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ABSTRACT

A fullerene is a 3-regular plane graph Γ = (V,E, F ) consisting only of

pentagonal and hexagonal faces. Fullerenes are designed to model carbon

molecules. The Clar number and Fries number are two parameters that

are related to the stability of carbon molecules. We introduce chain de-

compositions, a new method to find lower bounds for the Clar and Fries

numbers. In Chapter 3, we define the Clar structure for a fullerene, a less

general decomposition designed to compute the Clar number for classes of

fullerenes. We use these new decompositions to understand the structure

of fullerenes and achieve several results. In Chapter 4, we classify and give

a construction for all fullerenes on |V | vertices that attain the maximum

Clar number |V |
6
− 2. In Chapter 5, we settle an open question with a

counterexample: we construct an infinite family of fullerenes for which a

set of faces attaining the Clar number cannot be a subset of a set of faces

that attains the Fries number. We develop a method to calculate the Clar

number directly for many infinite families of fullerenes.
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extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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1.3 A clear field between two pentagons drawn in the hexagonal tessella-

tion. The pentagonal faces are blue. At each pentagon, a 60◦ wedge is

cut out and the two rays bounding the wedge are identified. . . . . . 9

1.4 Pairs of pentagons with Coxeter coordinates (4,1) and Coxeter coordi-

nate (4). The pentagons are shown in blue. . . . . . . . . . . . . . . 10

1.5 The leapfrog construction on a patch of a plane graph, Ω. . . . . . . . 12

2.1 All possible non-crossing couplings over a face of Γ. The edges in K

are shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Expansion of edges of distance 3 around f with face 3-coloring . . . . 24



LIST OF FIGURES viii

2.3 An augmented chain f0, t1, f2, ..., t8, f8 between pentagons f0 and f8.

Dark blue edges represent edges in T . . . . . . . . . . . . . . . . . . . 25

2.4 Case 2: The edges in T are dark blue; the faces in C are the yellow

faces not incident with edges in T . The yellow faces with green circles

are added to C to get C ′. The large red vertices belong to V ∗(C ′).

Over this chain, there are k = 16 edges in T and l = 5 non-consecutive

sharp turns. Thus the contribution to |V ∗(C ′)| is 4× 16− 6× 5 = 34 . 29
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Chapter 1

Introduction

1.1 Background and Definitions

A Fullerene is a 3-regular plane graph Γ = (V,E, F ) consisting only of pentagonal and

hexagonal faces. Fullerenes are designed to model carbon molecules. The vertices of

the graph represent carbon atoms and edges represent chemical bonds between them.

The term “fullerene” is also used to denote the actual carbon molecule. A specific

fullerene with 60 atoms, C60, was the first pure carbon molecule discovered and is

the most common naturally occurring carbon molecule. C60 was first synthesized by

Kroto, Heath, O’Brien, Curl and Smalley in 1985, and the discovery earned Kroto,

Curl, and Smalley a Nobel prize in 1996. In 1991, C60 was named Science Magazine’s

“Molecule of the Year.” Nanotubes are also examples of fullerenes. The smallest

fullerene is the dodecahedron.
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Carbon atoms form four chemical bonds. Three of these are strong bonds, and

one is weak. In the graphical representation of a fullerene, we represent the three

strong bonds by the edges in the graph. The fourth bond is represented chemically

as a double bond.

A perfect matching of a graph is a set of edges of Γ such that each vertex is incident

with exactly one edge. Over a fullerene, the edges of a perfect matching correspond

to double bonds, and chemists call this matching a Kekulé structure. We refer to

edges in a given Kekulé structure as Kekulé edges. Petersen’s Theorem states that

in a bridgeless 3-regular graph, there is always a perfect matching [10]. We therefore

know that a fullerene always has at least one Kekulé structure. Propositions 1.1, 1.2,

and 1.4 are standard in the literature on fullerenes and are presented here for future

reference.

Proposition 1.1. Let K be a Kekulé structure on a fullerene Γ = (V,E, F ). Let P

be the set of pentagons and H be the set of hexagons in Γ. Then

1. |K| = |V |
2

2. |E| = 3|V |
2

3. |P | = 12

4. |H| = |V |
2
− 10

Proof.
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1. Each vertex is incident with exactly one edge in the Kekulé structure, and every

edge in K is incident with two vertices. Thus |V | = 2|K|.

2. Every vertex is of degree 3, so 3|V | = 2|E|.

3. Summing together the number of vertices around each face gives 6|H| + 5|P |

vertices. Each vertex is incident with three faces, so 6|H|+5|P | = 3|V |. Substi-

tuting 3|V | = 2|E| gives 2|E| = 6|H|+ 5|P | and we know that |F | = |H|+ |P |.

