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Using minimal models for low Reynolds number passive and active rotors in a fluid, we characterize the hydrodynamic interac-
tions among rotors and the resulting dynamics of a pair of interacting rotors. This allows us to treat in a common framework
passive or externally driven rotors, such as magnetic colloids driven by a rotating magnetic field, and active or internally driven
rotors, such as sperm cells confined at boundaries. The hydrodynamic interaction of passive rotors is known to contain an az-
imuthal component∼ 1/r2 to dipolar order that can yield the recently discovered “cooperative self-propulsion” of a pair of rotors
of opposite vorticity. While this interaction is identically zero for active rotors as a consequence of torque balance, we show
that a ∼ 1/r4 azimuthal component of the interaction arises in active systems to octupolar order. Cooperative self-propulsion,
although weaker, can therefore also occur for pairs of active rotors.

1 Introduction

There has been a lot of interest in the properties of individ-
ually propelled particles that take up energy from their en-
vironment and collectively generate motion and mechanical
stresses1. These systems exhibit remarkable collective behav-
ior, quite different from their equilibrium counterparts. One
important class of propelled particles that has received rela-
tively little attention is “rotors”, that is particles that rotate in
a fluid in response to externally applied or internally generated
torques. An external torque is provided for instance by a rotat-
ing magnetic field2–5 applied to particles carrying a magnetic
moment, or by an optical trap6,7. Internally generated torques,
on the other hand, originate from forces exerted by the rotor it-
self on the fluid. We will refer to the first class of rotors driven
by external torques as passive rotors, while the name of active
rotors will be reserved to those that are internally driven. Sev-
eral examples of active rotors are found in the living world, in-
cluding sperm cells8–12, bacteria13–16 and algae17 near a solid
surface. Various artificial swimmers, inspired by their living
counterparts, have also been engineered over the past decade,
and provide realizations of active rotors18–21 . Other examples
of internally driven or active rotors include the rotating motors
found at the basal bodies of cilia and flagella anchored at the
cell membrane22 and ATPase molecular motors embedded in
fluid membranes23. In some cases, it is also possible to ap-
ply an additional external drive to an active swimmer, as with
magnetotactic bacteria in a rotating magnetic field24.

† Electronic Supplementary Information (ESI) available.
a Physics Department, Syracuse University, Syracuse, NY13244, USA; E-
mail: yffily@syr.edu
b Martin A. Fisher School of Physics, Brandeis University, Waltham, MA
02454, USA.

Rotors generally move through a viscous fluid and gener-
ate flow in the fluid. This flow in turn affects the dynamics
of other nearby rotors. The goal of this paper is to charac-
terize the flow field induced by various types of rotors and
the resulting hydrodynamic interactions among them, high-
lighting the differences between active and passive rotors. We
then discuss how the flow field controls the rotors’ dynamics.
We limit our analysis to the case of rotors confined to a two-
dimensional plane with their spinning direction perpendicular
to that plane. This constraint is often realized in experiments
by confining rotors to a liquid/air interface2–5, or a thin layer
of viscous fluid embedded in a different unbounded viscous
fluid25–27, or in the case of many swimming unicellular or-
ganisms simply because they are attracted to a boundary that
in turn triggers the rotational dynamics8,9,13–16.

The main difference between passive and active rotors re-
sides in the nature of the azimuthal component of the flow
they create. Passive rotors transfer external torque to the fluid,
generating a dipolar azimuthal flow that decays as 1/r2, with
r the distance from the rotor. Active rotors do not transfer any
net torque to the fluid, as the torque transmitted from the rotors
to the fluid is balanced by an equal and opposite torque trans-
mitted by the fluid to the rotors. As a result, the 1/r2 dipo-
lar azimuthal component of the flow field is zero for active
rotors. This important distinction has been known for some
time and was first pointed out in a classic paper by Batche-
lor28. More recently, it has been stressed by Lenz and collab-
orators25,26 and by Michelin and collaborators29, but is still
sometimes overlooked in the literature. Our work shows that
while the 1/r2 azimuthal component to the flow field vanishes
as expected for active rotors, the cycle-averaged flow field of
these force-free swimmers does contain a non-zero azimuthal

1–9 | 1

ar
X

iv
:1

10
7.

03
47

v2
  [

co
nd

-m
at

.s
of

t]
  2

6 
O

ct
 2

01
1



in-plane component, although only to octupole order in the
multipole expansion. The corresponding contribution to the
flow field hence decays as 1/r4 rather than as 1/r2 as for pas-
sive rotors.

