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Figure 3.9: A chain of Type 3 connects pentagons p1 and p2. Thick blue edges

represent edges in A.

pentagons with coordinates (m,n) is of length m. This chain contains m−1 hexagons

and two pentagons. We know that none of the vertices on these faces is covered by

a face in C, so each of these vertices must be covered by an edge from A. There are

6(m− 1) vertices from the m− 1 hexagons and ten vertices from the two pentagons.

These 6m+ 4 vertices need 3m+ 2 edges in A to cover them.

Lemma 3.16. Let Γ be a fullerene with a Clar structure (C,A) and a coupling. If

|C| is the Clar number for Γ, then any closed Clar chain with exactly two pentagons

p1 and p2 in its interior together with the open Clar chain connecting the pentagons
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contributes the same number of edges to A as a Clar chain of Type 3 between p1 and

p2.

Proof. Let f0, a1, f1, a2, f2, ...ak, fk = f0 be a closed Clar chain with exactly two pen-

tagons p1 and p2 in its interior. By Lemma 3.4, there are six open Clar chains

connecting pairs of pentagons, and the Clar chains are non-crossing. Thus there

must be some open Clar chain p1, e1, h1, e2, h2, ...el, p2 joining p1 and p2 that is con-

tained completely inside the closed Clar chain f0, a1, f1, a2, f2, ...ak, fk = f0. Give Γ

an improper face 3-coloring associated with the Clar structure (C,A). By Lemma

3.5, we can assume without loss of generality that the faces of C are blue in this face

3-coloring, and that the faces f0, f1, f2, ...fk = f0 of the closed chain are red.

Consider the case in which the faces p1, h1, h2, ...p2 of the open chain are also in the

red color class. We can remove the closed chain by interchanging the colors blue and

yellow in the interior. After this change, the pentagons p1 and p2 are still red. Since

they are not in the color class containing C, the chain between the pentagons is of

Type 1 or Type 2. We know from Lemmas 3.13 and 3.14 that for a pair of pentagons

with Coxeter coordinates (m,n), m ≥ n, a chain of Type 1 contributes m edges to A

and a chain of Type 2 contributes m+n edges. A closed chain surrounding them has

at least 2m edges in A, and there remain edges from A in the open chain. Therefore,

deleting the closed chain and interchanging the interior face colors decreases A. Such

a closed chain does not exist in a Clar structure that attains the Clar number.

Consider the case in which the faces of the open chain p1, h1, h2, ...p2 are in the
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yellow color class. Removing the closed chain interchanges the colors of the blue and

yellow faces, so p1 and p2 would be in the blue color class. Since the pentagons cannot

be in the set C, we no longer have a vertex covering (C,A). This results in a chain

of Type 3: there are 3m+ 2 edges in A connecting the pentagons, and all vertices of

the pentagons are covered by edges in A. The open chain p1, e1, h1, e2, h2, ...el, p2 is in

the interior of f0, a1, f1, a2, f2, ...ak, fk = f0. Thus if the coordinates between p1 and

p2 are (m,n) with m ≥ n, then an open chain containing these pentagons must have

length at least 2(m + 1). Therefore, the open chain p1, e1, h1, e2, h2, ...el, p2 together

with the closed chain f0, a1, f1, a2, f2, ...ak, fk = f0 contributes at least 3m + 2 edges

to A.

A chain of Type 3 occurs when the independent set containing C also contains the

paired pentagonal faces of an open chain. To change the color class of the pentagons,

we use a closed chain and then connect the pentagons with a chain of Type 1.

Let Γ be a fullerene that allows a coupling of a Clar structure with non-interfering

Clar chains. Let (mi, ni) be the Coxeter coordinates of the segments between each

pair of pentagons connected by a Clar chain in this coupling for 1 ≤ i ≤ 6. For an

arbitrary Clar structure of Γ, there are three choices for the set of faces containing C

outside of the six clear fields containing the pairs of pentagons. These three choices

give three distinct Clar structures. Given one of these Clar structures, the number of

edges contributed to |A| by the pair with Coxeter coordinates (mi, ni) is max{mi, ni}

if the chain is of Type 1, mi +ni if the chain is of Type 2, and 3 max{mi, ni}+2 if the
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chain is of Type 3. For each of the three choices, we determine the total number of

edges in |A| and let M be the minimum of these three sums. We define such a pairing

of pentagons to be widely separated over the fullerene if for any two pentagons that

are not paired together, one of the Coxeter coordinates of the segments joining them

is at least M
2
− 2.

Lemma 3.17. Let Γ be a fullerene over which the pairs of pentagons are widely

separated. If (C,A) is a Clar structure that attains the Clar number for Γ, then

(C,A) includes no closed chain with more than two pentagons in its interior.

Proof. Suppose (C,A) is a Clar structure that attains the Clar number for Γ, and that

(C,A) includes a closed Clar chain f0, a1, f1, ..., ak, fk = f0 with three or more pen-

tagons in its interior. By Lemma 3.9, there exists a chain circuit C for f0, a1, f1, ..., ak, fk =

f0 that includes an even number of pentagons in its interior. Thus at least four

pentagons are in the interior of C. By definition of widely separated, the interior

of C contains at least two pairs of pentagons for which one of the Coxeter coor-

dinates of the segments joining them is at least M
2
− 2. Therefore the length of

f0, a1, f1, ..., ak, fk = f0 is at least 2(M
2
− 2) + 2 = M − 2. There are additional edges

in A for each of the six chains between paired pentagons, so the total contribution to

|A| is greater than M . Thus, (C,A) does not attain the Clar number for Γ.

Theorem 3.18. Let Γ be a fullerene over which the pairs of pentagons are widely

separated. Let M be the minimum sum of the edges in A over the three possible choices

for the face set containing C. Then |V |
6
− M

3
is the Clar number for Γ.
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Proof. By Lemma 3.4, any Clar structure (C,A) over Γ contains six Clar chains

connecting pairs of pentagons. Let M denote the minimum number of edges in A

over the three possible choices for the set C outside of the six clear fields. If a different

pairing is chosen for any pentagon, then there are at least two new pairs of pentagons.

For each new pair, one of the Coxeter coordinates is at least M
2
− 2 since the original

chains were widely separated. Chains connecting the other four pairs each contribute

at least one edge to A, giving a total of at least M edges in A. By Lemma 3.17, any

closed Clar chain containing more than one pair of pentagons increases the size of A.