By Euler’s formula, |V | − |E| + |F | = 2, so 6|V | − 6|E| + 6|F | = 12, and by

substitution, 2(6|H|+ 5|P |)− 3(6|H|+ 5|P |) + 6(|H|+ |P |) = 12. Simplifying

shows that |P | = 12.

4. 6|H|+ 5|P | = 3|V | and |P | = 12, so 6|H|+ 60 = 3|V |. Solving for |H| gives the

result.

1.2 The Clar, Fries, and Face-Independence Num-

bers

Given a Kekulé Structure on a fullerene Γ, a face of Γ may have 0, 1, 2 or 3 of its

bounding edges in K. The set of faces that have exactly i of their edges in K is

denoted by Bi(K). The faces in the set B0(K) are called the void faces of K, and

the faces in the set B3(K) are called the benzene faces of K. The number of benzene
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(a) The red faces are benzene faces. (b) In this Kekulé structure, none of the faces is

a benzene face.

Figure 1.1: Two Different Kekulé Structures. The thick blue edges represent edges

in the Kekulé structure.

faces over a fullerene is dependent upon which Kekulé structure is chosen. A patch of

a fullerene is pictured in Figure 1.1 with two different Kekulé structures. The thick

blue edges represent edges in each Kekulé structure. In Figure 1.1(a), the red faces

are all benzene faces; in Figure 1.1(b), none of the faces is a benzene face.

The Fries number of a fullerene Γ is the maximum number of benzene faces over

all possible Kekulé structures for Γ. We define a Fries set to be a set of benzene

faces that attains the Fries number for a Γ. The Clar number of a fullerene Γ is the

cardinality of a maximum independent set of benzene faces over all Kekulé structures

for Γ. We define a Clar set to be an independent set of benzene faces that attains the

Clar number for Γ. It has been found experimentally that the Clar and Fries numbers

for organic structures are related to the stability of the molecules. Clar and Gutman
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Figure 1.2: Kekulé structure with face 3-coloring. The void faces are in the blue color

class. Thick blue edges represent edges in the Kekulé structure.

each theorized that this correlation would hold for carbon molecules [1].

It is natural to ask whether a Clar set is always a subset of some Fries set, or

equivalently, if there is a Kekulé structure that simultaneously gives a Fries set and

a Clar set. It was generally assumed that this was true. Settling this open question

was the initial research problem for this dissertation, and in Chapter 5 we show that

this assumption is false by constructing an infinite family of fullerenes for which a

Clar set is never a subset of a Fries set.

To motivate the next result we consider a hexagonal patch: a plane graph in

which all faces are hexagons except for possibly one outside face, all vertices are

of degree 2 or 3 and all vertices of degree 2 are incident with the outside face. A

hexagonal patch may be thought of as either a region of the hexagonal tessellation

of the plane or a region of a fullerene that includes no pentagons. As a region of the
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hexagonal tessellation, a hexagonal patch inherits a face 3-coloring that is unique up

to interchanging the color classes. In a face 3-coloring of a hexagonal patch, each color

class is a maximal face-independent set. We construct a partial Kekulé structure over

such a patch in the following way: choose one color class to be the set of void faces.

Let all of the edges not bounding a void face be in the Kekuké structure. On the

interior of this patch, all of the faces in the other two color classes are benzene faces.

Figure 1.2 shows a patch with a face 3-coloring and associated Kekulé structure. The

blue faces are the void faces, the pink and yellow faces are all benzene faces and this

set is part of a potential Fries set. Furthermore, either the pink faces or the yellow

faces can be chosen as part of a potential Clar set. On the interior of this patch, two-

thirds of the faces are benzene faces and one-third of the faces form an independent

set of benzene faces. By Proposition 1.1 (3, 4), the number of faces in a fullerene is

approximately half the number of vertices. Thus we might expect the Fries number

of a fullerene Γ = (V,E, F ) to be bounded above by |V |
3

and the Clar number to be

bounded above by |V |
6

. We see in the proposition below that this is indeed the case.

Proposition 1.2. Let K be a Kekulé structure for a fullerene Γ = (V,E, F ).

1. |B3(K)| = |V |
3
− δF (K), where δF (K) =

|B1(K)|+ 2|B2(K)|
3

.

2. For an independent set X of faces in Γ, let V ∗(X) be the set of vertices not

incident with a face in X and let P ∗(X) be the set of pentagons not in the set

X. Then |X| = |V |
6

+ 2− |P
∗(X)|+ |V ∗(X)|

6
.
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3. For an independent set of faces X in B3(K), |X| =
|V |
6
− δC(K,X) where

δC(K,X) =
|V ∗(X)|

6
.

Proof.

