Syracuse University

SURFACE

L.C. Smith College of Engineering and Computer

Electrical Engineering and Computer Science :
Science

1995

An Evaluation of Design Tradeoffs in a High
Performance Media-on-Demand Server

Divyesh Jadav
Syracuse University and CASE Center

Chutimet Srinilta
Syracuse University and CASE Center

Alok Choudhary
Syracuse University and CASE Center

P B.Berra

Syracuse University

Follow this and additional works at: http://surface.syr.edu/eecs

b Part of the Computer Sciences Commons

Recommended Citation

Jadav, Divyesh; Srinilta, Chutimet; Choudhary, Alok; and Berra, P. B, "An Evaluation of Design Tradeoffs in a High Performance
Media-on-Demand Server" (1995). Electrical Engineering and Computer Science. Paper 92.
http://surface.syr.edu/eecs/92

This Article is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE. It has been
accepted for inclusion in Electrical Engineering and Computer Science by an authorized administrator of SURFACE. For more information, please

contact surface@syr.edu.

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs/92?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

An Evaluation of Design Tradeoffs in a High Performance
Media-on-Demand Server *

Divyesh Jadav Chutimet Srinilta Alok Choudhary

P. Bruce Berra

Department of Electrical and Computer Engineering
and
CASE Center
Syracuse University

Syracuse, NY 13244

Abstract

One of the key components of a multi-user multimedia-on-demand system is the data server.
Digitalization of traditionally analog data such as video and audio, and the feasibility of ob-
taining network bandwidths above the gigabit-per-second range are two important advances
that have made possible the realization, in the near future, of interactive distributed multime-
dia systems. Secondary-to-main memory I/O technology has not kept pace with advances in
networking, main memory and CPU processing power. Consequently, the performance of the
server has a direct bearing on the overall performance of such a system.

In this paper we present a high-performance solution to the I/O retrieval problem in a dis-
tributed multimedia system. We develop a model for the architecture of a server for such a
system. Parallelism of data retrieval is achieved by striping the data across multiple disks. We
identify the design parameters that affect the throughput of the server. We have implemented
our model on the Intel Paragon parallel computer. We have performed an extensive performance
evaluation of how the parameters identified affect the data retrieval efficiency of the server. The
results of component-wise instrumentation of the server operation are presented and analyzed.
The performance of any server ultimately depends on the data access patterns. Two modifi-
cations of the basic retrieval algorithm that exploit data access patterns in order to improve
system throughput and response time are presented. Based on our experiments, a dynamic
admission control policy that takes server workload into account is proposed.

Keywords

Parallel Input-Output Media-on-Demand Server Striping
Real-time data retrieval Data Access patterns

*This work is supported by Intel Corporation, NSF Young Investigator Award CCR-9357840, and the New York
Center for Advanced Technology in Computer Applications and Software Engineering (CASE Center) at Syracuse
University. The authors thank the Caltech CCSF facilities for providing access to the Intel Paragon.

1 Introduction
1.1 Motivation

Digitalization of traditionally analog data such as video and audio, and the feasibility of obtaining
networking bandwidths above the gigabit-per-second range are two key advances that have made
possible the realization, in the near future, of interactive distributed multimedia systems. A Mul-
timedia Information System requires the integration of communication, storage and presentation
mechanisms for diverse data types including text, images, audio and video, to provide a single
unified information system [BCG+92].

The reason why multimedia data processing is difficult is that such data differs markedly from

the unimedia data (text) that conventional computers are built to handle [RaV92] :

o Multiple data streams : A multimedia object can consist of text, audio, video and image
data. These data types have very different storage space and retrieval rate requirements. The
design choices include storing data of the same type together, or storing data belonging to
the same object together. In either case, multimedia data adds a whole new dimension to the

mechanisms used to store, retrieve and manipulate the data.

¢ Real-time retrieval requirements: Video and audio data are characterized by the fact that
they must be presented to the user, and hence retrieved and transported, in real-time. In
addition, compound objects (objects consisting of more than one media type) usually require

two or more data types to be synchronized as the object is played out.

o Large data size: The size of a typical video or audio object is much larger than that of a
typical text object. For example, a two hour movie stored in MPEG-1 [Gal91] format requires

over 1 gigabytes of storage.

Multimedia information systems have been found to be useful in areas such as education,
medicine, entertainment and space research. In this paper, we focus on one such application,
media-on-demand in a distributed environment. This term refers to making it possible for mul-
tiple viewers to retrieve multimedia data in real time. We use video data for our purposes. The
implications of such a system on the technology and the infrastructure needed are tremendous.
The storage of even a modest hundred movies requires almost a terabyte of storage capacity in the
server. Similarly, gigabyte/sec and terabyte/ sec bandwidth networks are necessary to carry the
movies to the consumers.

In the absence of adequate hardware support, past and present interactive digital multimedia

systems have been forced to make compromises such as providing single-user instead of multi-user

support, small-window displays instead of full-screen display of video and image data, the use of
lossy compression techniques and low audio/video resolution. Recent advances in underlying hard-
ware technologies, however, obviate the need for such compromises. For example, Asynchronous
Transfer Mode (ATM) technology is increasingly becoming the candidate of choice for the high-
speed networks capable of carrying multimedia data, as it has the requisite speed and the ability
to carry voice and other data in a common format that is equally and equitably efficient for both
[Lan94]. Compression and decompression of multimedia data can now be done on the fly at low cost
directly in hardware. The capacity of secondary storage is approaching gigabytes/disk, while disk
sizes and price/byte of storage decrease. Massively parallel processors of gigaflops CPU capacity
and with terabytes of storage space are commercially available.

In spite of these technological advances, there is one bottleneck that plagues the realization of
such a system : the speed of data transfer from the secondary data storage to main memory. Sec-
ondary to main memory data transfer time in the most popular form of secondary storage, magnetic
disks, is still governed by the seek and rotational latencies of these devices. These latencies have
not decreased commensurately with the advances in other areas of computer hardware. Moreover,
the data transfer rates of magnetic disks are low compared to those of other forms of secondary
storage. Multimedia information systems are inherently 1/0 intensive, and it is critical to reduce

the ill-effects of this bottleneck. Techniques for doing so are the subject of this paper.

1.2 Related Work

Researchers have proposed various approaches for the storage and retrieval of multimedia data. An-
derson et al. [AOG92] have proposed file system design techniques for providing hard performance
guarantees. Reddy and Wyllie [ReW93, ReW94] have proposed a disk arm scheduling approach for
multimedia data, and characterized the disk-level tradeoffs in a multimedia server. Rangan et al.
[RaV92, RVRI2] have proposed a model based on constrained block allocation, which is basically
non-contiguous disk allocation in which the time taken to retrieve successive stream blocks does
not exceed the the playback duration of a stream block. Contiguous allocation of disk blocks for
a media stream is desirable, for it amortizes the cost of a single seek and rotational delay over the
retrieval of a number of media blocks, thus minimizing the deleterious effects of disk arm movement
on media data retrieval. However, contiguous allocation causes fragmentation of disk space if the
entire stream is stored on a single disk. Moreover, if a stream is stored on a single disk, the maxi-
mum retrieval bandwidth is restricted by the data transfer rate of the disk. Ghandeharizadeh and
Ramos [GhR93] get around these problems by striping media data across several disks in a round

robin fashion. The effective retrieval bandwidth is then proportional to the number of disks used.