Thus any other Clar structure contains at least M edges in A. The conclusion follows

by Lemma 3.3.
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Chapter 4

Fullerenes with Complete Clar

Structure

In this chapter, we describe a class of fullerenes for which the Clar number is maximal

with respect to the number of vertices in Γ. Let Γ be a fullerene with a Clar structure

(C,A). By definition the cardinality of C is a lower bound for the Clar number of a

fullerene, and we proved in Lemma 3.3 that |C| = |V |
6
− |A|

3
. To describe a class of

fullerenes for which |C| is maximal with respect to the number of vertices, we find

fullerenes for which |A| is minimal. By Lemma 3.1 at least one edge from A exits

each of the twelve pentagons. There are additional edges in A if one of these edges

exits a hexagon. Therefore |A| ≥ 6, and equality holds exactly when all edges from

A connect pairs of pentagons. We say that a Clar structure is complete if |A| = 6, in

which case |C| = |V |
6
− 2. We can summarize the above in the following lemma:
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Figure 4.1: Two pentagons paired by a single edge in A

Lemma 4.1. If a fullerene Γ has a complete Clar structure (C,A), then there exists

a pairing of the twelve pentagonal faces such that each pair is connected by a single

edge. The only edges in A are the six edges between pairs of pentagonal faces.

Ye and Zhang called fullerenes with complete Clar structure extremal fullerenes

[12]. They went on to construct the 18 extremal fullerenes on 60 vertices.

4.1 The Leapfrog Construction

The leapfrog construction was described in Chapter 1. By Proposition 1.4, a fullerene

Γ = (V,E, F ) attains the Fries number |V |
3

if and only if Γ has a face-only vertex

covering. The Kekulé structure that attains the Fries number |V |
3

is constructed by

taking the faces in the face-only vertex covering to be the void faces. By Lemma

3.1, all of the pentagons of Γ must be in this face-only vertex covering. We say

that a fullerene with these properties has a complete Fries structure. We now use

the leapfrog construction in a different way to construct the fullerenes that admit a

complete Clar structure.
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Let Ω` be the leapfrog of the plane graph Ω = (V,E, F ). By Lemma 1.3, the faces

F ` of Ω` corresponding to the faces F of Ω form a face-only vertex covering of Ω`.

The set of edges that do not bound a face in F ` forms a perfect matching of Ω`, that

is, a Kekulé structure if Ω` is a fullerene. Extending this notation, we write V ` for

the set of faces in Ω` corresponding to the vertex set V of Ω and U ` to denote a set

of faces of Ω` corresponding to a subset U of V .

Lemma 4.2. Given a 3-regular plane graph Ψ with a face-only vertex covering Q,

there is a unique plane graph Ω = (V,E, F ) such that Ω`=Ψ and F ` = Q.

Proof. Consider the planar dual Ψ∗ of Ψ constructed by placing vertices in the centers

of faces and connecting vertices if the corresponding faces of Ψ share an edge. Now

construct a subgraph Ω = (V,E, F ) of Ψ∗ by deleting all the vertices corresponding to

the faces in Q and all edges incident with those vertices. (See Figure 4.2(c) with the

yellow faces as the vertex cover.) A face of degree j of Ψ that is not in Q corresponds

to a vertex of degree j
2

in Ω; a face of Ψ that is in Q and has degree k corresponds in

Ω to a face of degree k. Thus Ω = (V,E, F ) is a plane graph such that Ω` = Ψ and

F ` = Q, and Ω is unique up to isomorphism.

Given a 3-regular plane graph Ψ with a face-only vertex covering Q, we call the

graph obtained by the process in Lemma 4.2 the reverse leapfrog of (Ψ, Q) and denote

the graph by (Ψ, Q)−`, or simply Ψ−` if Q is understood. By Lemma 1.3, any leapfrog

graph is 3-regular and has a face-only vertex covering. Combining Lemma 1.3 with

Lemma 4.2 leads to the following characterization of leapfrog graphs:



CHAPTER 4. FULLERENES WITH COMPLETE CLAR STRUCTURE 63

(a) A bipartite plane graph

Ω = (V,E, F )

(b) The leapfrog graph Ω` is

shown superimposed on Ω.

(c) The yellow faces F ` are a

face-only vertex covering of

Ω`. The red and blue faces

of Ω` correspond to the ver-

tex bipartition of Ω.

Figure 4.2: The leapfrog transformation of a bipartite plane graph

Theorem 4.3. A plane graph Ψ is a leapfrog graph if and only if Ψ is 3-regular and

has a face-only vertex covering.

Lemma 4.4. Given a bipartite plane graph Ω = (V,E, F ) with vertex partition V =

U ∪W , the sets of faces U `, W `, F ` form a face 3-coloring of Ω`.

Proof. The set of faces F ` is a face-only vertex covering for Ω`. The remaining faces

in Ω` correspond to vertices in Ω. Since Ω is bipartite, each face in F ` is bounded

by alternating faces from U ` and W `. By Lemma 1.3 any leapfrog graph is 3-regular.

Thus each vertex in Ω` is incident with exactly one face from each of the sets U `, W `

and F `.

Theorem 4.5. Suppose Ψ is a 3-regular plane graph. Then the following are equiv-

alent:
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1. Ψ is bipartite;

2. Ψ is face 3-colorable;

3. Ψ = Ω` for some bipartite plane graph, Ω.

Proof. (1 ⇐⇒ 2) Ψ is bipartite if and only if all faces have even degree. Thus by

Theorem 2.1, Ψ is face 3-colorable if and only if it is bipartite.

(2 =⇒ 3) The graph Ψ is 3-regular, so if Ψ has a proper face 3-coloring, each

vertex is incident with a face of each color and each color class Qi is a face-only vertex

covering. By Lemma 4.2, there is a unique graph Ωi acquired by taking the reverse

leapfrog of Ψ with respect to the vertex-covering Qi for each i. In Ωi = (Ψ, Qi)
−`,

the faces of Qi correspond to the faces of Ωi. The remaining face-only vertex covers,

Qj, Qk, correspond to the vertices of Ωi. Since Qj and Qk are independent in Ψ, the

corresponding vertices form a bipartition of the vertices in Ωi.

(3 =⇒ 2) Suppose that Ψ = Ω` for some bipartite plane graph Ω with vertex

bipartition V = U ∪W . By Lemma 4.5, the sets of faces U `, W `, F ` form the color

classes for a face 3-coloring of Ψ.

4.2 Fullerenes with Complete Clar Structures

An {(a, b), k}-sphere is a k-regular plane graph with faces only of degrees a and b.