1. Summing the number of edges from K bounding each face gives |B1(K)| +

2|B2(K)| + 3|B3(K)| and counts each of the edges in K twice. Thus 2|K| =

|B1(K)| + 2|B2(K)| + 3|B3(K)|, and by Proposition 1.1, |2K| = |V |. Solving

for |B3(K)| gives |B3(K)| = |V |
3
− |B1(K)|+ 2|B2(K)|

3
.

2. Since X is an independent set of faces, each vertex of Γ is incident with at

most one face in X. The total number of vertices incident with a face in X is 6

times the number of hexagons in X plus 5 times the number of pentagons in X:

6(|X|−(12−|P ∗(X)|))+5(12−|P ∗(X)|) = 6|X|−12+|P ∗(X)| = |V |−|V ∗(X)|.

Solving for |X| gives |X| = |V |
6

+ 2− |P
∗(X)|+|V ∗(X)|

6
.

3. Let X be an independent set of faces in B3(K). Every benzene face must be a

hexagon, so P ∗(X) = 12. Thus |X| = |V |
6
− |V

∗(X)|
6

.

We call δF (K) the Fries deficit of K and δC(K,X) the Clar deficit of K with

respect to the set X. Fowler [3] and Graver [9] characterized fullerenes that attain

the maximum of |V |
3

for the Fries number and gave a method for constructing all

fullerenes that attain this maximum. We show that the maximum possible Clar
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number is |V |
6
− 2 and in Chapter 4 we give a characterization and construction for

the fullerenes that achieve this maximum.

Over a region of a fullerene that includes a pentagon, a face 3-coloring is not pos-

sible and the Kekulé structure described above is disrupted. To compute or estimate

the Clar and Fries numbers, we isolate patches of the fullerene containing the pen-

tagons so that the remainder of the fullerene consists solely of hexagons and admits

a face 3-coloring. One can then construct a partial Kekulé structure by selecting one

color class to be the void set as described above. The problem is then to extend the

partial Kekulé structure over the patches containing pentagons while minimizing the

Clar and Fries deficits. One such decomposition was introduced by Graver in [7], in

which pentagons were connected by a “spanning tree” of polygonal paths of hexagons.

In [7] and [8], Graver introduced clear fields and Coxeter coordinates, two concepts

that are used to describe the structure of fullerenes. Let Γ = (V,E, F ) be a fullerene

and let Γ∗ = (F,E, V ) be its dual. Two faces f1 and f2 are contained in a clear field

if all shortest dual paths between the corresponding vertices f ∗1 and f ∗2 consist only

of degree-6 vertices. We say that two faces of Γ are nearby if they are contained in a

clear field. A clear field between two pentagons is pictured in Figure 1.3 and we often

depict a patch of a fullerene containing pentagons in this way. We draw the patch in

the hexagonal tessellation of the plane. At each pentagon, we insert a 60◦ wedge and

identify the two rays bounding the wedge.

For a pair of nearby faces, the position of the two faces in relation to one another
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Figure 1.3: A clear field between two pentagons drawn in the hexagonal tessellation.

The pentagonal faces are blue. At each pentagon, a 60◦ wedge is cut out and the two

rays bounding the wedge are identified.

is given by their Coxeter coordinates. Two faces are joined by edges running through

centers of hexagonal faces (corresponding to paths in the dual graph). A shortest

dual path between nearby faces can be oriented as two straight line segments with a

120◦ left turn between them, or in some cases, as one straight line segment. Examples

of these two cases are pictured in Figure 1.4. In the case with a 120◦ left turn, the

Coxeter coordinates are given as the ordered pair (m,n): a straight line segment

containing m faces before a 120◦ left turn, and another with n faces after the turn.

In the case with one straight line segment of length m, the coordinate is given just
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Figure 1.4: Pairs of pentagons with Coxeter coordinates (4,1) and Coxeter coordinate

(4). The pentagons are shown in blue.

as (m).

One important family of fullerenes is the class of leapfrog fullerenes and their

construction is given in [4]. We define the leapfrog construction more generally for an

arbitrary plane graph. Given a plane graph Ω = (V,E, F ), the leapfrog construction

produces Ω`, a new 3-regular plane graph called the leapfrog graph of Ω. To construct

Ω`, first take the dual Ω∗ = (F,E, V ) and then take the snub of Ω∗. For each vertex

f ∗ of degree j in Ω∗, the snub construction replaces f ∗ with j new vertices, one for

each edge incident to f ∗, and connects these j vertices in a j-cycle bounding a new

face f `. (See Figure 1.5.) A face-only vertex covering of a plane graph is a set of faces

X such that each vertex is incident with exactly one face of X.