This finding is an important new result of our work be-
cause the existence of a finite azimuthal interaction alters sig-
nificantly the collective dynamics of the rotors. It is known
that an azimuthal interaction between two passive rotors of
the same vorticity (i.e., spinning in the same direction) re-
sults in the pair revolving around each other along a circular
path, as seen in experiments on externally driven rotors2–4. It
was shown recently by Leoni and Liverpool27 that for two ro-
tors of opposite vorticity the same 1/r2 azimuthal interaction
turns the rotor pair into a self-propelled unit, in that the two
rotors push each other in a common direction. The assump-
tion of a 1/r2 azimuthal interaction made in Ref. 27 seems
to restrict the result to the case of externally driven rotors, al-
though much of the discussion in that paper refers to active ro-
tor. Our work demonstrates that this type of “cooperative self-
propulsion” also occurs for active rotors and arises not from a
∼ 1/r2 azimuthal coupling, that vanishes for force-free parti-
cles, but from the new 1/r4 octupolar contribution to the flow
that we have identified. We also show that for active rotors the
additional attractive and repulsive interactions arising among
pullers and pushers from the radial dipolar component of the
flow field can lead to the formation of a bound self-propelled
pair consisting of two oppositely rotating swimmers.

To highlight the difference between passive and active ro-
tors, in the following we first review known results for the sim-
plest passive rotor consisting of a sphere driven by an external
torque. Then we analyze the flow field and hydrodynamic in-
teractions of a minimal model for an active rotor, consisting a
one-bead swimmer that rotates by pushing on the fluid with a
force oriented at a finite angle to the swimmer’s long axis (see
Fig. 2).

2 Model

We consider rotors moving through a viscous incompressible
fluid in the xy plane and spinning around the z axis. Due to
the small size of the rotors, inertial effects are negligible both
on the dynamics of the fluid and that of the rotors. The fluid is
therefore described in the zero Reynolds number limit where
the flow field u is solution of the incompressible Stokes equa-
tion

η∇
2u−∇p =−f(r) , (1a)

∇ ·u = 0 , (1b)

where η is the viscosity of the fluid and f is the force density
exerted by the rotors on the fluid. The solution of Eqs. (1) is

given by

ui(r) =
1

8πη

∫
dr′Oi j(r− r′) f j(r′) , (2)

where Oi j(r) is the Green’s function of Eqs. (1) and depends
on the geometry of the problem. In the following we use the
Oseen tensor given by Oi j(r) = 1

r (δi j + r̂ir̂ j) with r̂i = ri/r,
which corresponds to an unbounded fluid in three-dimensions,
but can also describe the flow field generated by particles
confined to a fluid-air interface30,31 in the plane of the in-
terface. Our results are, however, easily extended to other
Green’s function describing different physical situations (see
section 4).

The rotors dynamics is controlled by force and torque bal-
ance, given by

Fd +Fa = 0 , (3a)

τττ
d + τττ

a + τττ
e = 0 , (3b)

where the superscripts d, a and e stand respectively for drag,
active and external, and the forces and torques are exerted on
the rotors. We only consider below situations where the exter-
nal force is zero (in particular, the rotors are assumed to be at
neutral buoyancy), but generally allow for the presence of an
external torque.

2.1 Single passive rotor

We model a passive rotor as a single neutrally buoyant sphere
of radius a rotating under the action of an externally imposed
torque, τττe = τeẑ. In this case there are no active forces or
torques, and the drag force and torque exerted by the fluid on
the sphere are given by

Fd =−ζ

(
vC−

[(
1+

a2

6
∇

2
)

u0
]

rC

)
(4a)

τττ
d =−ζ

R

(
ωωω− 1

2
[
∇×u0]

rC

)
, (4b)

where ζ = 6πηa and ζ R = 8πηa3 are the translational and
rotational friction of the sphere, rC is the position of its cen-
ter, vC = drC/dt is its velocity and ωωω is its angular velocity
describing rotations about the center. The flow u0(r) is the
one that would be obtained if the sphere was removed and re-
placed with fluid. The laplacian term on the right hand side of
Eq. (4a) is the Faxén law correction for the friction on spheri-
cal objects in a viscous fluid and is important when flow gra-
dients occur on length scales comparable to the sphere’s diam-
eter.32 The translational and rotational velocity of the sphere
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are immediately obtained as

vC =

[(
1+

a2

6
∇

2
)

u0
]

rC

, (5a)

ωωω =
τe

ζ R
ẑ+

1
2
[
∇×u0]

rC
. (5b)

If there is no externally imposed flow and only one rotor is
present in the fluid, then u0(r) = 0. In this case a single pas-
sive rotor does not translate (vC = 0) and it rotates around the
z axis with angular velocity ωωω = ẑτe/ζ R.

