives the impure node whose encoding led to the introduction of 1 at the
ith bit-position. We perform these operations in procedure glb_info. It is
called from Pass1 when an impure node is encountered (line 20 in Figure 9).
Note that these operations do not increase the time complexity of Algorithm
Encode since procedure glb_info takes 0(1) time.

Finally to get the GLB of nodes a and b we first take the the bitwise AND
of a.code, b. code and impure, let this be c_code. c_code has 1 's at those bit
positions at which 1 's were introduced by their common impure descendants
and ancestors. A node at a higher layer introduces a 1 towards the left of the
1 introduced by a node at a lower layer.We now use left..mosL1 to find out
the bit position of the left most 1 in c_code, let this be i. Now glb[i] yields the
topmost common ancestor or descendant of a and b. We note that Algorithm
Encode imposes a lexical ordering on related nodes according to layers. So
if a.code -< i.code or b.code -< i.code then we don't have the GLB because
surely node i resides at a layer higher than that of a or b. So we take the
next leftmost bit-position in impure and check again until a.code -< i.code
and b.code -< i.code. If we fail to find such a node or if c_code has O's at
all the bit positions then the minimal node is the GLB. This search takes
O(nimpure) time, where nimpure is the number of impure nodes in the lattice.
Thus the GLB computation takes O(nimpure) time. We have already noted

22

Number of nodes vs. Average code length
110

100 "p=l" .<>--

90
"p=5" +-
"p=9"

80
avg. 70
code

length 60

50

40

30

20
300 400 500 600 700 800 900 1000

number of nodes

Figure 15: Number of nodes vs. A vg. code length

that in most cases in practice nimpure is small thus GLB computation is very
fast.

Throughout the discussion we dealt with a lattice, so every pair of nodes
had a distinct GLB and LUB. However this restriction can be relaxed. The
algorithm works in exactly the same way on a structure in which a pair of
nodes have more than one LUB or GLB. The proof of the algorithm for this
structure proceeds along exactly the same lines.

7 Implementation

The algorithm was implemented in C. It was tested on randomly generated
posets - A tree was built with each node having a random degree and then
edges were randomly added between unconnected nodes. The number of
edges added were varied. As expected the code length was minimum when
the number of new edges were less. In the Figure 15 the three curves corre-

23

Number of nodes vs. Average time for code computation

140

120

avg. 100
time
(ios) 80

60

40

20
300 400 500 600 700 800 900 1000

number of nodes

Figure 16: Number of nodes vs. avg. computation time

spond to different percentages, p, of the total number of nodes with outdegree
greater than one. Each curve represents the average number of bits required
to encode a lattice with corresponding number of nodes at the specified per
cent of nodes with outdegree greater than one. It may be noted here that
when the total number of nodes and number of nodes with outdegree greater
than one were specified, the code length remained remarkably stable for the
different lattices produced.

Next we show the time required to compute the codes in Figure 16. The
time of computation didn't vary appreciably with the percentage of the nodes
with outdegree greater than one, so only one curve has been drawn. It shows
the computation time when 9 percent of the nodes had outdegree greater
than one.

24

8 Conclusion

We have presented a simple algorithm for encoding a tree for L UB compu
tation. Then the algorithm was further evolved so that it could be applied
to a lattice. This required dividing lattice into layers and finally making fur
ther changes in the algorithm itself to take care of the differences between a
tree and a lattice. The main difference is that a lattice can have nodes with
indegree greater than one, while a tree cannot. We proceeded to analyze
and prove correctness of the algorithm formally and then present the exper
imental results. We noted that the same encoding also yielded the GLB by
essentially applying the bitwise-and operation on the codes. Our schemes can
be generalized to non-unique GLB's and LUB's. These techniques are can
be applied for efficient computation of lattice operations, which are becom
ing more and more important in programming languages supporting object
inheritance.

9 Acknowledgments

Thanks are due to Patrick Lincoln for sending us a small poset and describing
their method of poset genera.J;ion. We owe special thanks to Chilikuri Mohan
and V.S. Subrahmanian for thoroughly reading the paper and giving valuable
suggestions.

References

[1] Hassan Ait Kaci, Robert Boyer, Patrick Lincoln and Roger Nasr, "Ef
ficient Implementation of Lattice Operations", ACM Trans. on Prog.
Lang. and Sys, Vol. 11, No. 1, January 1989, Pages 115-146.

[2] Ait Kaci, H. "An algebraic-semantic approach to the effective resolution
of types equations." Theor. Comput. Sci. 45 (1986), Pages 185-215.

[3] M. Kifer and V.S. Subrahmanian. (1990) "Theory of Generalized Anno
tated Logic Programming and its Applications", to appear in: Journal
of Logic Programming. Preliminary version in: Proc. 1989 North Ameri-

25

can Conf. on Logic Programming, (eds. E. Lusk and R. Overbeek), MIT
Press.

[4] J. P Tremblay and R. Manohar, Discrete Mathematical Structures with
Applications to Computer Science, McGraw-Hill, 1987.

26