Our model is similar to this model in using data striping, round robin distribution of successive
stream fragments and contiguous allocation within a given fragment. [RVR92] categorize real time
clients into 2 classes, those that require hard and soft performance guarantees, respectively. For
the latter class, the worst case assumptions made in admitting new users are relaxed based on the
observed server load to increase the number of users that can be supported. Most previous work
has concentrated on minimizing rotational and seek overheads in retrieving data. Our approach
is to increase the granularity of data retrieved so that the random effects of disk overheads form
a smaller fraction of request service time. Moreover, little attention has been paid to the issue
of tuning server performance based on user access patterns. [PRP94, LV94] have proposed ap-
proaches for inter-server information caching in a distributed environment with multiple servers.
We have developed techniques for intra-server information caching that exploit data access patterns

to maximize the number of simultaneous streams that a multimedia server can source.

1.3 Our Research Contributions

In this paper, we propose a model for a server in a distributed video-on-demand application. An
integrated approach to the storage and retrieval of video data so as to provide real-time service,
is presented. Our model uses parallelism of retrieval to address the problem of the low speed of
data transfer from secondary-storage to main memory. Two modifications of the basic retrieval
algorithm, the Local Disk Stream Scheduling (LDSS) algorithm, and the Local Memory Stream
Scheduling (LMSS) algorithm are presented.

In order to the analyze the applicability of our model, we have implemented it on the Intel
Paragon [Int93] parallel computer. Various parameters affect the server throughput. We performed
an extensive performance evaluation of the server operation over a range of parameter values. We
studied the effect of varying the buffer space allocated to each stream on the frequency of data
retrieval. We studied the effects of varying the stripe factor and the configuration of the server on
the intra-server traffic. Based on the results, we identify the important parameters that must be
considered in designing a multimedia server, and the various possible tradeoffs.

The rest of this paper is organized as follows : Section 2 presents a general overview of our model.
In Section 3 we describe the architecture of the server. Section 4 describes the data organization,
access and scheduling policies. We present and analyze performance results in Section 5. In section
6, we develop two modifications of the basic retrieval algorithm that improve server throughput
by exploiting user access patterns. A dynamic admission control policy is developed in Section 7.

Section 8 summarizes the paper.

Clientg

ATM Switch

High Speed WAN

ATM Switch

High
Performance
Multimedia
Data

Server

Figure 1: Block diagram of a Distributed Multimedia system

2 Overview of the Distributed Multimedia System

Figure 1 shows the overall architecture of the system which we consider.

At the heart of the system is a high-performance server optimized for fast I/0O. A parallel
machine is a good candidate for such a server because of its ability to serve multiple clients si-
multaneously, its high disk and node memory, and the parallelism of data retrieval that can be
obtained by data striping. In this model, we assume that the server is connected to a high-speed
wide-area network, for example, using ATM switches and a fiber optic network. The remote clients
are computers with tens of megabytes of main memory and hundreds of megabytes of secondary

storage.

2.1 Assumptions regarding the Data

We assume that the data are stored at the server in compressed digital form. As the multimedia
industry evolves, standards are being enacted. For instance, the MPEG-1 standard is suitable for
a digital video data rate of 1.5 Mbits/sec [Gal91], while MPEG-2 is a digital video standard being
finalized for supporting applications such as HDTV requiring higher bandwidths of 15 Mbits/sec
and beyond. We assume the MPEG-1 standard for the purpose of this paper. The decompression
of the data is done at the remote client’s multimedia terminal, which is an intelligent computer

with hardware such as a microphone, digital video camera, high-resolution graphics display, stereo

speakers and a sophisticated cable decoder. The cable decoder is the interface to the high-speed
wide-area network. It has tens of kilobytes of buffer space and compression and decompression
hardware built into it [Per94]. Such intelligent terminals are an example of how the digitalization
and integration being brought about by multimedia concepts is blurring the classical boundaries

between the computer, communication and consumer electronics industries [Aok94].

3 The High Performance Multimedia Server

3.1 Architecture

The goal of a server for the type of application described above is to maximize the number of
simultaneous real-time streams that can be sourced to clients. As explained above, the advent
of multimedia applications strains the resources of a uniprocessor computer system for even a
single-user mode of operation. When the server has to handle multiple requests from multiple
users simultaneously, it is clear that the server must be considerably more powerful than a PC or
workstation-type system. At the very least, the server should have terabytes of secondary storage
and gigabytes of main memory. The server may also be required to perform fast compression of
multimedia data. Hence it should have good floating-point and scalar arithmetic performance. A
parallel computer with multiple independent nodes interconnected by a high-speed interconnection
network is a good candidate for these requirements. Complementary views have been expressed to
this effect in the context of high performance relational database systems [Sto86, De(G92].

At the same time, it must be noted that most parallel computers available until recently have
concentrated on minimizing the time required to handle workloads similar to those found in the sci-
entific computing domain. Hence, the emphasis was laid on performing fast arithmetic and efficient
handling of vector operands. On the other hand, multimedia-type applications require fast data
retrieval and real-time guarantees. 1/O constitutes a severe bottleneck in contemporary parallel
computers and is currently the topic of vigorous research. A comprehensive survey of the problems
in high-performance I/O appears in[RoC94]. Secondly, parallel computers have traditionally been
expensive on account of their high-end nature and the comparatively small user community as
compared to that of PCs. The advent of multimedia applications has brought the esoteric parallel
machines in direct competition with volume-produced PCs and workstations. This is borne by the
fact that vendors are building multimedia servers based on both conventional parallel processors as
well as PC technology. For instance, companies like Oracle and Silicon Graphics advocate the use
of powerful parallel computers to build multimedia servers; while companies like Microsoft, Intel
and Compaq claim to achieve equivalent functionality at a lower cost by building servers through

interconnecting the bulk-produced chips used in PCs [HPC94]. An example of the latter approach

is Microsoft’s Tiger file system, which uses a high-speed communication fabric to interconnect Intel
Pentium-processor based nodes.

We propose a logical model for a continuous media server, which is independent of the architec-
tural implementation. The same model can be implemented on a MPP-like machine or a collection
of PCs/workstations interconnected by high-speed links. In this paper, we have used the MPP
approach to validate our work. We present our results for the Intel Paragon.

Accordingly, the architecture of the server is that of a parallel computer with a high-capacity
magnetic disk(s) per node, with the nodes being connected by a high-speed interconnection network.
Each node is a computer in its own right, with a CPU, RAM and secondary storage. In addition,
each node has an interface with the interconnection network. Consequently, a node can operate
independently of other nodes or two or more nodes can cooperate to solve the same problem in
parallel. This model allows one to stripe the multimedia data across the magnetic disks of the
server. This allows its retrieval to proceed in parallel, thus helping the server to satisfy real-time
requirements. In addition, the shrinking size and cost of RAM makes it possible to have hundreds
of megabytes of main memory per node; memory capacity of this range is an advantage for buffering

multimedia data during secondary-memory storage and retrieval.

3.2 Logical Model of the Server

Figure 2 shows a block diagram of the logical view of the proposed server. In the figure, node I is
serving a stream whose data is stored on nodes 57 and S3, node I, is serving a stream whose data
is stored on nodes 57, 52 and 54, and node I3 is serving a stream whose data is stored on nodes 54
and 95.