The flow field due to the rotation of the sphere is obtained
by enforcing a no-slip boundary condition at its rotating sur-
face and is given by 32

u(r) =
τe

8πηr2 ẑ× r̂ . (6)

The flow field is purely azimuthal in the xy plane and it decays
as 1/r2 (see Fig. 1).
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Fig. 1 (color online) Map of the flow field generated in the xy plane
by a passive rotor modeled as a sphere driven by an external torque
(represented by a circular arrow inside the rotor) directed along the
out-of-plane direction z. The rotation is counter-clockwise and
occurs around the z axis. The fluid velocity is shown as arrows with
color coded magnitude.

It is important to note that this azimuthal flow field is a gen-
eral property of passive rotors. This can be seen by expand-
ing Eq. (2) in multipoles. The monopole term vanishes be-
cause there are no external forces acting on the rotor. The first
nonzero term in the multipole expansion is the dipolar term
that has the form

ui(r) = − 1
8πη

[Hi jk(r) + Gi jk(r)]
∫

dr′r′k f j(r′) , (7)

where Hi jk = (δ jk− 3r̂ j r̂k)r̂i/r2 and Gi jk = εinqεn jk r̂q/r2 are
the jk symmetric and antisymmetric parts of ∂kOi j. The
decomposition of the flow into its Hi jk part (known as a
stresslet) and Gi jk part (known as a rotlet) coincides with a
polar decomposition in the plane perpendicular to the axis of
rotation: the stresslet is purely radial while the rotlet is purely
azimuthal.The antisymmetric part of the integral represents
the total torque exerted by the rotor on the fluid. Torque bal-
ance requires that this equals the external torque applied to the
rotor, or

εik j

∫
dr′r′k f j(r′) = τ

e
i . (8)

As a result, the antisymmetric or rotlet part of the flow field
given in Eq. (7) equals the azimuthal flow field given in Eq. (6)
for all passive rotors and vanishes when τττe = 0. In other
words, the azimuthal flow field of an externally driven rotor
is to leading (dipolar) order identical to that of a sphere driven
by the same torque, regardless of the details of the rotor. The
symmetric part of the integral, on the other hand, is not con-
strained and depends on the geometry of the rotor.

2.2 Single active rotor

An active swimmer is one that propels itself by pushing on
the fluid. In order to obtain net propulsion in the absence of
an externally applied force or torque, the drag center C and
the thrust center T of the swimmer must be located at two
different points. With this in mind, we consider the simplest
realization of a rotating swimmer, consisting of a spherical
bead of radius a centered at point C and providing the drag and
a point force−F exerted on the fluid at the end T of a fictitious
“flagellum” of length ` providing the thrust. We denote by ν̂νν

a unit vector pointing along the swimmer’s long axis (chosen
as the direction of the flagellum), and by φ the angle between
ν̂νν and F (see Fig. 2). The dynamics of the swimmer in the

` a

ẑ

ν̂

ν̂-F

T C�

v
0

ω
0

R
0

Fig. 2 Left: Schematic of the single-bead swimmer. The swimmer
exerts an active force −F on the fluid applied at point T at an angle
φ to the swimmer’s axis defined by the unit vector ν̂νν . The bead has
radius a and its center C is the hydrodynamic center of the swimmer.
The rotation is counterclockwise about the z axis normal to the page
through C. Right: Schematic of the swimmer’s motion. The
swimmer, drawn at three different times, undergoes a full rotation
around itself every T0 = 2π/ω0 while translating with velocity v0,
resulting in a circular trajectory of radius R0 = v0/ω0.
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absence of external torque is governed by Eqs. (3) with τττe = 0
and Fa = F, while the active torque τττa =−`ν̂νν×F is equal to
the moment in C of Fa. The drag force and torque are given by
Eqs. (4). For an isolated swimmer, u0 reduces to the flow field
created by the thrust force −F exerted on the fluid at point
T . The linear and angular velocities of the swimmer are then
given by

vCi =
Fj

ζ

[
δi j−

3a
4`

(δi j + ν̂iν̂ j)−
a3

4`3 (δi j−3ν̂iν̂ j)

]
, (9a)

ωωω =− `

ζ R
ν̂νν×F

(
1− a3

`3

)
. (9b)

The thrust force −F exerted by the swimmer on the fluid at T
affects the dynamics in two ways: (i) “directly” through the
reaction force +F exerted back on the swimmer by the fluid
at T , and (ii) “indirectly” through u0. These two contributions
cancel each other when ` = a, i.e., when the thrust force is
exerted at the surface of the bead, giving vC = 0 and ωωω = 0
in this limit. Conversely, the “direct” contribution is dominant
when a� `. Since ν̂νν and F both lie in the xy plane, ωωω = ω0ẑ
is along z. An isolated swimmer then translates at vC while
rotating at an angular frequency ω0 about an axis through its
center C directed along the z direction. The trajectory of C is a
circle of radius R0 = v0/ω0 in the xy plane, as shown on Fig. 2,
where v0 = |vC|. The period of rotation is T0 = 2π/ω0. Note
that when φ → 0, R0 diverges and the trajectory becomes a
straight line, as expected for a linear swimmer exerting a trust
force directed along its long axis.