Lemma 1.3. Let Ω` be the leapfrog of the plane graph Ω = (V,E, F ). Ω` is 3-regular

and has a face corresponding to each face of Ω and a face corresponding to each vertex

of Ω. A face of Ω` corresponding to a face of degree j from Ω has degree j. A face
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of Ω` corresponding to a vertex of degree k from Ω has degree 2k. The faces F ` of Ω`

corresponding to faces of Ω form a face-only vertex covering of Ω`.

Proof. A face f ∈ F of degree j becomes a vertex f ∗ of degree j in the dual Ω∗. The

vertex f ∗ becomes a face of degree j when we take the snub of Ω∗. A vertex v ∈ V

of degree k becomes a face v∗ of degree of degree k in Ω∗. When we take the snub

of Ω∗, each vertex bounding the face v∗ becomes an edge, and the corresponding face

fv in Ω` is of degree 2k. The snub operation replaces all vertices of Ω∗ by faces and

introduces new vertices only of degree 3: a vertex w of Ω` is incident with two edges

bounding a new face f ` (corresponding to a vertex f ∗ in Ω∗), and one edge that had

been incident to f ∗ in Ω∗. We see that the vertex w is incident with f ` and that f `

is adjacent to only faces that correspond to vertices in Ω. Thus the faces in F ` form

a face-only vertex covering of Ω`.

Note that if Γ is a fullerene, then the leapfrog graph Γ` is also a fullerene: since

all vertices of Γ have degree 3, the faces of Γ` corresponding to these vertices are all

hexagons. All faces of Γ` corresponding to faces of Γ are hexagons and pentagons.

Fowler showed in [3] that a leapfrog fullerene on |V | vertices attains the Fries number

|V |
3

. Graver proved in [9] that leapfrog fullerenes are the only fullerenes to satisfy

this upper bound. The face-independence number of a plane graph is the maximum

cardinality of a set of faces such that no two share an edge. By Proposition 1.2 the

face-independence number of a fullerene on |V | vertices is bounded above by |V |
6

+ 2.

Combining the results from [3] and [9], we have the following proposition.
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(a) A patch of a plane graph Ω. (b) We first take the dual of Ω

(c) The dual of Ω, Ω∗ (d) We take the snub of Ω∗.

(e) We now have the leapfrog graph Ω`.

Figure 1.5: The leapfrog construction on a patch of a plane graph, Ω.
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Proposition 1.4. The following are equivalent for a fullerene Γ = (V,E, F ):

1. The Fries number of Γ is |V |
3

;

2. The face-independence number of Γ is |V |
6

+ 2;

3. Γ is a leapfrog fullerene;

4. For each pair of nearby pentagons with Coxeter coordinates (m,n), m ≡ n (mod

3) and for each pair of nearby pentagons with Coxeter coordinate (m), m ≡ 0

(mod 3).

The equivalence of (4) to the first three statements is not obvious; for a proof, see

Graver [9]. One may view Proposition 1.4 as a constructive characterization of those

fullerenes that achieve the maximum possible Fries number of |V |
3

. These leapfrog

fullerenes also achieve the maximum possible face independence number of |V |
6

+ 2 by

including all pentagons in the independent set of faces. We show that the maximum

possible Clar number for a fullerene on |V | vertices is |V |
6
− 2 and prove a theorem

parallel to Proposition 1.4 that constructively characterizes all fullerenes that achieve

the Clar number |V |
6
− 2. The Clar number of a fullerene is less understood than the

Fries number, and the former parameter is the primary focus of this dissertation. For

small fullerenes, the Clar number has been calculated through computer searches.

We develop a theory to directly compute the Clar number for many infinite classes

of fullerenes.

In Chapter 2 we introduce a new decomposition designed to find lower bounds for
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the Clar and Fries numbers. In Chapter 3, we create a less general decomposition

specifically conceived to compute the Clar number. Each of these decompositions is

based on chains, a new concept we introduce to describe the structure of fullerenes.

We define chains formally in the next chapter, but essentially chains are alternating

sequences of faces and edges that connect pairs of pentagons over a fullerene.

Consider a pentagon f0 and an edge e1 such that exactly one vertex of e1 is incident

with f0 and exactly one vertex of e1 is incident with a face f1. If f1 is also a pentagon,

then f0, e1, f1 is the entire chain. If not, choose an edge e2 connecting f1 to a third face

f2, and so on. In Chapter 2, we show that the twelve pentagons can be paired by six

chains such that the six chains have no edges in common. The structure of these chains

can be complicated. Chains can twist around one another, making computations for

calculation the Clar number difficult. Furthermore, there may be many different chain

decompositions and it is not clear which one(s) actually give the Clar number. For

our applications we consider a less general case. To avoid chains twisting around one

another, we introduce the concept of non-interfering chains, permitting us to connect

paired pentagons by chains of minimum length. To eliminate the possibility of still

better chain decompositions, we introduce the concept of widely separated pairs of

pentagons to ensure that all alternate chain decompositions have larger Clar deficits.