The physical server nodes are divided into three classes based on functionality : Object Man-
ager A, Interface I, and Server 5 nodes. In the figure, dotted lines indicate control traflic, while
the solid lines indicate data traffic. In a typical request-response scenario, the object manager node
would receive a request for an object, M. The server node(s) on which the object resides would be
identified by the object manager. If the resource requirements of the request are consistent with
the system load at that time, then the request is accepted. An interface node to serve the stream is
chosen by the object manager, and the interface node then takes over the authority and authority
of serving the stream. To that end, it retrieves the stream fragments from the server nodes and
transmits them at the required rate to the client. The three types of nodes are explained in greater

detail below :

1. The Object Manager node is at the top of the server’s control hierarchy. The Object

Manager receives all incoming requests for media objects. It has knowledge of which Server

Server Nodes Disks

I nterface Nodes
S >
1
ll
78 — >
Object Managey~ I S,
‘ Node ,” \'II
High ﬁ ______ R
Sed 2 A (T, s <
WAN > K s
N
\\|
\\\v S _©
4
|
3
>
\ S

= ===
o

Figure 2: Logical Model of the Server. Example communication patterns are shown: dark lines

indicate data, dotted lines indicate control information

nodes an object resides on and the workload of the Interface nodes. Based on this knowledge,
it delegates the responsibility of serving a request to one of the Interface nodes. The Object
Manager node also logs data request patterns, and uses this information to optimize server
response time and throughput. Before accepting a request, the Object Manager communi-
cates with the selected Interface nodes to ensure that the new request, if accepted, can be
successfully served, while at the same time ensuring that existing requests continue to be

served at the required rate .

2. Interface Nodes are responsible for scheduling and serving stream requests that have been
accepted. Their main function is to request the striped data from the server nodes, order the
packets received from the server nodes, and send the packets over the high-speed wide area
network to the clients. Efficient buffer management algorithms are vital towards achieving
these functions. An interface node can also use its local secondary storage to source frequently

accessed data objects.

3. Server Nodes actually store multimedia data on their secondary storage in a striped fashion,
and retrieve and transmit the data to an interface node when requested to do so. It is to be

noted that the disk-per-node assumption is not literal : a node can have a disk-array[DK+92],

!'We have developed algorithms for performing these functions. However, they are not the topic of this paper.

Symbol | Description Units
R, Required playback rate bytes/sec
FPr Size of packets sent by an I node bytes

o1 Duration of a packet sent by an I node sec

By Buffer size at an I node bytes

Ps Size of packets sent by a 5 node bytes

bg Duration of data in By sec

Ty Period of issuing fetches to S nodes from I node | sec

S Stripe factor -

Table 1: The parameters used in this paper

or a number of independent disks for greater I/O throughput.

4 Data Access and Scheduling

4.1 Parameters Used and Scheduling Constraints

As mentioned earlier, the data is compressed and striped across the server nodes in a round-robin
fashion. The number of nodes across which an object is striped is called the stripe factor. Since the
stripe fragments on any given server node’s disk are not consecutive fragments, it is not necessary
to store them contiguously. Disk scheduling algorithms to optimize retrieval from the disk surface
have been proposed [ReW93], and can be used in our model. We are concerned with harnessing the
parallelism provided by striped storage and investigating the buffering policies for the data. Table
1 shows the parameters used by our model.

o1 is the time for which a packet sent by an I node to a client will last at the client. Hence this
is also the deadline by which the next packet from the I node must be received at the client. Its
value is given by:

Pr

o7 = 1
=&, (1)

Once the requested stripe fragments from the 5 nodes have arrived at the destination I node,
the latter arranges them in the proper sequence and continues sending packets of size Pr to the
client no less than every 6; seconds. The buffer at the I node will last for dg time, before which
the next set of stripe fragments must have arrived from the 5 nodes.

The average time to retrieve Pg bytes from a S node is given by
6io = 67’(] + 6avg566k + 6avgrot + 6t7°ps + 6nwps (2)

where 6, is the time delay for a request from an I node to reach a S node, d44,,., and d44,,, are

the average seek and rotational latencies for the disks being used, 5157“135 is the disk data transfer

Interface Node Buffer of size B,
Figure 3: Time relationships of Interface-Server node traffic

time for P bytes, and 6anS is the network latency to transport P; bytes from a 5 node to an [
node.
Thus, if the playout of an I node buffer is started at time ¢, then the latest time by which the

requests for the next set of stripe fragments must be issued to the .5 nodes is :
tpar =1+ 65’ - 6io (3)

This is illustrated in figure 3 . Note that equation 2 uses average seek and rotational latencies
for disk accesses. Since these latencies are variable, there will be boundary conditions when the
time to retrieve Pg bytes is much more (less) than the average value. However, the effect of this
deviation from the average value on the overall service time depends on the relative magnitudes
of the other components of the service time. QOur approach is based on the fact that when the
granularity of data read from disk is large, the effect of random disk seek and rotational overheads
is reduced. While it is true that doing so increases buffering requirements, contemporary processors
have large main memories, and using such processors is well worth the gain obtained in making
disk service time more predictable. Of course, if some clients require strict performance guarantees,
then one can categorize users into those requiring hard and soft deadlines as in[VG+94], and use

the maximum values of the disk overheads for admitting users of the latter kind.

5 Performance Evaluation

We have implemented our logical server model on the Intel Paragon parallel computer. The Intel
Paragon [Hwa93] is a mesh-based architecture with Intel i860XP microprocessors. Interproces-
sor communication is done using wormhole routing [NiM93, MTR94]. Due to storage space and

availability of real-world data limitations, the disk access part was simulated. We have assumed gi-

10

Description Value

Required playback rate (R,) 1.5 Mbits/sec

Size of packets sent by an I node (Pr) | 64 Kbytes

Minimum disk seek time 1 msec

Time for one rotation 10.1 ms

Average rotational latency 8.03 ms

Evaluation machine 56 node Intel Paragon

Table 2: The parameter values used for the simulation

gabytes of disk space per node, and a disk data transfer rate of 10 Mbytes/sec. Currently available
magnetic disks have data transfer rates of a few Mbytes/sec. In general, for higher data transfer
rate and rotational speed of the disk, the higher the disk cost. Thus, it might be better to have an
array of cheaper but slower disks than a single fast disk. For example, one could use an array of
4 disks to achieve the 10 Mbytes/sec data transfer rate we have assumed above. In practice, the
exact type and configuration of disks to use is an implementation decision. We used a playback
rate (Rp;) equal to the MPEG-1 rate of 1.5 Mbits/sec. Table 2 shows the values of the parameters
defined in table 1 that we used for our simulation. It should be noted that except for the simulation
of the disk access, the rest of the server operations were implemented including the scheduler and
data transfer over the interconnection network. The disk access time was simulated by elapsing
the system timer on each server node. The playback time for each stream varied between 4 and 5
minutes, depending on the time of arrival of the request for that stream.

The data retrieval process as explained above, whereby an interface node serving a stream
retrieves stripe fragments from the server nodes on which the data is stored in each service round,
is called the Remote Disk Stream Scheduling (RDSS) algorithm. In the worst case, each user request
is for a different data stream; which requires use of the RDSS scheduling technique. Consequently,
this is the technique for which the experiments were performed. Two modifications of the RDSS
scheme, which exploit user access patterns are explained, and their performance is compared with
that of the RDSS scheme in section 6.

The parameters that were varied were the stripe factor (.9), the request size to the server nodes
(Ps), the buffer size at the interface nodes (By), and the ratio of the number of server nodes to the
number of interface nodes. Disk retrieval was simulated by assuming that the stripe fragments are
stored on the disk using a random placement model [KJ+84]. The load on the server was varied
by increasing the number of streams that could be supported per interface node, incrementally in
units of 5 streams. Readings were taken for 5 to 50 streams per interface node.

We measured the components of stream retrieval for the server. For any stream that is being

served, the process of retrieving a set of stripe fragments from the S nodes is made up of a number of

11

activities. The various time components are, in order, time for the fetch request from the interface
node to reach the server node, time that the request has to wait at the server node while requests
with earlier deadlines are served, the actual service time to retrieve the data from the disk, and
finally, the time for the retrieved data to reach the requesting interface node.