In order to keep the model tractable, we work in the a� `
limit. Since R0/`∼ O

(
(a/`)2

)
/sinφ , the radius of the circle

is then negligible for all finite values of φ and the swimmer is
merely rotating rigidly about its center †. Moreover, the dy-
namics is dominated by the “direct” contribution of the thrust
force and the velocity and angular velocity are simply given
by vC ' F/ζ and ωωω '−`F sinφ ẑ/ζ R.

The flow field created by the one-bead swimmer is the sum
of the flows produced by three sources: a point force −F lo-
cated at T corresponding to thrust, the translation of the bead
with velocity v = F/ζ , and the rotation of the same bead with
angular velocity ωωω =−`ν̂νν×F/ζ R. This gives

ui(r) =−
1

8πη
Oi j(r− rC + `ν̂νν)Fj +

1
8πη

Oi j(r− rC)Fj

+
`

8πη
Gi jk(r− rC)Fjν̂k , (10)

where we have used rT = rC− `ν̂νν and expressed v and ωωω in
terms of `, ν̂νν and F. In order to study the the far field behavior

† A detailed analysis of the role of a finite a, including the consequence of R0
not being negligible, can be found in the Electronic Supplementary Informa-
tion.

of the flow, we expand Eq. (10) in powers of `/r. The flow
field can then be written in the form of a multipole expansion,
as

u(r) =
∞

∑
n=0

u(n)(r) , (11)

where u(n)(r) ∼ (F/ηr)(`/r)n represents the (n + 1)-pole
contribution to the flow. In the absence of external forces the
monopole term u(0)(r) vanishes. The lowest non-vanishing
term of this expansion is the dipolar one. We note, however,
that as a consequence of torque balance the rotlet due to the
rotation of the bead, given by the last term on the right hand
side of Eq. (10), is precisely canceled by the rotlet component
of the first two terms, representing the flow due to the force
dipole formed by the two point forces. As a result, only the
stresslet (radial) part of the flow is nonzero to dipolar order,
with

u(1)i (r) =− 1
8πη

`Fjν̂kHi jk

=
`F

16πη

[
cosφ +3cos(2θ +φ)

] r̂i

r2 , (12)

where θ is the angle between ν̂νν and r. As we pointed out in
section 2.1, this is a general consequence of torque balance
and holds for any rotating swimmer.

Retaining terms up to third (octupolar) order in the expan-
sion, the total flow field of a single one-bead swimmer is given
by

ui(r) =−
1

8πη

[
`ν̂kHi jk +

`2

2
ν̂kν̂l∂klOi j

+
`3

6
ν̂kν̂l ν̂m∂klmOi j

]
Fj +O

(
1
r5

)
, (13)

where all the derivatives of the Oseen tensor are evaluated at
(r− rC).

On time scales longer that the period of rotation T0 of
the swimmer(see Fig. 2), it is useful to consider the cycle-
averaged flow field, denoted by 〈 ...〉 below. As shown in Ap-
pendix A, the average over a period can be obtained by aver-
aging the instantaneous flow over the orientation ν̂νν(t) of the
swimmer’s axis. Since the active force Fj in Eq. (13) can be
written as Fj = F cosφν̂ j−F sinφ (ẑ× ν̂νν) j, it is then evident
that the dipolar and octupolar terms (first and third term on
the left hand side of Eq. (13)) contain even powers of the unit
vector ν̂ , while the quadrupolar term is cubic in ν̂ . The lat-
ter will therefore vanish when we average over the direction
of the swimmers’ axis. This result is generic for swimmers
confined to a plane. It should be stressed, however, that the
instantaneous quadrupolar flow field is of course nonzero at
all times.
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1

 0.1  1  10  100

vθ

r/‘

rotor
octupole

Fig. 3 Map of the instanteneous flow field generated in the xy plane
by a one-bead pure active rotor (i.e. thrust force perpendicular to the
main axis) rotating counter-clockwise around the out-of-plane
direction z. The fluid velocity is shown as arrows with color coded
magnitude. The arrows represent the forces (straight arrows) and
torque (curved arrow) exerted by the rotor on the fluid. The inset
shows the flow field averaged over a rotation. The averaged flow
field is azimuthal and dominated by the average flow field of a point
octupole. Distance is normalized by the length ` of the rotor.