These conditions restrict the classes of fullerenes for which we can compute the Clar

number. However, this restriction allows us to achieve several major results: we

construct an infinite family of fullerenes for which no Clar set is contained in a Fries
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set; we classify and give a construction for all fullerenes on |V | vertices that attain

the maximum Clar number |V |
6
−2; we develop a method to calculate the Clar number

directly for many infinite families of fullerenes.
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Chapter 2

Chains and Improper Face

3-Colorings

2.1 Improper Face 3-Colorings

As noted in Chapter 1, the faces of a hexagonal patch of a fullerene may be 3-colored.

The following general theorem was proven by Saaty and Kainen. We state it here for

future reference.

Theorem 2.1 (Saaty and Kainen [11]). A 3-regular plane graph is face 3-colorable if

and only if each face has even degree.

Over a patch of faces that includes a pentagon, a proper face 3-coloring is clearly

not possible: the five faces adjacent to a pentagon cannot alternate in color. Thus

any face coloring of a fullerene using three colors is an improper face 3-coloring. If two
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faces that share an edge have the same color, we call them incompatible faces. Let Γ

be a fullerene with a Kekulé structure K. We construct an improper face 3-coloring

based on this Kekulé structure. Given a face f of Γ, we say that an edge e exits f if

e shares exactly one vertex with f . We say that e lies on f if both vertices of e are

incident with f .

Lemma 2.2. Let Γ be a fullerene with Kekulé structure K.

1. An odd number of edges in K exit any pentagonal face of Γ. An even number

of edges (possibly 0) in K exit any hexagonal face.

2. Either all edges in K exiting f exit from consecutive vertices around f or f is

a hexagon with exactly two edges in K exiting f from opposite vertices.

Proof.

1. Let f be a face of Γ. If an edge in K lies on f , it is incident with two adjacent

vertices on f . Thus an even number of vertices (possibly 0) of f are covered by

edges in K that lie on f . If f is a hexagon, an even number of vertices remain

to be covered by edges from K that exit f . A pentagon always has an odd

number of vertices remaining from which edges in K exit.

2. Suppose exactly two edges e1 and e2 exit f . Then f is a hexagon, and either

e1 and e2 exit from vertices of f that are adjacent to one another or they are

separated by edges in K that lie on f , each of which covers two adjacent vertices.
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Thus e1 and e2 exit from adjacent vertices or opposite vertices (of distance 3)

around f .

Suppose more than two edges in K exit a face f . We know that an odd number

of edges in K exit a pentagon and an even number of edges in K exit a hexagon.

If exactly three edges exit a pentagon or four edges exit a hexagon, then there

are two vertices on the face remaining to be covered by an edge in K that lies

on f , so these two vertices must be adjacent. Therefore, the edges from K that

exit f exit from consecutive vertices around f . If all vertices incident with f are

covered by edges that exit f , then these vertices clearly exit from consecutive

vertices around f .

For each face f with edges from K exiting f , we construct a coupling of these exit

edges. If an even number of edges in K exit f , we group the exit edges into pairs. If

an odd number of edges in K exit f , all but one of the exit edges are coupled over f .

For each pentagon, call the uncoupled exit edge the initial edge for that pentagon.

We say that the coupling of edges in K exiting f is non-crossing if we can connect

the exit edges through lines over f that do not cross one another (see Figure 2.1).

Lemma 2.3. For each face f of Γ, the edges in K that exit f admit a non-crossing

coupling. All possible couplings around a face are pictured in Figure 2.1.

Proof. Let h be a hexagon in Γ. By Lemma 2.2, an even number of edges in K exit

h. If there are exactly two exit edges, couple these edges. If more than two edges in
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Figure 2.1: All possible non-crossing couplings over a face of Γ. The edges in K are

shown in red.

K exit h, these edges must be incident with consecutive vertices around h by Lemma

2.2. Couple these edges in the following way: Choose two edges in K that exit h

from adjacent vertices to form a couple. If there are two remaining edges in K that

exit h, couple these together. If there are four edges remaining to be coupled, couple

together two edges that exit from adjacent vertices of h. The remaining two edges

are then coupled and either exit from adjacent vertices of h or vertices on opposite

sides of h.

An odd number of edges in K exit each pentagon. If a single vertex of a pentagon

p is covered by an exit edge in K, this is the initial edge and is not coupled over

p. If more than one edge in K exits a pentagon, p, we know these edges exit from
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consecutive vertices on p. Couple the edges in the following way: Choose one edge

to be the initial edge. If exactly two exit edges remain, couple them together. If four

remain, couple two consecutive exit edges, and let the remaining two be a couple.

