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Luca Giomi,1 M. Cristina Marchetti,1 and Tanniemola B. Liverpool2

1Physics Department and Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
2Department of Mathematics, University of Bristol, Clifton, Bristol BS8 1TW, U.K.

(Dated: May 12, 2008)

We study the dynamical properties of active polar liquid crystalline films. Like active nematic
films, active polar films undergo a dynamical transitions to spontaneously flowing steady-states.
Spontaneous flow in polar fluids is, however, always accompanied by strong concentration inhomo-
geneities or “banding” not seen in nematics. In addition, a spectacular property unique to polar
active films is their ability to generate spontaneously oscillating and banded flows even at low
activity. The oscillatory flows become increasingly complicated for strong polarity.

Active materials are a new class of soft materials main-
tained out of equilibrium by internal energy sources.
There are many examples in biological contexts, includ-
ing bacterial colonies [1], purified extracts of cytoskeletal
filaments and motor proteins [2], and the cell cytoskele-
ton [3]. A non-biological example is a layer of vibrated
granular rods [4]. The key property that distinguishes ac-
tive matter from more familiar non-equilibrium systems,
such as a fluid under shear, is that the energy input that
maintains the system out of equilibrium comes from each
constituent, rather than the boundaries. Each active par-
ticle consumes and dissipates energy going through a cy-
cle that fuels internal changes, generally leading to mo-
tion. The experimental systems studied to date typically
consists of elongated active particles of two types: polar
particles, with a head and a tail, and apolar ones that
are head-tail symmetric. Active suspensions can then
exist in various liquid crystalline states, with novel struc-
tural and rheological properties [5, 6]. Apolar particles
can form phases with nematic order, characterized by a
macroscopic axis of mean orientation identify by a unit
vector n and global symmetry for n → −n, as in equilib-
rium nematic liquid crystals. Polar particles can order in
both nematic and polar phases. The polar phase is again
characterized by a mean orientation axis p, but p 6= −p.
The protein filaments which are the major component of
cell extracts are generally polar and these extracts can
therefore have both nematic and polar phases.

Conventional liquid crystals exhibit a rich non-
equilibrium behavior when subject to external forcing,
such as shear or applied magnetic and electric fields. This
includes transitions to stable statically distorted defor-
mations of the director field (Freedericksz transition [7]),
shear banding [8], and even the onset of turbulent and
chaotic behavior in the presence of shear [9]. Active liq-
uid crystals exhibit a similar wealth of phenomena due
to internal forcing, i.e., spontaneously. A striking prop-
erty of active nematic liquid crystal films is the onset
of spontaneous flow above a critical film thickness first
identified by Voituriez et al [10]. This phenomenon is
analogous to the Freedericksz transition of a passive ne-
matic in an applied magnetic field, but the flowing state

is driven by the internal activity of the system - hence the
name. This prediction was obtained by analytical stud-
ies of the phenomenological hydrodynamic equations of
an an active nematic film in a one-dimensional geome-
try. More recently, Marenduzzo et al [11] have employed
hybrid lattice-Boltzmann simulations to study the active
nematic hydrodynamics in both 1D and 2D geometry and
have mapped out the phenomenon in parameter space.

In this letter we show that active polar fluids exhibit
an even richer behavior. First, like active nematics, po-
larized active liquid crystals exhibit steady spontaneous
flow. Unlike active nematics, however, where the filament
concentration remains practically uniform in the sponta-
neously flowing state, spontaneous flow in polar fluids
is accompanied by “concentration banding”, i.e., a sharp
gradient in the concentration of filaments across the film.
The concentration banding is due to active couplings of
concentration gradients to the polar director in the hy-
drodynamic equations that are allowed only in fluids with
polar symmetry. Upon increasing the magnitude of these
polar couplings, the steady state becomes unstable and
the system undergoes a further transition to a dynamic
state with bands of oscillating concentration and orienta-
tion. In the oscillatory regime, travelling bands nucleate
and oscillate from one end of the film to the other. For
even larger couplings the oscillatory behavior becomes
increasingly complex with the appearance of multiple fre-
quencies with incommensurate ratios between the periods
of the orientational and concentration oscillations.

Hydrodynamic equations for a two component ac-
tive suspension have been written down phenomenologi-
cally [12] and derived from a microscopic model [14]. The
relevant hydrodynamic variables are the concentration c
of filaments and the total density ρ and momentum den-
sity g = ρv of the suspension, with v the flow velocity.
We consider an incompressible film, with ρ = constant
and ∇ · v = 0, and macroscopic dimensionless polarity
P = |P|p, with direction characterized by a unit vector
p = (cos θ, sin θ), the polar director.