Fullerenes are exactly the class of {(5, 6), 3}-spheres. Given a fullerene Γ with a

complete Clar structure (C,A), we see that the six pairs of pentagons together with
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Figure 4.3: Expansion of Γ over an edge in A

the edges between them are equivalent to the open chains discussed in Chapter 2 and

3. As in Section 3.1, we define the expansion of the fullerene as follows: widen each

of the six edges in A between pentagonal pairs into a quadrilateral faces. Each vertex

covered by A becomes an edge, and each pentagon becomes a hexagon. We denote

this new {(4, 6), 3}-sphere by E(C,A) and the set of quadrilateral faces by A′. If Γ

has f faces, then E(C,A) has six quadrilateral faces and f hexagonal faces.

Lemma 4.6. Let Γ be a fullerene with a complete Clar structure (C,A). Let E(C,A)

be the expansion of Γ and let C ′ = C ∪ A′. Then:

1. There is a face 3-coloring of E(C,A) such that the set C ′ forms one color class.

2. The reverse leapfrog (E(C,A), C ′)−` = Θ is a {(4, 6), 3}-sphere.

3. The two face color classes of E(C,A) other than C ′ correspond to the vertex

color classes of the bipartite graph Θ.

Proof.

1. By Lemma 3.5, the expansion E(C,A) is face 3-colorable with the faces in C ′

forming one color class.
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2. Since E(C,A) is a 3-regular graph and C ′ is a face-only vertex covering of

E(C,A), there is a unique graph Θ such that Θ` = E(C,A) and the faces of Θ

correspond to C ′ by Lemma 4.2. The faces of E(C,A) in C ′ are of degree 4 and

6, so by Lemma 1.3, the faces of Θ are of degree 4 and 6. The remaining faces

of E(C,A) are hexagons and correspond to the vertices of Θ. Thus by Lemma

1.3, Θ is 3-regular. So Θ is a {(4, 6), 3}-sphere.

3. By Theorem 4.5, the remaining two face color classes of E(C,A) correspond to

a bipartition of the vertices in Θ.

We see that a fullerene with complete Clar structure corresponds to a {(4, 6), 3}-

sphere Θ. We want to determine the conditions under which a {(4, 6), 3}-sphere

corresponds to one or more fullerenes with complete Clar structure.

Consider an arbitrary {(4, 6), 3}-sphere Θ and let Θ` be the leapfrog graph of Θ.

By Lemma 1.3, Θ` is also a {(4, 6), 3}-sphere; Θ` is 3-regular and has a face of degree

j corresponding to each face of degree j from Θ and a face of degree 6 corresponding

to each vertex of Θ. Also by Lemma 1.3, the faces of Θ` corresponding to the faces

from Θ form a face-only vertex covering of Θ`. Thus the quadrilateral faces of Θ`

are part of an independent set, and each quadrilateral face in Θ` is bounded by four

hexagons.

For each quadrilateral face of Θ`, choose two opposite hexagons adjacent to the

quadrilateral to form a pair. We denote this set of paired hexagons by P . We define
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Figure 4.4: The reverse expansion around a quadrilateral face in (Θ`,P).

the reverse expansion procedure on the pair (Θ`,P) as follows: for each quadrilateral

face of Θ`, contract each of the two opposite edges that the quadrilateral shares with

paired hexagons into a vertex. We then obtain the graph E−1(Θ`,P), the reverse

expansion of Θ` with respect to P . Now each quadrilateral of Θ` has become an edge

in E−1(Θ`,P) and the degree of each face in P is decreased by 1 for each quadrilateral

that the face is paired over.

Lemma 4.7. Let Θ` be the leapfrog of a {(4, 6), 3}-sphere Θ. Let P be the set of

hexagons paired on opposite sides of the quadrilateral faces of Θ`. The reverse ex-

pansion of this pair, Γ = E−1(Θ`,P) is a fullerene if and only if P is a set of twelve

distinct hexagons. When Γ is a fullerene, Γ admits a complete Clar structure. Γ

also admits a complete Fries structure if and only if the hexagons in P are part of a

face-only vertex covering of Θ`.

Proof. It follows from Euler’s formula that any {(4, 6), 3}-sphere has exactly six

quadrilateral faces. Thus in Θ`, there are six quadrilaterals across which we pair

opposite hexagons to create the set P . If P is a set of twelve distinct hexagons, then

each hexagon belongs to exactly one pairing and is contracted into a pentagon. Hence
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Γ is a fullerene. If |P| < 12, then some hexagon in P is paired across two or more

quadrilaterals. That hexagon is contracted into a face of degree less than 5 and thus

Γ is not a fullerene.

The quadrilaterals of Θ` are part of a face-only vertex covering corresponding to

the faces of Θ by Lemma 1.3. Denote this face-only vertex covering by C ′. Let C

denote the hexagons of Γ = E−1(Θ`,P) corresponding to hexagons in C ′ of Θ` and let

A denote the set of edges formed by collapsed quadrilaterals from Θ`. The set C ∪A

forms a vertex covering of Γ, and thus if Γ is a fullerene, then (C,A) is a complete

Clar structure for Γ.

Every face of Θ` has even degree, and thus Θ` is face 3-colorable by Theorem 2.1.

A face 3-coloring of Θ` corresponds to an improper face 3-coloring of Γ in which the

only incompatible faces are those that share an edge in A. Hence the pentagons of Γ

are in the same color class exactly when the faces of P are in the same color class of

Θ`, that is, if and only if P is part of a face independent set since Θ` is 3-regular. The

pentagons are all in one color class in the improper face 3-coloring if and only if they

are part of of a face-only vertex covering, which is equivalent to the condition that

the trivalent graph Γ be a leapfrog graph by Theorem 4.3. By Proposition 1.4, the

fullerene Γ is a leapfrog graph if and only if Γ admits a complete Fries structure.

