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Abstract

We simplify the proof by S. Toda [Tod89] that the polynomial hierarchy

PH is contained in BP[EBP]. OUf methods bypass the technical quantifier­

interchange lemmas in the original proof, and clarify the counting principles

on which the result depends. We also show that relative to a random oracle

R, PHR is strictly contained in EBpR .

Keywords Computational complexity, theory of computation, polynomial-time

hierarchy, randomness, oracles.

1. Overvie-w

S. Tocla [Tod89] defined general BP[ .] and EBP[ · ] operators on complexity classes,

and proved that PH ~ BP[EBP] through a series of technical lemmas which interleave

probability amplification and parity counting arguments. By using relativization we

separate and refine these two elements of his proof. We begin by observing that

Tocla's lemma NP ~ BP[EBP] relativizes to any oracle set. Then we use proba­

bility amplification to obtain the following "interchange result": for relativizable

complexity classes A and C which meet some reasonable polynomial-time closure

conditions,

(1)
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Next, by substituting EBP for both A and C in (1), we show that the parity counting

argument in Tocla's succeeding lemmas is accounted for by the theorem of Papadim­

itriou and Zachos [PZ83] that EBpEBP = EBP. Finally, an induction on k shows that

~t ~ BP[EBP] for all k, completing our presentation of Toda's theorem in Section 3.

We interpret (1) as saying that in fairly common circumstances, explicit access to

polynomially many random coin flips is as good as implicit access to exponentially

many random coin flips, when the latter have been "precomputed" into an oracle set

L E BP[C]. In Section 4 we consider a third source of randomness for a computation,

namely treating oracle answers themselves as though they are random coin flips. By

abstracting an argument of Bennett and Gill [BG81], we show that relative to a

random oracle R, PHR C EBpR
. In conclusion we give some related results and open

problems.

2. Definitions

Conventions N denotes the set of natural numbers. We identify each n E N with

the n-th string of {O, 1}* under lexigraphic ordering. A set A is identified with

its characteristic function and predicates are identified with 0-1 valued functions

(where 0 _ false and 1 = true). Uppercase roman letters (exclusive of N) are used

as variables over subsets of N. For each n, Nn denotes {O, 1 }n. (".) stands for

a fixed polynomial-time pairing function, with projection functions 7rl and 7r2; the

pairing function from Rogers [Rog67] will do. We often write R(x,y) for R((x,y)).
For each zEN and each A ~ N, define 1rz (A) := {y : (y, z) E A}.

Our closure conditions below require a notion of "relativized class" which is finer

than the familiar one of a mapping from oracle sets B to classes AB .

Definition 1. A relativized set L is a mapping from sets to sets (i.e., L: 2"1 ~ 2"1). L

is a recursive relativized set if and only if there is an oracle Turing machine (OTM)

M such that for each oracle A, LA = L(MA ) and M A is total. An acceptable

relativized class A is a collection {L i : i EN} of recursive relativized sets. For any

oracle set B, we define AB := {Lf }.

We often specify acceptable relativized classes by collections of oracle Turing

machines. For example, relativized P can be given by a collection {Pi} of deter-
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ministic OTM's such that each Pi is "clocked" to run in some fixed polynomial time

independent of the oracle. Relativized NP is given by a similar collection {Ni }

of clocked nondeterministic OTM's. If one then defines Qi to be an OTM which

accepts an input x if and only if Ni on input x has an odd number of accepting

computations, then the collection { Qi } gives the standard way of relativizing EBP.

Definition 2. Suppose C is a class of sets. A set A belongs to BP[C] if and only if

there is an R E C, a polynomial p, and an E > 0 such that

(Vx)[Prob[y E Np(lxl): A(x) = R(x,y)] 2:: 0.5 + E].

For instance, BP[P] is just BPP, and BP[NP] equals L. Babai's class AM of

languages having 2-round "Arthur-Merlin games" (cf. [NW88]). The notion of

"bounded-error probabilistic parity-P" given by BP[EBP] is restricted, in that the

same polynomial-length sequence of coin flips is used for each branch of a EBP com­

putation, but this notion suffices for Tocla's lemma NP ~ BP[EBP]. Since this

restriction is built into the BP[ · ] operator, it seems evident that the following is the

correct way to relativize BP[C] in general:

Definition 3. Let C be an acceptable relativized class. Then for any oracle set X,

define 'BP[C] relative to X' to be BP[CX ].

The intuitive point is that so long as a polynomial limit is placed on the number

of coin flips allotted, there is no loss of generality in making all the coin flips at

the outset. We leave the interested reader to check that for all X, BPpx (which

is usually defined in terms of polynomial-time NOTMs) equals BP[pX ], and AMx

equals BP[Npx ]. In addition, we note (but do not need) that Definition 3 also

makes BP[C] an acceptable relativized class-on the condition that for every oracle

set X, CX contains all finite sets.

Proposition 4. For any oracle set X, Npx ~ BP[EBpx ].