The communication time over the network is the sum of two factors - the network latency
in the absence of blocking, and the blocking time due to link contention in the interconnection
network. For a given message size and interconnection network, the former is fixed; while the latter
depends on the network traffic. The network blocking time was dynamically recorded as follows
: for each request sent by an I node to a S node, the time delay between the issuing of the data
request and the arrival of the packets from the S node was measured. The sum of all the other
delays was subtracted from this round trip request delay to give the network blocking time. Thus,
the network blocking time includes the buffering and copying overheads associated with messages,
when multiple messages contend for the network (the network communication time in the absence
of blocking includes the buffering and copying overhead for one message under ideal conditions).

We present below the detailed experimental results. For each experiment, we have plotted two
graphs : the average of the delay components over all packets of all streams, and the mazimum
of the delay components over all packets of all streams. The reasons for using these measures are

explained in the following subsections along with the performance results.

5.1 Buffering vs. Frequency of Retrieval Tradeoff

In the first set of experiments, we fixed the stripe factor and varied the size of the packets requested
from the server nodes, Ps. Due to the periodic nature of media retrieval, the server services multiple
clients by proceeding in service rounds. During each service round, the server retrieves a sequence
of media blocks for each client stream. With reference to our model, a service round corresponds
to the retrieval of S media fragments by an interface node, for each stream being served by it, (.9
is the stripe factor) from the server nodes at which the stream concerned is stored. The retrieved
data of each stream is stored in its stream buffer at the interface node serving the stream. The
interface node then periodically sends out chunks of media data from the stream buffer to the client
so that the playback rate requirements are satisfied. Given this mode of operation, varying the
value of Pg, keeping the stripe factor fixed involves a tradeoff between stream buffer requirements
at the interface node, and the frequency of issuing fetches to the server nodes. For larger values
of Pg, the the data retrieved from the S nodes lasts longer; consequently, longer is the duration of
a service round at the I node. Hence, the frequency of media fragment retrieval is lower. On the

other hand, larger the value of Pg, larger is the buffering requirement at an I node for each stream.

12

For this experiment, we used a server configuration of 6 I nodes and 35 S nodes. The graphs
in figure 4 show the average component delays as a function of number of streams per I node, for
Pgs equal to 40, 80, 120 and 160 kilobytes respectively, for a stripe factor of 4. The components

depicted are, from bottom to top,
1. Network communication time in the absence of blocking, N¢.
2. Disk data transfer time, Dg.
3. Disk seek time, Dg.
4. Disk rotation time, Dg.
5. Network blocking time, Ng.
6. S node queueing delay, Sq.

The total service time for a request to a S node for a stripe fragment is the sum of these six
components. This is denoted by Ry.:.

Note that N¢ depends only on the value of Pg and the network bandwidth. We benchmarked
the Paragon over a number of message sizes in the range of interest to us, and obtained a nearly
constant bandwidth of 13.8 Mbytes/sec. The results are not presented here due to space limitations.
D7 depends only on the value of Pg. Given a value of Pg, these two components are fixed. The
measured disk seek and rotational times (Dg and Dpg) were averaged for all the requests. Since
media blocks are assumed to be uniformly distributed over the disk surface, these two components
vary very little in the graphs (the variation is too small to be noticed in the graphs. Moreover,
in many cases depicted, disk seek and rotational latencies are insignificant compared to the other
delays). The S node queueing delay, Sg, is a measure of the time that a request has to wait at a S
node before it can obtain service.

We note from the graphs that the total delay in retrieving media blocks, Ry, increases as the
workload on the server increases, and that this behavior occurs at all four values of Pg. We also
see that, at a given server load, as the granularity of Pgs is increased, the total time to retrieve
media blocks increases. The reason for this is that No and Dp are directly proportional to the
value of Ps. Lastly, we observe that among the four values of Ps, for Ps = 40 kB, Sg dominates
at higher workloads, while for larger values of Pg, it is the network blocking time that dominates
at higher workloads. The former behavior is due to the fact that given a particular S node which
stores fragments for a stream being served, for a small value Pg, the frequency of fragment requests
observed by the S node for that stream is greater than that for larger values of Pg. Thus, over an

interval of time (greater than a service round), the number of disk requests for a stream is greater

13

Time (ms)

Average Delay components
(Pi=64 kB, Ps =40 kB, stripe 4)

10 15 20 25 30
Number of streams per | node

Average Delay components

(Pi=64kB, Ps =120 kB, stripe 4)

35 40 45 50 55

0 5 10 15 20 25 30

Average Delay components
(Pi=64 kB, Ps = 80 kB, stripe 4)

35 40 45
Number of streams per | node

Average Delay components

120 1 120 1
n/w communication time (a) n/w communication time (a)
110 disk transfer time (b)] 110 | disk transfer time (b)]
disk seek time (c) disk seek time (c)
disk rotational time (d) disk rotational time (d)
100 n/w blocking time (e)] 100 n/w blocking time (e)]
S node queueing delay (f) S node queueing delay (f)
90 1 90 1
80 1 80 1
- 10 1 & 70 b
E E
2 g 60]
= =

50 55

(Pi=64kB, Ps =160 kB, stripe 4)

120 1 120 1
n/w communication time (a) n/w communication time (a)

110 disk transfer time (b)] 110 | disk transfer time (b)]
disk seek time (c) disk seek time (c)
disk rotational time (d) disk rotational time (d)

100 B 100 B

90

80

70

n/w blocking time (e)
S node queueing delay (f)

Time (ms)

n/w blocking time (e)
S node queueing delay (f)

(0] 5 10 15 20 25 30
Number of streams per | node

35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55

Number of streams per | node

Figure 4: Effect of varying frequency of fetching on average delays. The graphs show the average
server delays as a function of the number of streams supported per interface node for 6 I nodes, 35
S nodes, stripe factor of 4. The 4 graphs are for server request sizes of 40 kB, 80 kB, 120 kB and
160 kB respectively.

14

for a smaller value of Psg. Since each disk access incurs seek and rotational overheads, and their
effect is more pronounced for smaller retrieval sizes, the disk utilization is higher for small values of
Ps. On the other hand, for large values of Ps (like 160 kB) the frequency of disk accesses is lower,
but the network blocking effect dominates due to large message sizes.

Figure 5 shows the mazimum component delays for the same parameter values as in figure 4.
Note that given a value of Pg, the network communication time and the disk transfer time is the
same in both the average case and in the maximum case. The motivation for studying maximum
component delays is that different clients may have different quality of service (QOS) requirements,
whereby some clients may be willing to bear occasional loss or long delays of packets, while others
may have hard deadlines which cannot be missed. In such a situation, in order to provide hard real-
time guarantees for the latter class of clients, it is necessary to design the server so as to minimize
instantaneous large delays, and also to minimize the variation in media data retrieval time due to
variations in server workloads. Accordingly, depending on the client mix, a design that gives slowly
varying maximum retrieval delays at different workloads but higher average retrieval delays may be
preferred over a design that provides lower average retrieval delays but may cause wide variations
in maximum delays over the range of the anticipated workloads.

In this case, at a stream load of 50, Ps = 40 kB experienced the largest total retrieval delay
(Riot), while Ps = 160 kB experienced the smallest total retrieval delay. This is in contrast to the
trend in figure 4, where Ry, increases as the value of Pg increases at a stream load of 50. One
reason for this is that in the average case (figure 4), the network and S node blocking delays (Ng
and Sg respectively) are comparable in magnitude to the fixed delays (N¢ and D respectively) at
a given value of Pg. Hence the variation of Ry, due to variation of Pg is affected by changes in both
Ng and S, as well as by changes in N¢ and D7. On the other hand, in the maximum delay case
of figure 5, changes in Ng and S¢g dominate R, causing changes in N¢ and D7 to have little or
no effect on Ry as the value of Pg is varied. Moreover, at low Ps, Sqg increases faster than it does
at high Ps as the workload is increased. Consequently, a low value of Pg gives larger maximum
delays than a high value of Pg at high stream loads. Note however, that at low stream loads (of
less than 30 streams), as in the average case, smaller values of Ps resulted in lower maximum delay
than larger values of Pg at a given stream load. Both these observations can be explained from the
summary graphs of figure 6, which show the variation of maximum delays due to network blocking
and server queueing with change in the value of Ps, at both low and high stream loads (15 and 50
streams per I node respectively).