When is it not possible to find a disjoint set P of opposite hexagonal faces ad-

jacent to each quadrilateral? Consider the {(4, 6), 3}-sphere Θ. Quadrilaterals in Θ

correspond to quadrilaterals in Θ`. The four hexagons bounding a quadrilateral in Θ`
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correspond to the vertices of the quadrilateral in Θ. Pairing disjoint hexagons with

quadrilaterals in Θ` is equivalent to choosing diagonal vertices for each quadrilateral

in Θ. These diagonal vertices become opposite hexagons in Θ`, and contract into

pentagons in the fullerene. We indicate these vertices around a quadrilateral face in

Θ by drawing a diagonal line connecting the vertices. (See Figure 4.5.) We define a

diagonalization of a {(4, 6), 3}-sphere Θ to be a choice of pairs of diagonal vertices

for each quadrilateral face so that no vertex is chosen twice. We can contract Θ`

into a fullerene with a complete Clar structure exactly when a diagonalization of Θ

is possible. A perfect diagonalization of a {(4, 6), 3}-sphere Θ, is a diagonalization in

which all vertices chosen are in the same cell of the bipartition and hence correspond

to faces in the same color class of a face 3-coloring of Θ` by Lemma 4.5. We have

proven the following lemma:

Lemma 4.8. Let Θ be a {(4, 6), 3}-sphere. Then

1. Θ` admits a pairing of hexagons with |P| = 12 if and only if Θ admits a diago-

nalization.

2. Θ` admits a pairing of hexagons with |P| = 12 where P is part of a face-only

vertex covering of Θ` if and only if Θ admits a perfect diagonalization.

Lemma 4.9. Let Θ be a {(4, 6), 3}-sphere. Then

1. Θ admits a diagonalization if and only if no vertex meets three quadrilaterals.
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(a) A diagonal pair of vertices inci-

dent with a quadrilateral in Ω.

(b) Take the leapfrog, Ω`.

(c) The diagonal vertices in Ω cor-

respond to hexagons in Ω`.

(d) The hexagons become pen-

tagons in E−1(Θ`,P).

Figure 4.5: Choose diagonal vertices for each quadrilateral in Θ. These vertices

correspond to opposite hexagons bounding a quadrilateral face in Θ`. We collapse an

edge of each of the paired hexagons to construct E−1(Θ`,P).
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2. Θ admits a perfect diagonalization if and only if no vertex in Θ is incident with

more than one quadrilateral.

Proof. There are at most three quadrilateral faces at any vertex in Θ. Since Θ is

3-regular, any two faces that share a vertex share an edge containing that vertex.

Suppose some vertex x is incident with three quadrilateral faces s1, s2, and s3. One

easily checks that any multiset of diagonal edges through these quadrilaterals includes

some vertex twice. (See Figure 4.6.) If every vertex in Θ is incident with at most two

quadrilaterals, then one easily checks that we may choose diagonal vertices incident

with each quadrilateral such that no vertex is chosen twice.

If two quadrilaterals s and s′ share an edge, then the vertices incident with s

and s′ must both be part of any diagonalization, and so the diagonalization cannot

be perfect; the vertices chosen cannot be in the same cell of the bipartition. If the

quadrilaterals are disjoint and U is one cell of the vertex bipartition, we may choose

diagonal vertices in U for each quadrilateral.

Theorem 4.10.

1. The fullerenes on n vertices that admit a complete Clar structure are in one-to-

one correspondence with the diagonalized {(4, 6), 3}-spheres on n
3

+ 4 vertices.

2. The fullerenes on n vertices that admit a complete Clar structure and a complete

Fries structure are in one-to-one correspondence with the perfectly diagonalized

{(4, 6), 3} spheres on n
3

+ 4 vertices.



CHAPTER 4. FULLERENES WITH COMPLETE CLAR STRUCTURE 72

s
1

s
2

s
3

s
2

s
k

s
1

Figure 4.6: If three quadrilaterals in Θ share a vertex, then any choice of diagonal

vertices for each quadrilateral includes some vertex twice. If at most two quadrilat-

erals share each vertex, we can choose diagonal vertices for each quadrilateral of Θ

so that no vertex is chosen twice.

Proof. By Lemma 4.7, a leapfrog {(4, 6), 3}-sphere Θ` can be contracted into a fullerene

Γ with complete Clar structure exactly when it is possible to find a set of pairings

P of twelve distinct hexagons bounding opposite sides of the six quadrilateral faces

and by Lemma 4.8 this is equivalent to a diagonalization of Θ. By Proposition 1.4

and Lemma 4.7, the contracted fullerene Γ is leapfrog exactly when the hexagons we

choose to collapse are all in the same color class. By Lemmas 4.5 and 4.9, this occurs

for each perfect diagonalization of a {(4, 6), 3}-sphere.

If the fullerene Γ = E−1(Θ`,P) has n vertices, then Θ` has n + 12 vertices; the

reverse expansion contracts the six quadrilateral faces into six edges. Thus Θ is

one-third the order of Θ` and has n
3

+ 4 vertices.

For each {(4, 6), 3}-sphere in which no vertex lies on two quadrilaterals, two perfect

diagonalizations are possible. We have two choices for the diagonal in a quadrilat-



CHAPTER 4. FULLERENES WITH COMPLETE CLAR STRUCTURE 73

Figure 4.7: Two choices for contracting a quadrilateral face in Θ`. A different choice

is equivalent to a Stone-Wales transformation of the fullerene.

eral face. For each of the other quadrilaterals, we must choose diagonal vertices in

this same bipartition. Thus for each {(4, 6), 3}-sphere on which no two quadrilaterals

share a vertex, there are two perfectly diagonalized {(4, 6), 3}-spheres and two corre-

sponding fullerenes with a complete Fries structure and a complete Clar structure.

For each diagonalization of a {(4, 6), 3}-sphere Θ, Θ` can be contracted into a

different fullerene with complete Clar structure. How many such diagonalizations are

there for a {(4, 6), 3}-sphere? Given a quadrilateral face in Θ, we have two choices

for the pair of diagonal vertices incident with that face. Suppose two quadrilaterals,

s1 and s2, share a vertex in Θ. Then s1 and s2 share an edge, and a diagonal pair of

vertices incident with s1 includes one vertex on that edge. A diagonal pair of vertices

incident with s2 must also include a vertex on this edge, and there is only one choice

remaining for the pair of diagonal vertices incident with s2.