In all cases, this is a non-crossing coupling. At most one pair of edges from K

exits from non-adjacent vertices around f . Two pairs of exit edges coupled over a

face f cross only if both pairs exit from vertices that are not adjacent.

Each edge in K that is not an initial edge from a pentagon has two couplings,

one over each face that it exits. The twelve initial edges have at most one coupling.

Given a coupling for a fullerene Γ, define a chain in Γ to be an alternating sequence

f0, e1, f1, e2, ..., ek, fk of faces fi of Γ and edges ei in K such that ei and ei+1 are

coupled edges exiting fi for 1 ≤ i ≤ k − 1, e1 exits f0 and ek exits fk. We require

further that if e1 (or ek) is not an initial edge, f0 = fk and that e1 is coupled with ek

over f0. If f0 = fk, we say that the chain is closed. A closed chain contains no initial

edges and creates a circuit. If the chain f0, e1, f1, e2, ..., ek, fk contains initial edges,

we say that the chain is open. In this case, e1 and ek are initial edges, so f0 and fk

are pentagons. A chain f0, e1, f1, e2, ..., ek, fk makes a sharp turn at fi if ei and ei+1

exit from adjacent vertices of fi.

The assigned coupling of exit edges over each face determines six open chains

between pairs of pentagons and ensures that each edge in K is included in exactly

one chain. By the construction of the coupling in Lemma 2.3, the chains may share

faces but do not cross one another. For the remainder of the chapter, we assume that
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the couplings constructed are non-crossing.

Lemma 2.4. Let Γ be a fullerene with Kekulé structure K and a coupling assignment.

The set of edges in K decomposes into

1. Six open chains connecting pairs of pentagons;

2. Closed chains.

Proof. From the fullerene Γ = (V,E, F ) with a coupling, construct a new graph with

vertex set V and edge set K together with edges between coupled pairs. In this

graph, the twelve initial vertices exiting pentagons have degree 1 and the remaining

vertices have degree 2 (one edge from K and one from the coupling). Such a graph

decomposes into paths and circuits. The six paths that terminate at initial vertices of

pentagons correspond to the six open chains, and the remaining circuits correspond

to closed chains.

Let the set T denote the edges in K within the six open chains and S denote the

set of faces exited by edges from T . Ignoring the closed chains, we call the resulting

set of six open chains between pairs of pentagons a chain decomposition (S, T ) of Γ.

For a fullerene Γ with a chain decomposition (S, T ), we define an expansion E(S, T ) of

Γ as follows: “widen” each edge in T into a quadrilateral face by splitting its incident

vertices and joining each split pair by a new edge. Each vertex incident with an edge

in T becomes an edge of E(S, T ), each edge in T splits lengthwise into two edges of

E(S, T ).
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Lemma 2.5. Let Γ be a fullerene with a chain decomposition (S, T ). The expansion

E(S, T ) of Γ is face 3-colorable.

Proof. The coupling determines the continuation of the chain, so either both edges of

a coupled pair are in T or neither edge is in T . Thus an even number of edges from

T exit a hexagon, and an odd number exit a pentagon. Each edge e in T that exits a

face f in S becomes a quadrilateral face of E(S, T ), and the vertex of e incident with

f becomes an edge. If a face f in S is exited by n edges from T , then its degree in the

expansion E(S, T ) is increased by n. Therefore, every face in the expansion E(S, T )

has even degree. E(S, T ) is now a 3-regular graph with all faces of even degree. Thus

by Theorem 2.1, E(S, T ) has a face 3-coloring.

Theorem 2.6. Let Γ be a fullerene with a chain decomposition (S, T ). Then there

is an improper face 3-coloring over which the incompatibilities occur exactly at faces

that share an edge in T . Up to a permutation of colors, this improper face 3-coloring

is unique.

Proof. Give the expansion E(S, T ) a proper face 3-coloring. We can return to the

fullerene Γ by collapsing each of the quadrilateral faces back into edges in T while

retaining the coloring of the remaining faces. Two faces of Γ that share an edge in T

correspond to opposite faces around a quadrilateral of E(S, T ), and accordingly have

the same color. Two faces of Γ that share an edge not in T share the same edge of