With reference to figure 6, observe that at low stream loads, larger the value of Pg, larger is the
value of Ng. On the other hand, at high stream loads, the network blocking effect is more or less

constant as Pg varies; this is so because the network gets saturated. Consider now the queueing

15

Maximum Delay components Maximum Delay components

(Pi=64kB, Ps =40 kB, stripe 4) (Pi=64kB, Ps =80 kB, stripe 4)
800 T T T T T T 700 T T T T T T
750 | n/w communication time (a)] 650 | n/w communication time (a)]
700 b disk transfer time (b)] disk transfer time (b)
disk seek time (c) 600 disk seek time (c) 9
650 [disk rotational time (d) 1 disk rotational time (d)
n/w blocking time (e) 550 [n/w blocking time (e)]
600 F S node queueing delay (f)] S node queueing delay (f)
500 1
550
500 450 1
= 450 = 400 - b
E E
o 400 o 350 | 1
£ £
= 350 = 300 F]
300 250 [E
250
200 1
200
150 1
150
Lf]
100 100
e
50 50 d]
) oLa b) ¢
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per | node Number of streams per | node
Maximum Delay components Maximum Delay components
(Pi=64kB, Ps =120 kB, stripe 4) (Pi=64kB, Ps =160 kB, stripe 4)
700 T T T T T T T T 700 T T T T T T T T
650 n/w communication time (a) 9 650 n/w communication time (a) 9
disk transfer time (b) disk transfer time (b)
600 disk seek time (c) 9 600 disk seek time (c) 9
disk rotational time (d) disk rotational time (d)
550 [n/w blocking time (e)] 550 [n/w blocking time (e)]
S node queueing delay (f) S node queueing delay (f)
500 1 500 1
450 1 450
_. 400 4 . 400
[%2) [%2)
E E
o 350 1 & 350
£ £
F 300 [17 300
250 1 250
200 1 200
150 1 150
f
100 1 100
e
50 [g 1 50
c|
0 [a b 0
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per | node Number of streams per | node

Figure 5: Effect of varying frequency of fetching on maximum delays. The graphs show the max-
imum server delays as a function of the number of streams supported per interface node for 6 1
nodes, 35 S nodes, stripe factor of 4. The 4 graphs are for server request sizes of 40 kB, 80 kB, 120
kB and 160 kB respectively.

16

Effect of Ps on Maximum blocking times (Low load) Effect of Ps on Maximum blocking times (High load)
(Pi=64KkB, stripe =4) (Pi=64KkB, stripe =4)

125.0 400.0
—— S node queueing delay —— S node queueing delay
---- n/w blocking time 350.0 ---- nlw bloclflr/'ng }l[ne]
100.0 - A
300.0
250.0
@ @
E £
Py o 200.0 -
£ £
[i~
150.0
100.0 -
25.0 - i
50.0 - i
0.0 - . 0.0 L |
40.0 80.0 120.0 160.0 40.0 80.0 120.0 160.0
Ps (kBytes) Ps (kBytes)

Figure 6: Summary of Effect of varying frequency of fetching on maximum S node queueing and

network blocking delays at low and high loads

delay at the servers. At low stream load, the queueing delay for Pg = 40 kB is lower than for
Ps = 160 kB, while that for Ps = 80 kB and 120 kB is lower than that for Ps = 40 kB. For low
Ps and low stream load, the disk is idle most of the time, and hence the delay seen by a service
request is low. At high Pg and low stream load also the disk is idle most of the time; however since
the transfer time increases, the queueing delay increases. On the other hand, at low Ps and high
load, the disk is highly utilized; moreover, the frequency of service requests is high. Since the disks
spend a lot of the time seeking and rotating, Sg for Ps = 40 kB is very high. Increasing the value
of Pg at high load results in greater Sg than in the case of high Pg and low load, but the value of
Sq is lower than it is in the case of low Ps and high load. This is so because the frequency of disk
fetches is lower at high Pg, hence disk utilization is lower. In conclusion, we note from figure 5,
that for Ps = 80 kB, the sum of the dominant component delays in the maximum case is close to
minimum for both low and high stream loads. This suggests that, for the range of values of stripe

fragments studied, Ps = 80 kB is a good operating point.

5.2 [Effect of Stripe factor

In the second set of experiments, we fixed the total amount of data retrieved per service round for
each stream, and varied the stripe factor. Thus, the value of Ps varies so that the total amount
of data retrieved is constant. In other words, the size of the stream buffer at the interface nodes

(Br) is fixed for each stream. The same configuration of 6 I nodes and 35 S nodes was used. As

17

before, we collected the average and the maximum component delays as a function of the number
of streams served per interface node. Figure 7 shows the results for a stream buffer size of 640
kilobytes and stripe factors of 2, 4, 6 and 8. This corresponds to Pg values of 320, 160, 106 and 80
kilobytes respectively.

In this case we observe that in general, smaller the stripe factor, larger is the total delay for a
given number of streams. This is due to the fact that low stripe factor implies large S node request
size, which in turn implies larger disk transfer and network communication time. An increase in
these times increases Ry:. Also, observe that for the low stripe factor of 2, the network blocking
time in general is higher than the network blocking time for higher stripe factors. This can be
attributed to the large message size (320 kB) for this stripe factor as compared to the message sizes
for higher stripe factors.

Figure 8 shows the maximum component delays for the same configuration as above.

In this case, we see that the values of network blocking time (Ng) and S node queueing delay
(S¢) are much greater than those of the other delays. Hence, the variations in the other delays
due to changes in stripe factor are negligible in comparison to the variations in the blocking delays.
For a stripe factor of 2, Ng is more or less constant over the range of stream loads. This can be
attributed to the large message size of 320 kB which causes extensive blocking irrespective of load
patterns. On the other hand, for a stripe factor of 8, Ng is low for stream loads below 35 streams,
and then increases rapidly. With stripe factor 8, the messages are smaller (80 kB) as compared to
the message size for stripe factor 2 (320 kB). Although the number of messages in an interval of
time equal to a service round is greater for higher stripe factors, their smaller size results in smaller
maximum delays. However, at higher stream loads, the performance penalty due to the increased
number of messages outweighs the advantages of smaller message size. This is so because each
message requires scheduling, processing and buffering (copying) overhead. At high loads, these
overheads for the larger number of messages cause higher maximum network delays.

The variation of the maximum network and S node queueing delays as a function of stripe factor
is depicted in figure 9.