We call a set of quadrilaterals in Θ a block if each of the quadrilaterals in the

set shares a vertex with another quadrilateral in the set. Once we choose a pair of

diagonal vertices for one quadrilateral, the choice of diagonal vertices is forced for each

of the other quadrilaterals in the block. (See Figure 4.6.) Thus if Θ has b blocks, there
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are 2b diagonalized {(4, 6), 3}-spheres and 2b corresponding fullerenes with complete

Clar structure. Note that 1 ≤ b ≤ 6, so a given {(4, 6), 3}-sphere could yield as many

as 64 fullerenes with complete Clar structure. Choosing a different diagonal in Θ

corresponds to choosing the other pair of hexagons around a quadrilateral in Θ` to be

in P . Choosing a different pair of hexagons around a quadrilateral in Θ` to contract

is equivalent to a Stone-Wales transformation [4] of the four faces in the fullerene (see

Figure 4.7). We can get from any one of these fullerenes to another through a series

of Stone-Wales transformations. Thus each {(4, 6), 3}-sphere Θ in which no vertex

lies on three quadrilaterals represents an equivalence class of fullerenes with complete

Clar structure under the Stone-Wales equivalence.
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Chapter 5

Class for which the Clar and Fries

Number Cannot be Attained by

the Same Kekulé Structure

5.1 Introduction

It is part of the folklore of fullerenes that a set of independent benzene faces that

attains the Clar number for a fullerene is contained in the set of benzene faces that

gives the Fries number. In this chapter, we describe a class of fullerenes for which

this does not hold: for fullerenes in this class, any Kekulé structure that attains the

Fries number cannot give the Clar number; any Kekulé structure that attains the

Clar number cannot give the Fries number.
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A face 3-coloring is not possible over a fullerene, but a partial 3-coloring can be

constructed except over relatively small excluded patches containing the pentagonal

faces. We can begin to construct a Kekulé structure consisting of edges connecting

the faces in one color class as described previously. This structure must be extended

inside each excluded patch to complete the Kekulé structure. To attain the Fries

number, this extension must be chosen so that |B1(K)|+ 2|B2(K)| is minimized. To

achieve the Clar number, this extension must be chosen so that |A|, the number of

Kekulé edges not on a Clar face, is minimized. In the examples we construct here,

pairs of nonadjacent pentagons are joined by a single edge, and we refer to such

patches as basic patches. These basic patches are widely separated to ensure that no

other pairing of pentagons could yield the Fries or Clar number.

To construct the partial Kekulé structure outside of the basic patches, we choose

one color class of independent faces to be the void faces. We must then choose another

color class to be the set C contributing to the Clar number. Thus there are six possible

options for choosing the partial Kekulé structure and the partial Clar structure. In

Section 5.2, we show that for exactly one of these six choices around a basic patch, no

completion of the Kekulé structure simultaneously minimizes the contribution to |A|

and |B1(K)| + 2|B2(K)| over the patch. In Section 5.3, we construct fullerenes with

six basic patches so that for each of the six choices for void and Clar faces, exactly

one of these basic patches requires different extensions of the Kekulé structure to

minimize the Clar deficit and the Fries deficit. Thus for our class of fullerenes, no



CHAPTER 5. CLAR AND FRIES CLASS 77

V
C

(a) A partial face 3-coloring out-

side of a basic patch.

(b) A partial Kekulé structure

given by the choice of void faces

outside of the basic patch.

Figure 5.1: The white faces represent a basic patch. The void faces are contained in

the set of blue faces, the Clar faces in the set of pink faces.

Kekulé structure attains both the Fries and the Clar number for the fullerene.

5.2 Basic Patches

5.2.1 A choice for the void and Clar faces that requires two

Kekulé extensions.

Figure 5.1(a) depicts a basic excluded patch. For the faces surrounding the basic

patch, the set of blue faces is chosen to be the set of void faces and the pink faces

are chosen to be Clar faces. Figure 5.1(b) shows the partial Kekulé structure given
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by this choice of void faces; all edges that join two blue faces are in the partial

Kekulé structure. We need to extend this to a Kekulé structure. Figure 5.2(a) shows

the extension of this choice that minimizes |A| and 5.2(b) shows the extension that

minimizes |B1(K)| + 2|B2(K)|. We prove that no single extension minimizes both

deficits.

Extension 1: We first extend the Kekulé structure to minimize the Clar deficit.

Outside the patch, we start with a partial Kekulé structure in which each pink hexag-

onal face is a benzene face (Figure 5.1(b)). None of the ten vertices incident with

one of the two pentagons is covered by a face in C, so these vertices must be covered

by edges from A in the vertex covering (C,A). In the partial Kekulé structure, every

hexagon that is not in C is adjacent to a face in C. Thus no extension can increase

|C| over the patch. Any extension that does not reduce |C| must cover only the ten

vertices incident with the pentagons. There is only one perfect matching for these

ten vertices, and it is shown as a completion of the Kekulé structure in Figure 5.2(a).

Note that this is a Clar chain of Type 3 between the two pentagons. Over the patch in

this extension, |A| = 5 and |B2(K)| = 6, |B1(K)| = 4, giving |B1(K)|+2|B2(K)| = 16

Extension 2: The Kekulé structure in Figure 5.2(b) has |A| = 8 and |B2(K)| = 4,

|B1(K)| = 2, giving |B1(K)|+2|B2(K)| = 10. While |A| is not minimized, B2(K) and

B1(K) are both smaller than in Extension 1. Extension 1 is the only extension that

minimizes the Clar deficit, and that extension does not minimize the Fries deficit.

Thus for this choice of void and Clar faces over a basic patch, any structure that



CHAPTER 5. CLAR AND FRIES CLASS 79

(a) Extension 1 minimizes the Clar

deficit. Here |A| = 5 and |B2(K)| =

6, |B1(K)| = 4.

(b) Extension 2 minimizes the Fries

deficit. Here |A| = 8 and |B2(K)| =

4, |B1(K)| = 2.

Figure 5.2: Extension 1 and Extension 2 on a basic patch where the Clar faces are

pink and the void faces are blue.

contributes the maximum number of faces toward the Clar number over this patch

cannot achieve the maximum number of benzene faces.

5.2.2 Extending Kekulé structures over basic patches with

other choices for the void and Clar faces

We show that the choice for the void faces and faces in C described in Section 5.2.1

is the only case over such a patch for which |A| and |B1(K)| + 2|B2(K)| cannot be
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minimized simultaneously. There are five options remaining for the choice of void

and Clar faces around the patch, and for each of these choices, only one extension is

necessary to minimize both the Clar and Fries deficits.

Suppose we let the blue faces be the void faces and the yellow faces be the Clar

faces. Then the Kekulé structure in Figure 5.2(b) has a minimal Fries deficit of

|B1(K)|+ 2|B2(K)| = 10. Every yellow hexagon is a benzene face, so we also have a

maximum number of faces contributing to the Clar count, with |A| = 2 (a Clar chain

of Type 2).