The cycle-averaged dipolar stresslet contribution to the flow
is isotropic and radial and is entirely controlled by the compo-
nent F cosφ of the propulsive force parallel to the axis of the
dumbbell, with 〈

u(1)(r)
〉
=

`F cosφ

16πηr2 r̂ . (14)

The quadrupolar term in Eq. (13) changes sign when the ro-
tor is rotated by π and thus does not contribute to the cycle-
averaged flow. The octupolar term gives rise to both a radial
and an azimuthal contributions upon cycle averaging, with〈

u(3)(r)
〉
=

`3F
16πηr4

(
3
8

cosφ r̂+
3
4

sinφ ẑ× r̂
)

. (15)

The radial part will be neglected below as it yields a correction
to the cycle-averaged dipolar flow, with a faster decay. The
azimuthal part, on the other hand, represents the leading order
azimuthal flow. Both Faxén effects and the finite value of the
radius R0 of the circular trajectory of the center of the rotor
give corrections of order (a/`)2 or higher to the coefficients of
both the radial and azimuthal octupolar flow fields, but do not
change their qualitative behavior and will be neglected here.
The full expressions for the cycle averaged octupolar flow field
can be found in the Electronic Supplementary Material†.

Keeping only the leading contribution of each component
(i.e. the radial dipolar term and the azimuthal octupolar term),

and neglecting O(a/`) corrections to all the coefficients, the
total rotation-averaged flow of a single one-bead swimmer is
given by

〈u(r)〉= F cosφ

16πη`

[
`2

r2 +O

(
`4

r4

)]
cosφ r̂

+
3F sinφ

64πη`

`4

r4 ẑ× r̂+O

(
`5

r5

)
. (16)

The azimuthal term is proportional to the active torque `F×
ν̂νν = −`F sinφ ẑ, while the radial term is proportional to F ·
ν̂νν = F cosφ . The latter is zero for a “pure rotor” (F · ν̂νν = 0),
attractive for a “puller” (F · ν̂νν < 0) and repulsive for a “pusher”
(F · ν̂νν > 0).

3 Hydrodynamic interaction of two rotors

In the presence of other rotors, the flow field generated by one
rotor yields hydrodynamic interactions on the others. These
interactions in turn control the collective rotor dynamics. To
understand the role of such hydrodynamic couplings, in this
section we consider the effect of the fluid mediated interaction
on the dynamics of pairs of rotors. Again, we will use mini-
mal models for both passive and active rotors, corresponding,
respectively, to a single rotating sphere and to the one-bead
swimmer discussed in the previous section.

We consider two rotors in the xy plane. The positions of
their drag centers are denoted by vectors {rα}α=1,2. In addi-
tion to the fluid mediated hydrodynamic interactions, the two
rotors are assumed to experience a short-range central repul-
sive force that opposes their overlapping. The equations of
motion of the two such rotors have the form

∂trα =

[(
1+

a2

6
∇

2
)

uβ

]
rα

− 1
ζ

g(rαβ )r̂αβ , (17)

where uβ is the flow field induced by the rotor β and g(rαβ )
is the magnitude of the repulsive central force and vanishes
at distances larger than the effective diameter d of the rotors,
with rαβ = rα − rβ

‡ .
For passive spheres, the flow field u that appears in Eq. (17)

is given by Eq. (6). For the active one-bead swimmer, we only
consider the dynamics on time scales large compared to the
period of rotation T0. As shown in Appendix A, in this limit
we can replace the instantaneous flow field u in Eq. (17) by its
cycle averaged value given by Eq. (16) †. This can be written

‡ When an explicit form was needed for the repulsion force (e.g., to run sim-
ulations, not shown), we used g(r) =

[
(r/d)3−1

]
/r2 if r < d and g(r) = 0 if

r > d.
† If the radius R0 ∼ a2/` of the trajectory of a single rotor were not negligible,
the fact that both rotors are moving around a circle would have to be taken into
account when performing the period average. This case is treated in detail in
section 2 of the Electronic Supplementary Information.
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in a general form that applies to both passive (representing in
this case the instantaneous flow) and active rotors as〈

uβ (rα)
〉
= Fa,p(rαβ )r̂αβ +Aa,p(rαβ )εβ ẑ× r̂αβ (18)

The first term is the radial flow, with Fa =
(`F cosφ)/(16πηr2) and F p = 0. The second term is
the azimuthal flow of strength A, with Ap = τe/(8πηr2) and
Aa = (3`3F sinφ)/(64πηr4). A parameter εα = ±1 is intro-
duced to characterize the vorticity of the rotor, with εα = ±1
corresponding to clockwise (+1) and counter-clockwise (-1)
rotations.