The graph on the left is for a relatively low stream load per interface node (15 streams,) while
the graph on the right is for a higher load (50 streams). In both cases, we observe that Ng is
greater than Sq. Sg varies little over the range of stripe factors. The reason for this behavior is
that the total amount of data retrieved in a service round for a stream is constant, hence it lasts for
approximately the same time at the interface node during playout. Consequently, the frequency of
requests to the S nodes for any given stream is the same in all four cases. Higher values of stripe
factor give a slightly greater Sq; this is so because the number of 5 nodes associated with a stream

increases, thus increasing the scheduling and processing delay of media retrieval. As explained

18

Average Delay components

64 kB, Ps =320 kB, stripe 2)

Average Delay components
(Pi=64kB, Ps =160 kB, stripe 4)

200 T T 200 T T T T T
n/w communication time (a) n/w communication time (a)
180 - disk transfer time (b) 180 disk transfer time (b)
disk seek time (c) disk seek time (c)
disk rotational time (d) disk rotational time (d)
160 - n/w blocking time (e) 160 n/w blocking time (e)
S node queueing delay (f) S node queueing delay (f)
140 140
120 120
@ @
E E
o 100 o 100
£ £
[[
80 80
60 60
40 40
20 20
0 0
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per | node Number of streams per | node
Average Delay components Average Delay components
(Pi=64kB, Ps =106 kB, stripe 6) (Pi=64 kB, Ps =80 kB, stripe 8)
200 T T T T T T T T 200 T T T T T T
n/w communication time (a) n/w communication time (a)
180 disk transfer time (b) 180 disk transfer time (b)
disk seek time (c) disk seek time (c)
disk rotational time (d) disk rotational time (d)
160 n/w blocking time (e) 160 n/w blocking time (e)
S node queueing delay (f) S node queueing delay (f)
140 B 140 B
120 1 120 1
@ @
E E
o 100 41 o 100 B
£ £
[[
80 - q
60
40
20
0
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55

Number of streams per | node Number of streams per | node

Figure 7: Effect of stripe factor on average delays. The graphs show the average server delays as
a function of the number of streams supported per interface node for 6 I nodes, 35 S nodes, and
stripe factors of 2, 4, 6 and 8. The corresponding values of Pg are 320 kB, 160 kB, 106 kB and 80
kB respectively.

19

Maximum Delay components Maximum Delay components

(Pi=64 kB, Ps =320 kB, stripe 2) (Pi=64kB, Ps =160 kB, stripe 4)
600 : : : : : : : : 600 : : : : : :
550 [n/w communication time (a) 1] 550 [n/w communication time (a) 1]
disk transfer time (b) disk transfer time (b)
disk seek time (c) disk seek time (c)
500 - disk rotational time (d)] 500 - disk rotational time (d)]
n/w blocking time (e) n/w blocking time (e)
450 S node queueing delay (f) 450 S node queueing delay (f)
400 400
350 350
m m
E E
o 300 o 300
£ £
= =
250 250
200 200
150 150
100 100
50 50
0 0
(0] 5 10 15 20 25 30 35 40 45 50 55 (0] 5 10 15 20 25 30 35 40 45 50 55
Number of streams per | node Number of streams per | node
Maximum Delay components Maximum Delay components
(Pi=64 kB, Ps =106 kB, stripe 6) (Pi=64 kB, Ps =80 kB, stripe 8)
600 : : : : : : : : 700 : : : : : :
550 [n/w communication time (a) 1] 650 n/w communication time (a) 9
disk transfer time (b) disk transfer time (b)
disk seek time (c) 600 disk seek time (c) 9
500 - disk rotational time (d)] disk rotational time (d)
n/w blocking time (e) 550 [n/w blocking time (e)]
450 S node queueing delay (f) S node queueing delay (f)
500 + B
400
450]
350 400 L]
m m
E E
o 300 o 350 B
£ £
= =
250 300 E
250 B
200
200 B
150 f
150 B
100
100 B
e
50
50 B
d
0 b A —L—i
(0] 5 10 15 20 25 30 35 40 45 50 55 (0] 5 10 15 20 25 30 35 40 45 50 55
Number of streams per | node Number of streams per | node

Figure 8: Effect of stripe factor on maximum delays. The graphs show the maximum server delays
as a function of the number of streams supported per interface node for 6 I nodes, 35 S nodes, and
stripe factors of 2, 4, 6 and 8. The corresponding values of Pg are 320 kB, 160 kB, 106 kB and 80
kB respectively.

20

Effect of stripe factor on Maximum blocking times (Low load) Effect of stripe factor on Maximum blocking times (High load)

(Pi=64kB) (Pi=64kB)
500.0 T T 500.0 T
—— S node queueing delay —— S node queueing delay
450.0 - ---- n/w blocking time 1 4500 ---- n/w blocking time]
400.0 4 4000 - |
350.0 4 3500 }
3000 | 1 3000]
)) -
£ £ e
< 250.0 | 1% 2500 L--]
£ £
= =
200.0 £ R 200.0 ~ R
150.0 [o1 1s00 \/
100.0 B 100.0 B
50.0 F B 50.0 B
0.0 L . 0.0 L |
2.0 4.0 6.0 8.0 2.0 4.0 6.0 8.0
Stripe factor Stripe factor

Figure 9: Summary of Effect of stripe factor on maximum S node queueing and network blocking

delays at low and high loads

above, increasing the stripe factor causes N to decrease at low stream loads, while increasing the

stripe factor causes Ng to increase at higher stream loads.

5.3 Configuration tradeoffs

In a third set of experiments, we investigated the tradeofls involved in varying the ratio of interface
nodes to server nodes, given a certain number of total nodes. We used a total of 41 nodes, with
stripe factor of 4 and a Pg value of 64 kB. In the first case, the server was configured as 8 I nodes
and 33 S nodes, while in the second case, it was configured as 6 I nodes and 35 S nodes. Thus the
ratio of the number of S nodes to the number of I nodes was approximately 4:1 and 6:1, respectively.
Figure 10 shows the component delays as a function of stream load for the two cases. We observe
that in the former case, the S node queueing delay is the largest individual component, while in
the latter case, the network blocking time is the largest component. This is because the number of
S nodes to store media data decreases in the first case, while at the same time the total number of

streams that must be served increases. Hence the server nodes become the throughput bottleneck.

6 Exploiting Data Access Patterns

It is natural that certain objects in a database are accessed more frequently than other objects. For
example, in a video-on-demand application, it is highly likely that the demand for newly released

movies will be higher than that for older movies. We present two modifications of the basic retrieval

21

Average Delay components Average Delay components

(Pi=64 kB, Ps = 160 kB, stripe 4, ratio of S nodes to | nodes = 4:1) (Pi=64kB, Ps = 160 kB, stripe 4, ratio of S nodes to | nodes = 6:1)
T T T T T T T T T T T T T T T T T T T T

225 225
n/w communication time (a) n/w communication time (a)
200 |+ disk transfer time (b) 4 200 |+ disk transfer time (b) 4
disk seek time (c) disk seek time (c)
disk rotational time (d) disk rotational time (d)
175 n/w blocking time (e) 175 [n/w blocking time (e) 1
S node queueing delay (f) S node queueing delay (f)
150 150 - B
% 125 % 125 - 4
E E
[<] [<]
£ £
= 100 = 100 B

75 75
50 50
25 25
00 5 10 15 20 25 30 35 40 45 50 55 00 5 10 15 20 25 30 35 40 45 50 55

Number of streams per | node Number of streams per | node

Figure 10: Iffect of the ratio of number of S nodes to number of I nodes for the same total number

of nodes. Figure on the left is for a ratio of 4 : 1, while that on the right is for a ratio of 6 : 1

algorithm that address this issue. The basic algorithm does not take frequency of data access into

account, while the next two exploit this feature to reduce the response time to new requests.

6.1 Remote Disk Stream Scheduling Algorithm (RDSS)

In this algorithm, each video stream is scheduled by explicitly retrieving stripe fragments from
the S nodes. In this approach the I/O scheduler takes no advantage of the possibility that the
same multimedia object is being used by multiple users simultaneously. Consequently, when many
objects have this reference pattern, this policy will create excess interconnection-network and disk

traffic. However, it is the simplest to implement.