E(S, T ), hence they are assigned different colors.
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Lemma 2.7. Let Γ be a fullerene with a chain decomposition (S, T ) and let f0, t1, f1, ...tk, fk

be an open chain. In the associated improper face 3-coloring of Γ,

1. All faces f0, f1, ..., fk are in the same color class.

2. All faces incident with one of the edges t1, t2, ..., tk are in a second color class.

Proof. Consider the face fi−1 in the open chain and assume the color assigned to the

corresponding face f ′i−1 in the expansion E(S, T ) is yellow. Thus the color assigned

to the face t′i of the expansion corresponding to the edge ti of Γ must be a different

color, say blue. Let gi and di denote the two faces that share the edge ti of Γ. In the

expansion the corresponding faces g′i and d′i are adjacent to f ′i−1 and t′i, so gi and di

must be in the remaining color class, red. The edge ti also exits the face fi, and so t′i,

g′i and d′i are adjacent to f ′i . Thus f ′i must be in the yellow color class. If the chain

makes a sharp turn when entering the next edge ti+1, then t′i+1 is adjacent to f ′i and

either g′i or d′i, and thus must be in the blue color class. If there is not a sharp turn,

then by Lemma 2.3, ti+1 exits fi from a vertex on the opposite side of fi, a distance

of three vertices. The faces incident with f ′i alternate in color, so t′i and t′i+1 must be

in the same color class.

2.2 Chains

Let Γ be a fullerene with a chain decomposition (S,T). Let f0, t1, f1, t2, f2, ...tk, fk be

an open chain of this decomposition. Each face fi is exited by the edges ti and ti+1
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gi

di
fifi-1 ti+1'ti'fi-1'

di'

gi'

fi'
gi

di
fifi-1

Figure 2.2: Expansion of edges of distance 3 around f with face 3-coloring

in the chain. The initial faces f0 and fk must be pentagons and the remaining fi

can be hexagons or pentagons. We define the augmented chain to be the open chain

together with the faces incident with edges in T over the chain. For each edge ti in

the open chain, we denote the two faces incident with it as di and gi, where di is the

face on the left if we are traversing the chain in increasing order over the indices (see

Figure 2.3). If a chain makes a sharp turn to the left when entering edge ti+1, then

di = di+1; if the chain makes a sharp turn to the right, then gi = gi+1. We say that

two augmented chains are separated if they do not share any vertices. We say that

an augmented chain is detached if it is separated from every other augmented chain

in this decomposition.

Let Γ be a fullerene with a chain decomposition and an improper face 3-coloring.

We now use the chain decomposition and the improper face 3-coloring to form a new

Kekulé structure for Γ that gives a lower bound for the Clar number and Fries number

over the fullerene.

Choose one of the three color classes and let C be the set of faces in this color

class outside of the augmented chains. We call this set of faces a Clar scheme for Γ.
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g3=g4

g8g7g6

g5

g1 g2

t8t7t6
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d8d5=d6 d7

d4

d3
t1

d2d1

f8f5 f6 f7

f4

f3f2f1f0

Figure 2.3: An augmented chain f0, t1, f2, ..., t8, f8 between pentagons f0 and f8. Dark

blue edges represent edges in T .

By Theorem 2.6, all improperly colored faces are contained in the augmented chains,

as are all of the pentagons. Therfore C is an independent set of hexagonal faces,

and every vertex outside of the augmented chains is incident with exactly one face

in C. Given a Clar scheme C, we construct a partial Kekulé structure for Γ in the

following way: For each face in C, choose three alternating bounding edges to be in

the matching. The Clar scheme includes all faces in the chosen color class outside of

the augmented chains, so each vertex outside of the augmented chains is covered by

the matching. We call this matching the Kekulé scheme derived from C.

In the theorem below, we show that given a Clar scheme C with detached chains, it

is possible to extend the Kekulé scheme derived from C over these augmented chains,

possibly adding additional independent benzene faces to the set containing C. Let
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C ′ be a maximal independent set of benzene faces containing C over the extension.

The cardinality of C ′ is a lower bound for the Clar number of the fullerene, and by

Proposition 1.2, |C ′| = |V |
6
− |V

∗(C′)|
6

where V ∗(C ′) is the set of vertices not incident

with a face in C ′. The contribution to |V ∗(C ′)| over a chain depends on the position

of the faces in C relative to the chain. For each case, we find the contribution to

|V ∗(C ′)| over the chain. Within an augmented chain f0, t1, f1, ..., tk, fk, we define

non-consecutive sharp turns to be those that do not share a common edge in the

chain.

Theorem 2.8. Let Γ be a fullerene with a chain decomposition (S, T ) into detached

augmented chains. Let C be a Clar scheme and KC the derived Kekulé scheme. Then

it is possible to complete KC to a Kekulé structure K, possibly adding additional

independent benzene faces. Let C ′ denote this enlarged set of independent benzene

faces containing C. Let f0, t1, f1, ..., tk, fk be a detached augmented chain and let di

and gi denote the faces incident with ti in the chain.

1. If the set C is contained in the same color class as the quadrilateral faces {t′i}

in the expansion E(S, T ), then the contribution to |V ∗(C ′)| over the chain is 2k.