The term proportional to a2 in Eq. (17) contributes to the in-
teraction to octupolar order through the laplacian of the dipo-
lar flow field. For a passive sphere, the dipolar flow is a rotlet
and its laplacian is zero. For a one-bead swimmer, the dipolar
flow is given by Eq. 14 and its laplacian has the same structure
as the radial part of u(3), with an extra (a/`)2 factor. We can
therefore neglect it as well.

To study the coupled dynamics of the rotor pair we in-
troduce the center of ”mass” and relative coordinates, R =
(r1 +r2)/2 and r = r1−r2, respectively. Without loss of gen-
erality we assume that rotor 1 is rotating clockwise ε1 = +1.
The equations of motion of the two rotors can be rewritten in
the form

∂tR =
1
2

Aa,p(r)(1− ε) ẑ× r̂ , (19)

∂tr = Aa,p(r)(1+ ε)ẑ× r̂+2
[

Fa,p(r)− g(r)
ζ

]
r̂ , (20)

where ε = +1 corresponds to ”like” rotors, rotating in the
same direction, while ε = −1 describes ”unlike” rotors, with
opposite circulations. For rotors of equal vorticity Eq. (19) for
the center of mass coordinate reduces to ∂tR = 0, indicating
that in this case the position of the center of mass of the ro-
tor pair remains fixed at its initial value. We now discuss the
dynamics of various pairs of active and passive rotors.

(a) (b) (c)

Fig. 4 Schematic trajectories of two identical rotors of equal
vorticity. The two dots are the initial positions of the rotors. A line
with alternating color is used where the trajectories are
superimposed. (a) Pair of passive rotor or pure active rotor (circle).
(b) Pair of contractile swimmers (shrinking spiral). (c) Pair of
tensile swimmers (expanding spiral).

1. Like passive rotors. In this case ε = 1 and the center
of mass is static. The radial component of the force re-
duces to the short-range repulsion force. The two rotors
rotate about their center of mass with an angular velocity
Ω = τe/(4πηr3

0) describing a circle of diameter r0. The
diameter r0 is simply the initial separation of the rotors if
they start out at a separation greater than the range d of
the repulsive interaction and equals d if the initial sepa-
ration of the centers of the two rotors is less than d. The
trajectory is as shown in Fig. (4a).

2. Like active rotors. Again ε = 1 and the center of mass of
the pair remains fixed. The rotors experience active ra-
dial forces Fa that can be attractive (0≤ |φ |< π/2, cor-
responding to pullers) or repulsive (π/2< |φ | ≤ π , corre-
sponding to pushers). The relative coordinate of the pair
of swimmers describes a circular trajectory of varying ra-
dius, corresponding to an inward bounded spiral (Fig. 4b)
or an outward unbounded spiral (Fig. 4c), depending on
the nature of the swimmers. Writing r in polar coordi-
nates as r = (r,θ) we can solve for the dynamics of the
angular coordinate, which is given by

θ(t) =
3
8
`2 tanφ

 1
r2

0
− 1(

r3
0 +

3F`cosφ

8πη
t
)2/3

 .

For tensile swimmers (pushers) the angular dynamics
slows down as t−1/3 in the asymptotic regime, while
for contractile swimmers (pullers), the dynamics is reg-
ularized by the onset of the short-range repulsion. Then
θ(t) ∼ t at long times and the two rotors eventually set-
tle into circling each other describing a circle of diameter
re where re < d is such that the attractive force is bal-
anced by the short-range repulsive one. In the limit case
when φ = π/2 (corresponding to pure rotors), the radial
interaction reduces to the short-range repulsion and the
dynamics is similar to that of a pair of like passive rotors
with an angular velocity Ω now equal to Aa/(2r)∼ 1/r5

instead of Ap/(2r)∼ 1/r3.

3. Unlike passive rotors. In this case ε = −1 and the dy-
namics of the relative coordinate becomes purely radial
and, because the rotors are passive, repulsive and short-
ranged. The center of mass coordinate acquires a veloc-
ity in the direction orthogonal to the line joining the two
rotors. The pair of rotors becomes ”self-propelled”, in
that it develops sustained motion in the direction orthog-
onal to the line joining their centers. For initial separa-
tion r0 > d, the two rotors move along parallel lines at
a speed V = τe/(8πηr2

0), as shown in Fig. 5a. For ini-
tial separations r0 < d there is an initial transient associ-
ated with the two rotors moving apart due to the repulsive
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force, after which they settle into the self-propelled tra-
jectory along parallel lines shown in Fig. 5a with a speed
V = τe/(8πηd2).