The hydrodynamic equations for two-component po-

lar suspensions have been derived elsewhere by coarse-
graining a microscopic model of the dynamics of inter-
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acting motors and filaments [14]. The active suspension
is an intrinsically non-equilibrium system and cannot be
described by a free energy. However, for clarity of pre-
sentation we introduce here the equations phenomeno-
logically and write all equilibrium-like terms (i.e., those
terms that are also present in an equilibrium polar sus-
pension) in terms of derivatives of a non-equilibrium ana-
logue of a free energy, given by [15]

F =

∫

r

{
C

2

(
δc

c0

)2

+
a2

2
|P|2 +

a4

4
|P|4

+
K1

2
(∇ ·P)

2
+

K3

2
(∇ × P)

2

+B1

δc

c0

∇ · P +
B2

2
|P|2∇ · P +

B3

3c0

|P|2P · ∇c

}
, (1)

with C the compressional modulus and K1 and K3 the
splay and bend elastic constants, both taken equal to K
below. The last three terms on the right hand side of
Eq. (1) couple concentration and splay and are present
in equilibrium polar suspensions (B1 = B2 = B3 = B
below). The dynamics of the concentration and of the
polar director is described by

∂tc = −∇ ·

[
c(v − β′cℓ2P) + Γ′h− Γ′′

∇

(δF

δc

)]
, (2a)

[
∂t + (v + βcℓ2P) · ∇

]
Pi + ωijPj

= λuijPj + Γhi − Γ′∂i

(δF

δc

)
, (2b)

where ℓ is the length of the filaments, uij = 1

2
(∂ivj +

∂jvi) and ωij = 1

2
(∂ivj − ∂jvi) are the rate-of-strain and

vorticity tensors, and h = −δF/δP the molecular field.
Here Γ, Γ′ and Γ′′ are kinetic coefficients and β and β′ are
active parameters. The equation describing momentum
conservation is written in the Stokes approximation as
∂jσij = 0. The stress tensor σij is the sum of reversible,
dissipative and active contributions, σij = σr

ij +σd
ij +σa

ij .
The reversible part is written in an equilibrium-like form,

σr
ij = −δijΠ−

λ

2

[
Pihj+Pjhi

]
−λδijP·h+

1

2

[
Pihj−Pjhi

]
,

with Π the pressure and λ and λ alignment parameters.
The dissipative part of the stress tensor is written as
σd

ij = ηuij assuming a single viscosity η. Finally, there
are additional stresses induced by activity given by

σa
ij =

c2ℓ2

Γ

[
− δijΠ

a + αPiPj + ℓ2β′′(∂iPj + ∂jPi)
]

.

with Πa the active part of the pressure. There are two
contributions to the active stress tensor. The first (∼ α)
describes active stresses that arise from contractile (if
α > 0) forces induced by activity. This term is present

FIG. 1: (Color online) (a) Sketch of the film geometry. (b-d)
Solutions of Eqs. (3a), (3b) for λ = 0.1, ξ = 0.3, D = 1,
eC = 0.5, ηΓ = 0.5, w = 0.13, eα = 0.08 and variable eβ.

in both nematic and polar liquid crystals and its effects
have been studied before. The second term (∼ β′′) arises
from “self-propulsion” of the active units and is exclusive
to polar systems. The same mechanism is also responsi-
ble for the “convective” terms proportional to β and β′ in
Eqs. (2a) and (2b). For a motor/filament mixture, all ac-
tive contributions are proportional to the mean rate ∆µ
of ATP consumption, which is the internal driving force
for the system. β-type terms have dimensions of veloc-
ity and have been estimated in the microscopic model as
β ∼ m̃u0, with m̃ a dimensionless concentration of motor
clusters and u0 ∼ ∆µ the mean velocity at which motor
clusters step along the filaments [13]. Previous work on
confined active films [10, 11] has been limited to active
nematics with all the β terms equal to zero. Here for
the first time we incorporate the polar active terms and
analyze their role in controlling non-equilibrium effects
in active films. Hereafter we will assume β′ = β′′ = β.