Suppose that the void faces are in color class that includes the pentagons (here,

the pink faces). Then the edges joining these faces complete a Kekulé structure over

the patch, as seen in Figure 5.3(b). |B1| = |B2| = 0, so the number of benzene faces

over the patch is clearly maximized. We must also choose a color class to be the Clar

faces. Since all hexagons in the remaining two color classes are benzene faces, |C|

is also maximized over the patch for either choice. Thus the same Kekulé structure

maximizes the number of Clar faces and the number of benzene faces over the patch.

Suppose that the yellow faces are the void faces. Begin a partial Kekulé structure

consisting of all edges that join two yellow faces. Extend this Kekulé structure so that

all blue and pink hexagons are benzene faces as in Figure 5.3(c). For either choice

of the Clar faces, |C| is clearly maximized over this patch. |B1| = |B2| = 2, and any

local change increases |B1(K)|+ 2|B2(K)| and decrease the number of benzene faces.

Thus both the Clar and Fries deficits are minimized in this extension.
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(a) A basic patch with a partial

face 3-coloring.

(b) The pink faces represent the

void faces.

(c) The Yellow faces are void.

Figure 5.3: Over a basic patch, we choose other color classes for the void and Clar

faces and consider extensions of the resulting Kekulé structure.
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2

2
1.5 1.5

1.5

r ≠ 0 mod 3
r = s mod 3 

(1,1)

(r+s)

(r)

Figure 5.4: The vertices of this auxiliary graph represent the pentagons in a fullerene.

The edges give the Coxeter coordinates of the segments between nearby pentagons.

We see that for every case except that described in section 5.2.1, the same Kekulé

structure maximizes the number of faces contributing to the Clar number and the

Fries number over the basic excluded patch.

5.3 Fullerenes over which the Clar and Fries num-

bers cannot be attained simultaneously

We saw in the previous section that there are six choices for the void faces and the Clar

faces. We also saw that given an excluded patch, the Kekulé structure of all but one

of these choices can be extended to the basic patch while simultaneously maximizing

the number benzene faces and the number of Clar faces. To force the existence of a
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patch in which these parameters cannot be maximized by the same Kekulé structure,

we need a fullerene with patches so that one of them is the exceptional patch for each

the six choices. One infinite class of examples can be found in Graver’s “Catalog of

Highly Symmetric Fullerenes,” pictured in Figure 5.4 with segment and angle types.

The paper describes these parameters [6]. For our purpose, it is only necessary to

understand that the vertices represent pentagonal faces and in our case the green

edges represent the excluded patches which, in our example, are pairs of pentagons

joined by a single edge. Furthermore, the partial face 3-coloring is different around

each of the six excluded patches. Thus regardless of which of the six color choices

for the color class of the void faces and the color class of the Clar faces is made,

one of the six patches is such that one Kekulé structure maximizes the Clar number,

while another Kekulé structure maximizes the Fries number, and the two parameters

cannot be maximized simultaneously.

An example with s = 1, r = 7 is shown on the next page. In the next chapter,

we show that a fullerene in this class with r ≥ 7 is widely separated. Thus the

Clar number is achieved by a Kekulé structure with Clar chains between pentagons

together in basic patches. In this coloring, the red faces indicate the set containing

C and the void set is contained in the blue color class. A pair of pentagons lies in

a basic patch on each interior corner. The edges in A are represented by thick red

edges and the remaining edges in the Kekulé structure are represented by thick blue

edges. A blue arrow indicates the excluded patch over which the number of faces in
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C and the number of benzene faces cannot be maximized simultaneously.

In the first figure, there are 272 benzene faces and there are 135 faces in C. In the

second figure, there are 274 benzene faces and 134 faces in C. The first figure attains

the Clar number but not the Fries number for the fullerene, and the reverse is true

for the second. Hence the set of faces that attains the Clar number is not contained

in a set of faces that attains the Fries number.
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Figure 5.5: The Clar faces are red and the void faces are blue. An arrow indicates

the patch over which the Fries and Clar deficits cannot be minimized simultaneously.

Figure (a) minimizes the Clar deficit, Figure (b) minimizes the Fries deficit. The

numerals represent faces in the sets B1 and B2.
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Chapter 6

Examples and Future Research

In this Chapter, we use the methods established in Chapters 2 and 3 to find the

Clar number for several classes of fullerenes. The first two examples are taken from

Graver’s “A Catalog of All Fullerenes with Ten or More Symmetries” [6], and the Clar

number is found when the parameters are such that we have pairs of pentagons that

are widely separated. In the next section, we find the Clar number for Icosahedral

Leapfrog fullerenes. Recall from Lemma 3.3 that for a fullerene with a Clar structure

(C,A), the number of faces in C is |V |
6
− |A|

3
. We regularly use Lemmas 3.13, 3.14,

and 3.15, which state that for a pair of pentagons joined by a segment with Coxeter

coordinates (m,n) where m ≥ n, a chain of Type 1 contributes m edges to A, a chain

of Type 2 contributes m + n edges to A, and a chain of Type 3 contributes 3m + 2

edges to A.
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e d

c

b

(p,p)

(r+s)

(r)

1.5

1.5
1.5

2

a

(a) The vertices of this auxiliary graph repre-

sent the pentagons in a fullerene. The edges

give the Coxeter coordinates of the segments be-

tween nearby pentagons.

to f'

to b'

a'

 to a

(b) The pentagon a′ in the fullerene Γ is

represented by a red vertex of the auxil-

iary graph. Here we see the patch sur-

rounding the pentagon a′.

Figure 6.1: Class of Fullerenes that generalizes the family described in Chapter 5.

The pentagons are paired over green segments with Coxeter coordinates (p, p).

6.1 Two Classes of Widely Separated Fullerenes

We first find the Clar number for a family of fullerenes that generalizes the class

given in Chapter 5. Figure 6.1(a) shows an auxiliary graph that represents a general

fullerene in this class. The vertices of the auxiliary graph represent the twelve pen-

tagons in the fullerene. The edges represent segments between nearby pentagons, and

the colors code the Coxeter coordinates of these segments, defined by the parameters

p, r and s. The numbers shown in Figure 6.1(a) represent angle types between two

segments joined by a common pentagon, and the meaning of these numerals is shown

in Figure 6.1(b). For a detailed description, see [6]. Different choices for parameters

r, p, and s result in all fullerenes within this family. Graver showed in [6] that the
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number of vertices for a fullerene in this family is 12r2 + 2s2 + 12rs + 12p(2r + s).

These fullerenes are widely separated when p is much smaller than r (an inequality is

given shortly). In this case, the six open Clar chains must pair pentagons joined by

segments with Coxeter coordinates (p, p), represented by green edges in Figure 6.1.