4. Unlike active rotors. As in the case of like rotors, the
trajectory of unlike active rotors is similar to that of pas-
sive ones, with additional dynamics that arises from the
repulsive/attractive radial part of the hydrodynamic inter-
action. For the case of attractive interactions, i.e., pullers,
there is an initial transient during which the two rotors
approach each other until the attractive interaction is bal-
anced by the short-range repulsion. After this time, the
two rotors move as a self-propelled pair along parallel
straight lines with a velocity that scales as the inverse
fourth power of their separation (see Fig. 5b). To un-
derstand the behavior of pushers it is useful to explicitly
integrate the equation of motion to obtain the time evo-
lution of the magnitude of the center of mass coordinate,
given by

R(t) =
3
8
`2 tanφ

 1
r0
− 1(

r3
0 +

3F`cosφ

8πη
t
)1/3

 .

It is then evident that the ”self-propulsion” speed of the
pair decays with time. The active force driving the self-
propulsion scales as 1/r4 while the force driving the re-
pulsive separation between the rotors scales as 1

r2 . As a
result, the repulsive interaction eventually wins and the
trajectories of the two rotors diverge from each other, as
shown in Fig. 5c. As for like rotors, pure active unlike
rotors (φ = π/2) behave like passive unlike rotors, but
move with a speed V ∼ 1/r4 instead of 1/r2.

(a) (b) (c)

Fig. 5 Schematic trajectories of two identical rotors of opposite
vorticity. The two dots are the initial positions of the rotors. (a) Pair
of passive rotors or pure active rotors (straight parallel lines). (b)
Pair of contractile swimmers (converging lines). (c) Pair of tensile
swimmers (diverging lines).

Summarizing, like rotors circle around each other, while
their center of mass remains stationary. Unlike rotors are pro-
pelled in the direction orthogonal to the line joining their cen-
ters. The difference between passive rotors and active rotors

primarily arises from the presence of active radial hydrody-
namic interactions that can be attractive or repulsive depend-
ing on the nature of the swimming mechanism. When the ac-
tive propulsion mechanism results in pure rotation (i.e., when
φ = π/2), the difference between active and passive rotor tra-
jectories lies only in the scaling of the velocities as a function
of rotor separation.

4 Discussion

The important role of the azimuthal hydrodynamic interac-
tions between colloidal particles in a fluid driven to rotate
by an external drive in controlling the dynamical assembly of
such artificial microswimmers has been recognized for some
time2–5,33. Yet, only recently it has been pointed out that this
interaction yields a net finite velocity for the center of mass of
two rotors of opposite vorticity, which will therefore behave as
a self-propelled pair27. Such a “cooperative self-propulsion”
is a novel effect with potential applications. Experimental re-
alizations of passive rotors naturally generate, however, rotors
of the same vorticity. The most common realization of collec-
tions of microrotors consist of magnetic dipoles driven by an
external rotating magnetic field2–4. The direction of rotation
of the rotors is then imposed by that of the magnetic field, and
is the same for all the rotors. In Ref. 5, the drive is applied in
a more local way by using a small coil that is positioned right
above the rotor. Using two such coils would allow to apply
opposite drives on two rotors. Similarly, a laser trap can be
used to control the rotation of an individual rotor6,7. Still, ob-
serving self propulsion with either of these two devices would
require that the sources of the angular drive follow the rotors
in their motion.

Internally driven rotors, on the other hand, do not suffer
from this limitation and may be a good candidate for the obser-
vation of cooperative self propulsion. In these active systems,
however, the internally generated torque that is transmitted by
the swimmers to the fluid is exactly balanced by the torques
transmitted by the fluid to the swimmers. As a result, the az-
imuthal component of the hydrodynamic interaction vanishes
to dipolar order. We show that such an azimuthal component
of the interaction among active rotors arises nevertheless to oc-
tupolar order and remains finite upon cycle-averaging. While
the dipolar azimuthal interaction among passive swimmers de-
cays as 1/r2, the corresponding interaction among active ro-
tors decays as 1/r4.

It is important to stress that the following results apply for
a general active rotor, regardless of its shape :

(i) The dipolar flow field has no azimuthal component. This
result is not new and has been known for a long time28. It
is due to the torque-free nature of the swimmers and the fact
that the rotlet/stresslet decomposition coincides with the ra-
dial/azimuthal one in the plane orthogonal to the axis of rota-
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tion.
(ii) The quadrupolar flow vanishes when averaged over a

period of rotation. This relies on the two-dimensional nature
of the problem and the equivalence between the period average
and an orientation average, which holds if the period of rota-
tion is much smaller than any other time scale in the problem.
The vanishing of the cycle-averaged quadrupolar contribution
then follows immediately from the symmetry properties of the
multipole expansion of the flow field.