6.2 Local Disk Stream Scheduling Algorithm (LDSS)

This algorithm and the next one depend on being able to detect that some objects are being accessed
more frequently than others. This function can be performed by the object manager node (node
A in figure 2). Since all new requests for streams come to this node, it can log the object access
patterns over a specified time window, A;. If any object is accessed at a rate above a threshold,
Thpop, then that object is classified as a popular object.

Having identified an object as being popular, when the next request for that object comes in,
the stripe fragments are retrieved from the § nodes in the usual way. However, in addition to

sending packets of size Pr to the client, the stripe fragments retrieved from the 5 nodes are written

22

to the local disk at the corresponding I node. Thus, when the next request for the object comes
in, the object can be streamed from the local disk of the I node. This has the benefit of reducing
interconnection-network and (.5) node disk traffic, and also improving the overall response time of
the system. Note that the overhead of storing the stripe fragments on local disk is marginal, since

disk writes are non-blocking and can proceed in the background.

6.3 (Local) Memory Stream Scheduling Algorithm (LMSS)

This algorithm goes a step further in reducing system response time for popular objects. In this
case, a popular object is stored on the I node backing store as in the LDSS scheme. In addition,
the first few packets of the object are stored in the main memory of the I node, so that when a
request comes in, it can be served immediately once it has been accepted.

In both the LDSS and LMSS schemes, it is also necessary to keep track of when the frequency
of access of a object falls below the threshold separating popular object and other objects. In that
case, the disk space occupied by that object at the I node can be used to store another popular

object.

6.4 Comparison of RDSS, LDSS and LMSS schemes

We noted the performance of the algorithms for a server configuration of 6 interface nodes and
24 server nodes, and a stripe factor of 4. The composition of the requests was varied as follows
: starting from requests for unique media objects, the percentage of requests for the same ob-
ject was successively increased. Figure 11 shows the maximum number of streams that could be
simultaneously supported using each of the three policies.

We observe that for a low percentage of requests for the same object, the RDSS algorithm
outperforms the other two algorithms. This is so because in the latter two cases we allocate a
dedicated I node for the popular object. For a low percentage of requests for the popular object,
the dedicated node is underutilized : it sources less streams than its full capacity, while a normal
I node in its place could have sourced the maximum number of streams that such a node can
source. With increasing amounts of requests for the same object, however, the LDSS and LMSS
algorithms outperform the RDSS algorithm as they reduce the load on the server nodes caused
by frequently accessing the same object. Between the LDSS and LMSS algorithms, the latter
clearly outperforms the former for different values of the percentage of requests for a popular object.
Lastly, the performance of the RDSS algorithm deteriorates rapidly as the percentage of requests
for the popular object is increased, due to the corresponding increase in the load of the S nodes on

which the popular object is stored.

23

320 ‘

RDSS —~—
300 | LDSS
LMBS 6
280 B o .
s 260 | e
Iz 240
S 220
2 200 |
180
160 L L L L L
0 5 10 15 20 25 30

% requests for same object

Figure 11: Maximum number of streams that can be supported for each algorithm for 6 I nodes

and 24 S nodes, for varying number of requests for the same object, on the Intel Paragon

7 A Dynamic Admission Control Algorithm

In this section we discuss how dynamic knowledge of server workload can be used to develop an
admission control algorithm for accepting client requests. When a client requests a stream from the
server, the server commits to servicing the client only if it can guarantee the real time bandwidth
required by the new stream, while at the same time continuing to serve existing streams without
degradation in service. The subsystem of the server’s software that is responsible for this decision
is called the admission control policy.

With reference to the RDSS scheme, equation 2 gives the average theoretical time to retrieve
Pg bytes from a 5 node. However, this equation does not take into account the network and 5
node blocking times, which have been shown to be critical in determining the retrieval time. To
take this effect into account, the server can be modeled abstractly as a weighted undirected bipartite
graph.citett G = (1,5, F'), where [is the set of interface nodes, S is the set of server nodes, and £
is the set of edges connecting nodes in I to nodes in 5. An edge connecting nodes 7 and j has a
weight w;;, whose value is calculated as explained below. Given this model, an interface node can

accept a new client request if the following conditions are satisfied :

7.1 Sufficient Buffer Space

If an I node is serving n streams, and By, , is the total buffer space at the interface node (used as

well as unused), then in order to start serving a new stream request , M, there should be sufficient

24

buffer space for the new stream :

BItot > Z BI] —I_ BIM (4)

=0

7.2 Sufficient Retrieval Capacity

The weight w;; of edge 7 of the graph G' = (I, 9, IV) represents the average time to retrieve Ps bytes
from a server node under existing server workload i.e. at the time of invocation of the admission
control algorithm. This is a more accurate estimation of retrieval time than ¢;, of equation 2, which
gives the average retrieval time in the absence of blocking effects. In order to estimate the value
of w;;,two possibilities exist. The candidate I node may already be retrieving fragments (in the
course of serving existing streams) from some or all of the S nodes storing the data of the new
stream. In that case, it can directly estimate the value of w;; for the connection to server node
S; by using past history (for example, the average of the last m time delays to retrieve fragments
from S;). For the remaining S nodes storing the new stream’s data, communication is required.
FEach server node keeps track of the actual time (including the queueing time) taken to retrieve the
last m stripe fragments. The average of these m values gives the average fragment retrieval time at
that S node. The second component that contributes to w;; is the interconnection network delay.
It is the sum of the time to send a request to the S node (é,,) and the time to transfer Pg bytes
over the network (inclusive of the network blocking time). The candidate I node sends a dummy
request to the remaining 5 nodes storing the requested stream. Each 5 node sends a dummy data
packet of size Pg to the I node. The round trip time then gives the network cost of retrieval. In
addition, each 5 node sends the estimated retrieval time in the dummy message to the I node.
This time, when added to the measured network time, gives the value of w;;.

The condition to be satisfied for the retrieval capacity can now be stated. The candidate I
node determines the value of w;; for each of the S server nodes (recall that S is the stripe factor of
a stream) storing the requested streams. For example, figure 12 shows node I (candidate node)
trying to determine if it can accept a request for a stream stored on nodes 51, 53, 54, and Sg.

An interface node incurs operating system overhead due to sending and receiving packets,
copying data and scheduling transfers. Let the net operating system overhead at the candidate [
node be denoted by é,,. Recall that 65 denotes the time for which the data retrieved in a service
round lasts at an interface node. Then, a candidate interface node ¢ can accept a request for a new

client stream if, and only if, the maximum edge weight among all the j server nodes on which the

25

I3 82
L, S3

Sy
'3 85

Figure 12: Abstract model of the server - a bipartite graph with two sets of nodes (I and 5), with
edge weights representing the time to retrieve Pg bytes from a server node. Figure shows admission
control policy trying to determine if node I can accept a client request for sourcing a stream whose

data is stored on nodes 51, 53, 94, and Sg.

new stream’s data is striped does not exceed the permissible retrieval time :
max(w;;) < bs — boy (5)

The cost of using a dynamic admission control policy such as this one is the overhead of main-
taining history of data retrieval delays and communication costs between server nodes to determine
retrieval delay when no history exists. Consequently, the length of the interval over which history
is maintained is a crucial design parameter. We are in the process of determining suitable values

for this parameter.

8 Conclusions

We now summarize the tradeoffs involved in choosing values for the design parameters for a media-

on-demand server.