There are several cases depending on the congruence classes of r and s modulo 3. We

consider the congruence in Chapter 5 as well as the congruence resulting in a leapfrog

fullerene.

Suppose that r 6≡ 0 (mod 3) and r ≡ s (mod 3), giving r + s 6≡ 0 (mod 3). Let

a, b, c, d, e, f be pentagonal faces on the fullerene in clockwise order as shown in Figure

6.1. In a partial face 3-coloring that avoids the Clar chains between segments with

Coxeter coordinates (p, p), a and b are in different color classes since the segment

between a and b has coordinate (r + s), where r + s 6≡ 0 (mod 3). Similarly, the

segment between b and c has Coxeter coordinate (r), and so b and c are in different

color classes. Since r 6≡ 0 but r ≡ s (mod 3), r + s 6≡ r (mod 3). Thus a and c are

in different color classes. We see that a and d are in one color class, b and e are in a

second color class, and c and f are in a third color class. Each of these pentagons is

paired over a segment with another pentagon and the Coxeter coordinates over these

segments are (p, p), so each pair is in the same color class. We want to compare the

segment types for faces in the same color class. Without loss of generality, say that

a and d are red, b and e are yellow, and c and f are blue. Note that the Coxeter

coordinates between a and the yellow face b are (r+s), the coordinate between d and
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the yellow face e is (r). There are two possibilities for the position of the yellow color

class around a red pentagon. The pentagon a and the pentagon d must each have

a different position with respect to the yellow faces. Thus all six possible colorings

around these segments are represented. The type of Clar chain only depends on

the position of the faces in the color class containing C. This class is symmetric,

and regardless of the color chosen, there are two chains of each of the three types.

Thus the total contribution to A is 2p + 2(p + p) + 2(3p + 2) = 12p + 4. The next

closest pentagons that are unpaired have coordinates (r). This choice of Clar chains

is widely separated when r ≥ 12p+4
2
− 2 = 6p. For this class, the number of vertices is

|V | = 12r2 + 2s2 + 12rs + 12p(2r + s). Thus, when the chains are widely separated,

the Clar number is

12r2 + 2s2 + 12rs+ 12p(2r + s)

6
− 12p+ 4

3

= 2r2 +
1

3
(s2 − 4) + 2rs+ 4rp+ 2p(s− 2)

Note that s 6≡ 0 (mod 3), and so s2 ≡ 1 (mod 3). Thus the above expression is

always an integer.

Suppose that r ≡ s ≡ 0 (mod 3). By Proposition 1.4, this is a leapfrog fullerene.

All of the pentagons are in the same color class, say the set of red faces. We choose

one of the remaining color classes to contain the set C in order to avoid having any

chains of Type 3. Consider one pair of pentagons with Coxeter Coordinates (p, p)

and choose C to be the color class that allows this chain to be of Type 1. This
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is possible because the chain type is defined by the position of the Clar faces with

respect to the segment between the two pentagons. Once we choose the set C around

the first segment, the types for the remaining segments are forced. As we go around

this chain, the red color class remains the same (it is a perfect face-independent set)

and the remaining two colors are transposed. Thus, at the next pair of pentagonal

faces, the position of the remaining two color classes in relation to the pentagons has

switched, and the segment is of Type 2. The segment types alternate between Type

1 and Type 2, so we have three chains of Type 1, each contributing p edges to A,

and three chains of Type 2, each contributing 2p edges to A. The total number of

edges in A is 9p. Again, the Coxeter coordinates between the next closest unpaired

pentagons is (r). The (p, p) Clar chains are widely separated when r ≥ 9p
2
− 2. In

this case, the Clar number is

12r2 + 2s2 + 12rs+ 12p(2r + s)

6
− 9p

3

= 2r2 +
1

3
s2 + 2rs+ 4rp+ 2ps− 3p

Since s ≡ 0 (mod 3), the expression is always an integer.

We compute the Clar number for another class of fullerenes with a different sym-

metry group, and the auxiliary graph for this class is pictured in Figure 6.2. Again,

the vertices of the auxiliary graph represent pentagons. The five segments with ar-

rows connect to a common pentagon. The fullerenes in this class are attained by

choosing values for the parameters r and s. Graver showed in [6] that the number of

vertices for a fullerene in this class is 24p2 + 48pr + 20r2. The fullerenes are widely
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 (r)

(p, p+r)

(p+r, p)

Figure 6.2: The auxiliary graph for a class of symmetric fullerenes. Vertices rep-

resent pentagons, edges show the Coxeter coordinates of segments between nearby

pentagons. The pentagons paired over segments with coordinates (r).

separated when r ≡ 0 (mod 3) and r is small in comparison with p (an inequality

follows shortly). The paired pentagons are then connected by segments with Coxeter

coordinates (r), and the six open Clar chains are between these pairs, represented by

green edges in Figure 6.2. All coordinates between nearby pentagons are congruent

modulo 3, so this is a leapfrog fullerene by Proposition 1.4. All of the pentagonal

faces are in the same color class, so we choose the set C to be either of the two

independent sets of faces that do not contain the pentagons. Then each of the Clar
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chains must be of Type 1 or Type 2. For segments with only coordinate (r), Type 1

and Type 2 each contribute r edges to A. Thus the total number of edges in A over

the fullerene is 6r. We see that these chains are widely separated if for any other

pair of pentagons, one of the Coxeter coordinates is at least 6r
2
− 2 = 3r − 2. The

next closest pairs have coordinates (p+ r, p) and (p, p+ r). Thus if p ≥ 2r − 2, then

chains with Coxeter coordinates (r) are widely separated. The number of vertices for

fullerenes in this class is |V | = 24p2 + 48pr + 20r2, so the Clar number is

|V |
6
− |A|

3
=

24p2 + 48pr + 20r2

6
− 6r

3
= 4p2 +

10

3
r2 + 8pr − 2r.

The restriction that r ≡ 0 (mod 3) ensures that this is always an integer.

These few examples were chosen to illustrate our computational approach to the

Clar number. Using these techniques in conjunction with the Catalog [6], the Clar

number can be easily computed for many infinite families of fullerenes. In the next

section, we employ our theory to compute the Clar number for a family of fullerenes

in which the pentagons are not widely separated.