Proof Sketch. Toda's proof of NP ~ BP[EBP} in [Tod89] relies on a general count­

ing argument of L. Valiant and V. Vazirani [VV86], and on the fact that a product

of integers is odd iff each factor is odd. It uses no details of specific NP or EBP
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languages. This suffices for an inspection that Tocla's proof relativizes to give the

stated result. 0

The next condition, used by Schoning [Sch87] and Tocla, allows one to amplify

probabilities to a great extent.

Definition 5. Given sets A, B ~ N, we say that A polynomial-time majority truth­

table reduces to B (written: A :::;~tt B) if and only if there is a deterministic

polynomial-time precedure which, for each x, constructs a set S(x) of an odd number

of strings such that

x E A ¢=:::> at least half the strings in S (x) are in B.

Proposition 6 ([Sch87]). Suppose C is a class of sets which is closed downward

under ~~tt. Then, for each A E BP[C] and for each polynomial q there is a set

R E C and a polynomial p such that

(Vn)[ Prob[ y E Np(n) : (Vx : Ixl :::; n)[ A(x) = R(x, y)]] ~ 1 - 2-q
(n) ].

Corollary 7. liC is closed downward under ::;~tt, then BP[BP[C]] = BP[C].

Definition 8. Let L be a relativized set, and let p be a polynomial. We say that p

bounds the height of L 's oracle use if and only if, for all x and all distinct A, B ~ N,

A class A of relativized sets has polynomially bounded oracle use if and only if, for

each LEA, there is a polynomial p that bounds the height of L's oracle use.

Definition 9. Suppose A is a class of relativized sets. We say that A is closed

under oracle projections if and only if, for all X ~ N and each A E A, there is an

A E A such that, for all x, zEN,

Furthermore, A is closed under uniform oracle projections if A can be the same for

all oracle sets X.
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To see what is happening in this last definition, think of A and A as being

computed by OTMs M and ii, respectively. Then iix on input (x, z) simulates

M X on input x, except that whenever M would make an oracle query y, M makes

the query (y, z) instead. For well-behaved relativized classes A such as P and EBP,

this simulation (which resembles the S-m-n property; cf. [Rog67]) doesn't depend

on X itself. However, we only know how to make relativized BPP closed under

(nonuniform) oracle projections, owing to the apparent lack of well-behaved oracle

BPP-machines. In point of fact we do not need such uniformity for the proofs in

this paper.

Lemma 10. Relativized P and EBP are closed under uniform oracle projections and

have polynomially bounded oracle use. For any oracle set X, px and EBpx are

closed downward under ~~tt, and in fact under ~~.

Proof Sketch. The first two statements follow from properties of the OTMs { Pi }
for P and { Qi } for EBP given above. The last statement for EBP follows on observing

that the proof given by Papadimitriou and Zachos [PZ83] relativizes to yield: for all

oracle sets X, EBpEl)p
x = EBpx . 0

3. Main Result

We may now state and prove our key counting argument.

Proposition 11. Suppose A is a class of relativized sets which is closed under

oracle projections and which has polynomially bounded oracle use.

Suppose C is a class of sets closed downward under ~~tt-reductjons.

Then, ABP[Cj ~ BP[AC].

Proof. Suppose that A is in A and that B is in BP[C]. We show that AB is in

BP[AC
].

Suppose p is a polynomial that bounds A's oracle use. Since C satisfies the

hypotheses of Proposition 6, it follows that there is aCE C and a polynomial q

such that, for all n,

(2) Prob[ z E Nq(n) : (Vy :fyl ~ n)[B(y) = C(y, z)]] ~ 3/4.
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For each n, define

(3) Zn :== {z E Nq(p(n») : (Vy : Iyl :::; p(n))[B(y) = C(y, z)]}.

By (2) we have that, for all n,

(4)

Since p bounds A's oracle use, it follows from (3) that, for all x,

Hence, by (4), for all x,

(5) Prob[ Z E Nq(p(lxl» : AB(x) = A1f"Z(C) (x )] ~ 3/4.

Now since A is closed under oracle projections, there is an A E A such that for all

x,y E N, AC(x,z) == A7rz (C)(x). So, we can restate (5) as

(6) B -0Prob[ Z E Nq(p(lxl) : A (x) = A (x, z)] ~ 3/4.

Since A E A and C E C, we have that AB is in BP[AC]. o
An immediate corollary is the known result that BPpBPP = BPP. Our proof of

Tocla's theorem now goes through quickly.

Theorem 12 ([Tod89]). PH ~ BP[EBP].

Proof. By Proposition 4, we have that for all oracle sets X, Npx ~ BP[E8px ].

Hence

NpNP C BP[EBpNP]

C BP[EBpBPI61Pl] (since NP ~ BP[EBP])

c BP[BP[EBpEBP]] (by Proposition 11)
C BP[BP[EBP]] (by [PZ83])

c BP[EBP] (by Corollary 7).

By iterating this argument, the theorem follows.

6
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We remark that this proof establishes that BP[EBpBP[EBPl] = BP[EBP], which is

somewhat stronger than the lemma BP[EBP[BP[EBP]]] = BP[EBP] in Tocla's paper.

If V is a relativized class which "incorporates ~~ reductions" in the sense that

V Px = VX for all X, then we have

(7)

Hence EBpBPpEIlP = BP[EBP], and also BPpEilP = BP[EBP]. This gives us equality in

Proposition 11 in the case A = C = EBP. We do not have good general conditions

under which equality holds.