We consider a two-dimensional active polar suspension
with polarization of uniform magnitude and discuss the
dynamics of the hydrodynamic fields c, v and p. For sim-
plicity we set |P| = 1. The film sits on a solid plane at
y = 0 and is bound by a free surface at y = L (Fig. 1a).
The discussion below is easily extended to other bound-
ary conditions. The film extends to infinity in the x di-
rection and we assume translational invariance along x.
The Stokes equation requires ∂yσyy = 0 and ∂yσxy = 0.
The first of these two conditions fixes the pressure in the
film. The second, together with the boundary condition
σxy(L) = 0, requires σxy = constant = 0 throughout the
film. We also assume no-slip boundary conditions at the
substrate, so that vx(0) = 0.

It is convenient to work with dimensionless quantities
by introducing the time scale τ0 = ℓ2/(ΓK). Letting z =
y/ℓ, τ = t/τ0, φ = c/c0 and specializing Eqs. (2a) and
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FIG. 2: (Color online) On the left discrete Fourier transforms
of θ(zℓ = L/2, τ ) (center of the film) for λ = 0.1, ξ = 0.3,

D = 1, eC = 0.3, ηΓ = 0.5, w = 0.13, eα = 0.1 and eβ = 15 (a)
18 (b) and 20 (c). On the right space-time plots of φ(z, τ ).

(2b) to our quasi-one-dimensional geometry, we obtain

∂τφ = ∂z

{
β̃φ2 sin θ + λũ sin θ sin 2θ

+
[
D(1 − ξ sin2 θ) − w cos2 θ

]
∂zφ

}
, (3a)

∂τθ = (1 − w cos2 θ)∂2
zθ + 1

2
w sin 2θ(∂zθ)

2

− φβ̃ sin θ∂zθ + w cos θ∂zφ − ũ(1 − λ cos 2θ) , (3b)

where β̃ = βc0ℓτ0, w = 2ℓB/K, ξ = Γ′2/(ΓΓ′′), and
D = Γ′′C/(c2

0ΓK). The dimensionless rate-of-strain ũ =
2uxyτ0 can be obtained from the condition σxy = 0,

ũ = −
1

2ηΓ + λ2 sin2 2θ

{
λw sin 2θ sin2 θ(∂zθ)

2

+
[
w(1 − λ cos 2θ) − 2λC̃ sin2 θ

]
cos θ∂zφ

−2β̃c0ℓ
2φ2 sin θ∂zθ + α̃φ2 sin 2θ

}
, (4)

where α̃ = αc2
0ℓ

4/(ΓK) and C̃ = ℓΓ′C/(ΓK)2. The hy-
drodynamic equations for a two component active ne-
matic suspension are obtained from the above by letting
β̃ = 0 and w = 0. The terms proportional to w are
also present in passive polar fluids as they arise from the
fact that the polar symmetry allows the coupling propor-
tional to B between splay and density fluctuations. The
terms proportional to β̃ are intrinsically non-equilibrium
polar terms. Finally, the case of an incompressible one-

component nematic fluid, investigated by Voituriez et

al [10] and by Marenduzzo et al [11], can be recovered

from our equations by setting β̃ = w = 0 and assuming
a constant concentration φ.

Eqs. (3b) and (3a) are integrated numerically with
boundary conditions θ(0, τ) = θ(L/ℓ, τ) = 0, ∂zφ(0, τ) =
∂zφ(L/ℓ, τ) = 0 (i.e. jy(0, t) = jy(L, t) = 0). The ini-
tial conditions on θ and φ are chosen as random, with
the constraint 〈θ(z, 0)〉 = 0 and 〈φ(z, 0)〉 = 1 where 〈 · 〉
stands for a spatial average.

Steady spontaneous flow: Both the polar and the apo-
lar systems exhibit a Freedericksz-like transition between
a state where the director field is constant and parallel
to the walls throughout the channel to a non-uniformly
oriented state in which the system spontaneously flows in
the x-direction. The transition can be tuned by chang-
ing either the film thickness or the activity parameter α̃.
Fig 1 shows a numerical solution of Eqs. (3a) and (3b)

for fixed α̃ and variable β̃, with L/ℓ = 10. As the active

velocity β̃ is increased, the maximum tilt θm decreases
and the alignment is progressively restored. Remarkably
the variation in the concentration φ across the film is
significantly stronger than in the apolar case (solid green
curve in Fig. 1) with a relative difference between the
highest and the lowest values up to 50%. This “concen-
tration banding” is a characteristic of polar active sys-
tems. It is a consequence of the active β′ coupling in Eq.
(2a) resulting from self-propelled ‘convection’ of the ac-
tive elements along the local polarization direction. The
varying local polarization angle required for spontaneous
flow therefore leads to an even stronger variation in the
local concentration. Close to the transition, α̃c(β̃), the
coupling between the polar director and concentration
also leads to an asymmetric director profile across the
film. We also point out that in the absence of this polar
active term, there are equilibrium-like gradient couplings
between local director and density. These are, however,
much weaker since they occur at higher order in gradi-
ents. In contrast, the active nematic shows a negligible
concentration gradient even for anomalously large values
of the contractile activity parameter, α̃ ≫ α̃c(β̃).