1. Buffering requirements vs. Frequency of data retrieval.
Given a stripe factor, the buffer space needed at an I node to source a client stream is inversely
proportional to the frequency of media retrieval from the S nodes. Smaller the buffer space
available at an I node for a stream, smaller is the size of the stripe fragments. The average

total retrieval time was found to be directly proportional to the value of Pg. While small

26

values of Pg have the advantages of low buffering requirements and low average total retrieval
time, they give the worst mazimum retrieval times at high stream loads. Large values of Pg
result in lower variation in both the average as well as total retrieval times at both low and
high loads, and will thus be attractive if sufficient buffer space is available and clients require

a uniform (high) quality of service under all load conditions.

. Effect of varying stripe factor

In practice, the stream buffer space at an I node will be limited. Note that each stream that
an I node has to source requires a stream buffer. Hence, smaller the buffer per stream, larger
is the number of streams that the server can source. Given a stream buffer of a certain size,
there is a tradeoff in the choice of the stripe factor used. We observed that larger the stripe
factor, greater is the parallelism of data retrieval and lesser is the average total retrieval time
for a stream. A high stripe factor implies that the total number of messages flowing through
the network and the number of S nodes serving a given stream increases. This increases the
processing, scheduling and buffering overheads. Consequently, high stripe factors result in

high mazimum blocking delays at high stream loads.

. Ratio of S nodes to I nodes

Economic factors can limit the total number of nodes available to the designer of a multimedia
server. Given a fixed number of nodes, interesting tradeoffs are possible in designating the
nodes as server nodes or interface nodes. Since it is the interface nodes that actually source
the client streams, it is desirable that their number be large, so that the total streaming
capacity of the server is high. On the other hand, since it is the server nodes that actually
store the media data, it is desirable that their number be large also. We showed how a low S
to I ratio resulted in higher average total retrieval time compared to a high S to I ratio. We
saw that the S node queueing delay is much higher for a low S/I ratio than it is for a high
S/1 ratio. Given a fixed total number of nodes and a certain ratio of S nodes to I nodes, the
designer can increase the ratio so that more storage space is available. Although the total
number of streams that the server can source will decrease, the designer can afford to choose
disks with lower performance so that the same quality of service can be guaranteed to clients

at a lower net server cost.

. Caching Tradeoffs
It is natural to assume that all the data objects in a media-on-demand database will not
be accessed with the same frequency. The LDSS and LMSS scheduling schemes showed the

benefit of being able to dynamically reconfigure the server so that an I node also becomes

27

a S node. This could be of use in cases where some media objects are accessed with a high
frequency. The throughput of the server can then be increased by migrating the frequently
accessed media object from the S nodes on which it is stored to local disk(s) at an I node.
The I node could then be dedicated to serving requests for the popular media object. An
even better gain in performance is attained if it is possible to store a substantial part of
the data of the popular object in main memory at the interface node. The price that must
be paid for the performance gain is operating system overhead and increased complexity of
scheduling software for trapping access patterns, migrating and storing the popular object;
the possible need for expensive high-performance disk arrays at the interface nodes, and the

need for larger main memory at the interface nodes.

In this paper we have investigated and evaluated the effects of varying the design parameters
in a media-on-demand server. We have shown that different tradeofls are possible by choosing
different values for these parameters. We should how data access patterns can be exploited to
improve server throughput. A dynamic admission control policy that takes existing workload into
account was developed. The different components of server operation affect each other in complex
ways. In conclusion, we note that the choice of values for the parameters is guided by quality of
service requirements of clients, anticipated and actual load conditions, access patterns of clients,

quantity and quality of server resources, and economic considerations.

References

[BCG+92] P.B. Berra, C.-Y. Chen, A. Ghafoor and T. Little. Issues in networking and data man-
agement of distributed multimedia systems. In proceedings of the First International

Symposium on High Performance Distributed Computing, September 1992.

[RaV92] P. V. Rangan and H. Vin. Efficient storage techniques for digital continuous multime-
dia. IEFFE Transactions on Knowledge and Data Fngineering , Vol. 5, No. 6, August

1993.
[Lan94] J. Lane. ATM knits voice, data on any net. IEFFE Spectrum, February 1994.
[Gal91] D. Le Gall. MPEG: a video compression standard for multimedia applications. Com-

munications of the ACM , April 1991.

[ReW93] A. Reddy and J. Wyllie. Disk-scheduling in a multimedia I/O system. Proceedings of
the 1st ACM Intl. Conference on Multimedia, August 1993, pg. 225.

28

[ReW94]

[RVRO2]

[GhR93]

[A0G92]

[PRP94]

[LV94]

[VG494]

[DK+92]

[Int93]

[Per94]

[Aok94]

[Hwa93]

[KJ+84]

A. Reddy and J. Wyllie. I/0 issues in a multimedia system. IFEFE Computer, March
1994.

P. V. Rangan, H. Vin and S. Ramanathan. Designing an on-demand multimedia ser-

vice. IEFE Communications, Vol 30, No. 7, July 1992.

S. Ghandeharizadeh and L. Ramos. Continuous retrieval of multimedia data using
parallelism. IEFE Trans. on Knowledge and Data Engineering, Vol. 5, No. 4, August
1993.

D. Anderson, Y. Osawa and R. Govindan. A file system for continuous media. ACM
Trans. on Computer Systems, Vol. 10, No. 4, November 1992.

C. Papidimitriou, S. Ramanathan and P. V. Rangan. Information caching for delivery
of personalized video programs on home entertainment channels. Proc. of the Intl

Conference on Multimedia Systems and Computing, May 1994.

T. Little and D. Venkatesh. Prospects for interactive video-on-demand. IEFE Multi-
media, vol. 1, number 3 (Fall 1994).

H. Vin, A. Goyal, et. al. An observation-based admission control algorithm for multi-
media servers. Proc. of the Intl. Conference on Multimedia Systems and Computing,

May 1994.

A. L. C. Drapecu, R. Katz, G. Gibson, et. al. RAID-II: a scalable storage architecture
for high-bandwidth network file service. University of California at Berkeley technical
report UCB:CSD-92-672, 1992.

Intel Corporation. Paragon OSF/1 User’s Guide, Intel Supercomputer Systems Divi-
sion, February 1993.

T. Perry. Technology 1994: Consumer Electronics. IEFFE Spectrum, January 1994, pg.
30

T. Aoki. Digitalization and integration portend a change in life-style. IEEF Spectrum,
January 1994, pg. 34.

K. Hwang. Multiprocessors and multicomputers. Advanced Computer Architecture:

Parallelism, Scalability, Programmability. , McGraw Hill, 1993.

M. McKusick, W. Joy, S. Leffler and R. Fabry. A fast file system for UNIX. ACM
Transactions on Computer Systems, 2(3), August 1984.

29

[NiM93]

[HPC94]

[StoR6]

[DeG92]

[RoC94]

[MTRO4]

[Liu68]

L. Ni and P. McKinley. A survey of wormhole techniques in direct networks. IFEF
Computer, February 1993.

HPCwire (electronic magazine), article number 4097, May 1994.

M. Stonebraker. The case for shared-nothing. Database Engineering, Vol. 9, No. 1,
1986.

D. DeWitt and J. Gray. Parallel database systems: the future of high-performance
database systems. Communications of the ACM ., Vol. 35, No. 6, June 1992.

J. Rosario and A. Choudhary. High-performance 1/O for parallel computers: problems
and prospects. IEFE Computer, March 1994.

P. McKinley, Y. Tsai and D. Robinson. A survey of collective communication in
wormhole-routed massively parallel computers. Technical Report MSU-CPS-94-35,
Dept. of Computer Science, Michigan State University, June 1994.

C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill Book Company,
1968.

30

	Syracuse University
	SURFACE
	1995

	An Evaluation of Design Tradeoffs in a High Performance Media-on-Demand Server
	Divyesh Jadav
	Chutimet Srinilta
	Alok Choudhary
	P. B. Berra
	Recommended Citation