6.2 Icosahedral Leapfrog Fullerenes

The natural generalization of C60 is the class of icosahedral leapfrog fullerenes. To

construct an icosahedral fullerene, choose an equilateral triangle from the hexagonal

tessellation with vertices at the centers of hexagons and copy this triangle onto each

face of the icosahedron. The result is a fullerene with the twelve pentagonal faces at
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Dodecahedron

C60

    (4,2)
Icosahedral
  Fullerene

Figure 6.3: To form an icosahedral fullerene, replace each face of an icosahedron with

an equilateral triangle from the hexagonal tessellation with vertices at the centers of

faces.

the twelve vertices of the icosahedron. This construction was first given by Coxeter

[2]. An icosahedral fullerene is uniquely determined by the Coxeter coordinates (m,n)

of the sides of the triangle, and the icosahedral fullerene is a leapfrog fullerene exactly

when m and n are congruent modulo 3.

Consider an icosahedral leapfrog fullerene with parameters (m,n) and assume

without loss of generality that m ≥ n. Since the fullerene is leapfrog, any pair

of pentagons can be connected by a Clar Chain. The shortest segments between

pentagons have Coxeter coordinates (m,n), and thus 6m is a lower bound for A,

which would be achieved if we could pair pentagons with six Clar chains of Type 1.

Attaining this lower bound for |A| would show that the Clar number for Γ is |V |
6
−2m.

We show that such a pairing is possible.
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H3

H2

H1
P1

P3

P2

P4

P4

P5

P6

Figure 6.4: Five equilateral triangles that share P3 as a vertex.

Theorem 6.1. Suppose Γ is an icosahedral fullerene with parameters (m,n) where

m ≥ n and m ≡ n (mod 3). Then the Clar number for Γ is |C| = |V |
6
− 2m.

Proof. Since all of the segments between nearby pentagons are congruent modulo 3,

the pentagons are all in one color class, say red, in any an improper face 3-coloring

derived from a Clar structure. To attain the Clar number, we must choose the color

class containing C to be one of the remaining two colors. Consequently, all chains are

of Type 1 or Type 2. Choose a pair of pentagons P1 and P2 with Coxeter coordinates
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(m,n), to connect with a Clar chain. We can then choose the color class for C so that

the chain is of Type 1. We may assume that this is the blue color class, and begin

a partial face 3-coloring. Now choose a pentagon P3 that completes the equilateral

triangle with P1 and P2. There are five equilateral triangles with a P3 as a vertex,

with edges {P1, P2}, {P2, P4}, {P4, P5}, {P5, P6}, {P6, P1} in clockwise order (see

Figure 6.4). The improper face 3-coloring in Figure 6.4 results when the Clar chain

connecting P1 and P2 is of Type 1 and forces the chain connecting P3 and P5 to also

be of Type 1. We now show that this holds in general.

Assume that n 6= 0. (If all the segments have coordinates (m), then Type 1 and

Type 2 are the same, and any pairing will work). There is an (m,n) segment from

P3 to P1; consider the (m − 1, n − 1) segment contained in this segment between

hexagons H3 and H1 adjacent to P3 and P1, respectively. The coordinates between

these two faces are also congruent modulo 3, so these faces are in the remaining color

class, say yellow. We have constructed a Clar chain of Type 1 between P1 and P2,

and the face H1 is incident with an edge of this Clar chain. The faces of the partial

3-coloring alternate yellow and blue around the red pentagon P3. Thus as we reach

the second face from H3 on either side of the pentagon, both are in the yellow color

class, and shares an edge of the Clar chain. This is a Clar chain of Type 1 between

the pentagons P3 and P5.

If we choose Clar chains between adjacent pairs of pentagonal faces so that all

nearby segments have this relationship, then each of the Clar chains can be of Type
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Figure 6.5: The Leapfrog Icosahedron with a pairing of pentagons, all of Type 1.

1 with length m. There are many such pairings, and one is shown for an arbitrary

icosahedral fullerene in Figure 6.5. This set of chains meets the lower bound |A| = 6m

over the icosahedral fullerene, and so the Clar number is of Γ is |C| = |V |
6
− 2m.

6.3 Future Research

A major area for future research is the general structure of chain decompositions.

In particular, what is the Fries analog to Clar chains? We now understand non-

interfering Clar chains, and can use them to find the Clar number for fullerenes with

widely separated pairs of pentagons. The interaction between two or more chains is

not understood; if chains share adjacent faces, the number of edges contributed to
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A is often different from when the chains are non-interfering. As we saw in Figure

3.4, chains may also zigzag around pairs of pentagons, and the ability to connect two

pentagons through a Clar chain may depend upon the relation of the chain to other

pentagons.

As noted above, we can use Clar chains to find the Clar number for many classes of

fullerenes with widely separated pairs of pentagons. This method could be applied to

other classes of fullerenes to catalog the Clar number for large classes of fullerenes. We

would like to have an analogous understanding of widely separated sets of four or six

pentagons (we need only consider even groupings of pentagons, because we know that

pairs must be connected by open Clar chains). Fullerenes with two widely separated

sextets of pentagons would be a subset of the class of nanotubes. Nanotubes are

fullerenes with two caps each containing six pentagons and separated by a cylinder of

hexagons. We would like to distinguish between classes in which chains must connect

pentagons in different caps and those for which each of the open chains can connect

two pentagons within the same cap.

For fullerenes with widely separated pairs of pentagons, we have shown that any

Clar structure that attains the Clar number does not include closed Clar chains other

than those equivalent to chains of Type 3. It remains to be determined whether closed

chains may exist more generally.

We know that there are fullerenes for which the Clar number and the Fries num-

ber cannot be attained by the same Kekulé structure; that is, there is no Kekulé
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structure K such that a set of faces B3(K) attaining the Fries number contains an

independent subset attaining the Clar number. One open question would be to clas-

sify fullerenes that do satisfy this property. For example, it may be the case that in

leapfrog fullerenes, the Fries and Clar number can always be attained from the same

Kekulé structure.

In Chapter 2, we introduced chain decompositions and show that Clar and Fries

schemes can be completed into Kekulé structures for decompositions with detached

chains. We would like to show that these decompositions can be completed in general.

The decomposition of a fullerene could also be used to find bounds for the Fries

number. Under what restrictions does a chain decomposition result in the Fries

number, and when does the same decomposition result in both the Clar number and

Fries number?

Chain decompositions allowed us to find an improper face 3-coloring for fullerenes.

This approach may lead to a similar result for planar graphs in general. A 3-regular

plane graph contains open chains connecting pairs of faces of odd degree, and we can

consider an improper face 3-coloring from the expansion of the edges of these chains

as in Theorem 2.6.
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