Spontaneous oscillations: Upon further increasing β̃,
spontaneous oscillations of φ(z, τ) and θ(z, τ) are ob-
tained. The coupled dynamics of the two fields gives
rise to travelling waves of concentration and orientation
bands. Initially only one frequency is observed, but the
oscillations become more complicated as β̃ increases. Us-
ing Fourier decomposition we find that this is due to the
appearance of additional frequencies at different values
of β̃ for concentration and orientation bands (see Fig 2).

A phase diagram in the (α̃, β̃)− plane is displayed in
Fig. 3. It shows transitions between stationary (S) flow,
spontaneous steady flow (SF) and spontaneous periodic
(oscillatory) flow (PF).

We can understand the phase behavior close to a
stationary homogeneous state (φ = φ0, θ = 0, ũ =
0) by expanding θ(z) = δθ+(z)eiωt + δθ−(z)e−iωt and
φ(z) = φ0 + δφ+(z)eiωt + δφ−(z)e−iωt. The boundary
conditions require φ±(z) =

∑∞

n=1
a±

n cos (nπℓz/L) and
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FIG. 3: (Color online) Phase-diagram in the (eα, eβ)−plane.
The points have been obtained numerically using λ = 0.1,

ξ = 0.3, D = 1, eC = 0.3, ηΓ = 0.5, w = 0.13 and L/ℓ =

10. For eβ < eβTP upon increasing eα the system undergoes
a transition between stationary homogeneous state (S) and
inhomogeneous steady flow (SF). Above the “tricritical point”
(TP) the spontaneous flow becomes oscillatory (PF).

θ±(z) =
∑∞

n=1
b±n sin (nπℓz/L). The first unstable modes

are a±

1 , b±1 and a linear stability analysis shows that there
is a steady-state (ω = 0) instability at

α̃c(β̃) =
ηΓ(1 − w)

1 − λ

(
πℓ

φ0L

)2

+
wβ̃ [ηΓ + 1

2
(1 − λ)2]

(1 − λ)(D − w)
,

(5)
to a steady spontaneously flowing state with concentra-
tion banding. Oscillatory modes with frequency ωc ∼
φ0(ℓ/L)(ωβ̃)1/2 appear beyond a “tricritical point” (TP)

α̃TP =
ηΓ(π/φ0)

2(ℓ/L)2(D + 1 − 2w)

1 − λ
,

β̃TP =
(π/φ0)

2(ℓ/L)2(D − w)2

w[1 + (2ηΓ)−1(1 − λ)2]
.

This linearized analysis predicts the positions of the
“phase boundaries” S-SF and S-PF in quantitative agree-
ment with the numerical solution. The boundary SF-PF
has been obtained only numerically. The appearance of
spontaneous oscillations results from the coupled motion
of concentration and director orientation bands due to
both the convective active polar coupling (β) and the
passive polar coupling (w) of director and concentration.

Upon increasing β̃ the oscillatory behavior becomes in-
creasingly complex, but we have not been able to observe
fully fledged chaos for reasonable values of β̃.

We have studied the dynamical properties of thin films
of active polar fluids and found a rich variety of com-
plex behaviors which should be observable experimen-
tally in polar active systems. Using microscopic models
of motor-filament coupling, it was estimated in [13] that
β ≫ α in microtubules/kynesin mixtures, while β ≤ α in
actomyosin systems. This suggests that in-vitro micro-
tubules/kynesin mixtures may be the best candidate for

the observation of the oscillating bands predicted here.
It should, however, be noted that filament treadmilling
also leads to terms with polar symmetry at the contin-
uum level, where in this case β would be proportional
to the polymerization rate [16]. The intriguing possi-
bility that our findings may be relevant to treadmilling
acto-myosin systems and therefore have implications for
lamellipodium dynamics will be explored elsewhere.
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