Last, we observe that the proof of Theorem 12 relativizes in a straightforward

manner to give:

Corollary 13. For any oracle set X, PHx ~ BP[EBPX
].

4. Random Oracles

o

The following is essentially an abstraction of the proof of Theorem 5 in [BG81]. Let

Jl be the standard Lebesgue measure on 2N (see [Rog67]); this is analogous to, but

not the same as, the standard measure on the real interval [0, 1]. All the oracle

properties we consider are first-order definable, so that the subsets of 2N they define

are Borel, and hence measurable. Say a property \II (.) holds relative to a random

oracle R if and only if J.l( { R ~ N : 'l!(R) }) = 1.

For short in the proof, we say that a TM M "has the strong-BP property for

an input x and polynomials p,q" if Prob[y E Np(lxJ) : M(x,y)] is either less than
2-q(lxl) or greater than 1 - 2-Q(lxl) .

Theorem 14. Let C be an acceptable re1ativized class which has polynomial bound­

ed oracle use, such that for all X, ex is closed downward under $:~ reductions and

has X itself as a member. Then for a random oracle set R, BP[CR ] ~ CR.

Proof. Let { Qi } be a representation of C by OTMs with corresponding polynomial

bounds { ri } on their oracle use. For every i and polynomial Pi, let Mij be an OTM

which behaves as follows, for any input x and oracle X:

7



Make queries to the first pj(lxl) strings of length ri(lxl + pj(lxl)) + 1

and call the 0-1 string of results y.

Simulate Qf on input (x, y).

Although the relativized language accepted by Mii need not belong to relativized

C, it is true that for all oracle sets A, L(Mi1) E CA
, because L(M i1) :::;~-reduces to

the disjoint union of A and L(Qi)A. (Remark: It does not seem possible to obtain

a ::;it-reduction here.)

Now let k > o. For all i, j, and x define Eijx to be the set of oracles A such

that Qf enjoys the strong-BP property for x and the polynomials Pi and q(lxl) :=

21xl + i + j - k, but Mj on input x disagrees with the answer of the overwhelming

majority for Qt(x, y). Because Qi never queries those strings which are used by Mij

to obtain the bits for y, J.l( E ijx ) :::; 2-Q(lxl). Hence we have

(u .· E·· ) < "" (E··) < '" 2-k • 2-i-j-2Ixl - '"'" 2-k • 2- i - j - n < 2-k
P tJX 'tJX - L.J P l.:JX - L....J - L.J ·

ijx ijx ijn

Now let A fj. UiixEijx. We claim that BP[CA ] = CA. Let L E BP[CA
]. Since CA

is closed downwards under :::;~tt reductions, there is a polynomial Pi and a machine

Qi such that Prob[y E Npj(lxl) : L(x) = Qt(x,y)] ~ 1 - 2-3Ixl . Hence for all x such

that 1xl ~ i + j - k) Qt enjoys the strong-BP property for x) Pj) and i +j - k+2\x\,
and so by choice of ,A, M i1(x) = L(x). Hence, L differs at most finitely from the

language L(Mi1), and so L E CA. This proves the claim.

Since 2-k can be made arbitrarily small, we conclude that the collection of oracle

sets A such that BP[CA ] == CA has measure 1. 0

Corollary 15. Relative to a random oracle R, PHR is strictly contained in EBpR.

Proof. From Theorem 14) we have that PHR ~ EBpR for a random oracle set R.

J. Cai's proof in [Cai86] establishes that for a random oracle set R) EBpR is not

contained in PHR • 0

Definition 16 ([NW88]). For any relativized class C, Almost[C] denotes the class

of languages L such that p({A ~ N : L E CA }) = 1.
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Corollary 17. BP[EBP] ~ Almost[EBP].

Whether equality holds here runs into the problem that a single relativized EBP

computation may access exponentially many bits of the oracle, whereas the BP[EBP]

computations have only polynomially many coin flips. The relativized EBP computa­

tions can be modeled by depth-2 circuits whose bottom level is a single parity gate.

It is interesting to ask whether these can be "fooled" by strong pseudorandom gen­

erators which generate exponentially many bits from a polynomial-length random

seed, along the lines of [NW88] for relativized PH computations.

Open Problem. Does BP[EBP] = Almost[EBP]?

A positive answer would yield yet another proof of PH ~ BP[EBP] using random

oracle sets R, via NpNP ~ BP[EBpBP[EBP1] = BP[EBpEBp
R

] = BP[EBpR] = EBpR =
BP[EBP].

Last, we remark that under the "Random Oracle Hypothesis" of [BG81], PH

would be (strictly) contained in EBP. Our initial reaction is to disbelieve this even

somewhat more than the hypothesis BPP = P. It is interesting to ask how these two

assertions are related. In conclusion, we hope that our results add understanding to

the effect of sources of randomness in polynomial-time computations.

Acknowledgments. We would like to thank Richard Beigel, Ronald Book, and

Seinosuke Toda for helpful comments and suggestions on this work.
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