(iii) The octupolar flow field remains finite upon cycle aver-
aging and results in an azimuthal interaction force that decays
as 1/r4.

Furthermore, these results can be extended to a more gen-
eral form of the Green’s function. We have limited ourselves
to a discussion of the flow field in planes normal to the rotor’s
axis of rotation. A motivation for this is that rotors are often
confined to a liquid/air, liquid/liquid or liquid/solid interface.
On the other hand, such confinement often changes the form of
the Green’s function. Assuming that the medium is isotropic
in the plane perpendicular to the rotors’ axis of rotation, and
to which they are confined, the most general Green’s func-
tion describing the flow field in this plane can be written as
Oi j(r) = A(r) δi j +B(r) r̂ir̂ j where A and B are two unknown
function of r = |r|. In addition, we assume that at distances
large compared to the thickness of the interface Oi j(r) decays
as 1/rn, i.e. Oi j(r) = (a δi j + b r̂ir̂ j)/rn where a and b are
two unknown constants. The three-dimensional Oseen tensor
used in this work corresponds to n = 1 and a = b = 1. The
Green’s function describing interactions in a thin fluid film of
two-dimensional viscosity η , surrounded by by a bulk fluid of
viscosity ηe corresponds to n = 1, a = 0 and b = 2η/ηe

27. A
higher value of n can be found, e.g., if the rotors are close to
a solid wall with no-slip boundary condition. The 1/r term
is then canceled by the presence of a virtual source of oppo-
site strength located on the other side of the wall, leading to
n = 234,35. The flow field resulting from any of these Green’s
functions is qualitatively the same as the one derived in this
work. More specifically, the points (i), (ii) and (iii) above re-
main true regardless of the values of a, b and n, except that the
octupolar term now decays as 1/rn+3 ∗.

On the other hand, the exact form of the azimuthal octupo-
lar interaction between active rotors depends on the nature of
the rotor. The one-bead swimmer we described in this paper
is a simple model system in that it has an isotropic drag (via
the spherical bead) and rotates around itself. A more general
model would feature an anisotropic drag (e.g. because of a
non-spherical bead or the presence of more than one bead)
and/or a significant unperturbed trajectory radius R0. The az-
imuthal interaction between two rotors would then depend on
their relative orientation, the dynamics of which would have to

* Note that there is a special case, namely na+ b = 0, in which there is no
azimuthal field at all, regardless of the nature of the rotor.

be worked out. This is beyond the scope of the present paper
and left for future work.

Appendix A: Period averaged flow field

The flow field generated by a rotor depends in general on its
orientation. As the particle rotates and moves through the
fluid, the flow field evolves in time as well. This evolution
is characterized by two well separated time scales: the period
of rotation T0 of the rotor and the (generally much longer) time
scale associated with its motion through the fluid due to inter-
actions with other rotors. On time scales large compared to
T0, the swimmers’ dynamics is governed by an effective flow
field obtained by averaging the instantaneous flow field over a
period of rotation. More precisely, the corrections to the av-
erage flow field u arising from instantaneous fluctuations over
time scales T0 are of order δu ∼ T0u∇u ∼ u2T0/r where T0u
is the typical distance travelled by the rotor during the time T0
by following the flow field of other rotors located at distance
r. The leading term of the flow field is at most dipolar, with
u ∼ 1/r2. The correction is then δu ∼ 1/r5 and is negligible
compared to terms up to octupole order (∼ 1/r4) in the aver-
age flow field.

Similarly, the fluctuations in the angular velocity are gov-
erned by the ratio of the curl of the flow field in Eq. (4b),
which is at most of order F/ηr3 (corresponding to a dipolar
flow), to the angular velocity ω ∼ F`/ζ R given in Eq. (9b).
As a result, we can assume that the rotation of an individual
swimmer takes place at a constant speed (up to corrections of
order 1/r5) and replace the average over a rotation by an aver-
age over the orientation of the swimmer.

These observations greatly simplify the dynamics. In par-
ticular, the quadrupole term in the multipole expansion of the
flow field, which changes sign when the rotor is rotated by π ,
does not contribute to the averaged flow. It should be stressed,
however, that the angular averages washes out the angular de-
pendance of the flow field, yielding an isotropic effective flow.

Finally, a study of the corrections due to these fluctuations
on the dynamics of passive rotors can be found in Refs. 27, 33.
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