2. If the set C is contained in the color class that includes the set of faces {di, gi}

and l is the number of non-consecutive sharp turns over the chain, then the

contribution to |V ∗(C ′)| is 4k − 6l.

3. If the set C is contained in the color class that includes the faces {fi}, then the
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contribution to |V ∗(C ′)| is 6k + 4.

Proof. The Kekulé scheme KC contains three alternating edges bounding each face

in C, so the only vertices not incident with a face in C are over the six augmented

chains. By Lemma 2.7 (1), the improperly colored faces {di, gi : 1 ≤ i ≤ k} over

the augmented chain are all in one color class and the faces fi in the open chain are

all in a second color class over the improper face 3-coloring of Γ. The type of repair

necessary to this chain depends only upon which of the color classes includes the set

C.

Case 1: The set C is contained in the same color class as the quadrilateral faces

{t′i} in the expansion E(S, T ) over the augmented chain. In this case, the only vertices

along the chain not covered by faces in C are the vertices incident with the edges ti.

Adding these k edges to KC extends the Kekulé scheme to cover the vertices of the

chain and contributes 2k vertices to |V ∗(C ′)|.

Case 2: The set C is contained in the color class that includes the (improperly

colored) set of faces {di, gi} incident with edges in T along the chain. For each pair

of faces incident with an edge in T , exactly one of the two faces is added to C ′, the

enlargement of C.

We know from the construction of the coupling in Lemma 2.3 that coupled edges

over a hexagon h exit either from opposite vertices on h (continue without a turn)

or through adjacent vertices (sharp turns). The chain f0, t1, f1, t2, f2, ...tk, fk has k

edges; let l be the number of non-consecutive sharp turns. Over segments of the open
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chain with no turns, there are two improperly colored faces for each edge in T and

which of these faces is included in C ′ is inconsequential. The unchosen face has one

edge incident with a face in C ′ and four remaining vertices that are not incident with

a face in C ′. These vertices are consecutive on the face and can be covered by adding

two Kekulé edges incident with the face. Each non-consecutive sharp turn contains

two edges in T . Therefore, there are k − 2l edges in T that each contribute four

vertices to |V ∗(C ′)|.

If the chain makes a sharp turn, there are three improperly colored faces pairwise

incident with two edges in T . Without loss of generality, if the chain makes a sharp

right turn from ti to ti+1, then the edge ti is incident with the faces di and gi = gi+1

and ti+1 is incident with gi = gi+1 and di+1. We choose the two faces di and di+1

outside of the turn to be in C ′. The single interior face gi = gi+1 is chosen not to

be in C ′. Two edges ti and ti+1 of gi = gi+1 are incident with faces in C ′, so there

are only two consecutive vertices on this interior face that must be covered by a new

Kekulé edge (see Figure 2.4).

If the chain makes consecutive sharp turns, the interiors of the turns alternate

between faces in C ′ and faces not in C ′ with two uncovered vertices. Each non-

consecutive sharp turn contributes two adjacent vertices to V ∗(C ′) that can be covered

by a single edge in K. On the other hand, in a consecutive pair of sharp turns, the

interior is covered by a face in C ′ and does not contribute any vertices to V ∗(C ′).

The total number of vertices in V ∗(C ′) over the chain is 4(k− 2l) + 2l = 4k− 6l. An
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Figure 2.4: Case 2: The edges in T are dark blue; the faces in C are the yellow faces

not incident with edges in T . The yellow faces with green circles are added to C to

get C ′. The large red vertices belong to V ∗(C ′). Over this chain, there are k = 16

edges in T and l = 5 non-consecutive sharp turns. Thus the contribution to |V ∗(C ′)|

is 4× 16− 6× 5 = 34 .

example is worked out in Figure 2.4.

Case 3: The set C is contained in the color class that includes the set of faces

{fi}. By Lemma 2.2, at least one edge of K exits the pentagon f0 and begins an

open chain that ends with the pentagon fk. First extend KC by adding the edges

t0, t1, ...tk to K. Since ti exits fi, fi cannot be a benzene face and thus cannot belong

to C ′ for 1 ≤ i ≤ k; since f0 is a pentagon, f0 cannot belong to C ′. Hence each vertex
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incident with fi belongs to V ∗(C ′). The faces fi are in the color class that includes

the set C, so no vertex incident with a face fi is covered by a face in C ′. For each

face fi, the vertices that are not incident with ti or ti−1 are either consecutive or two

adjacent pairs of vertices. In either case, pairs of these vertices can be covered by

edges of K. The vertices in V ∗(C ′) are exactly those incident with the faces fi. There

are k − 1 hexagons and two pentagons in the chain, so the contribution to |V ∗(C ′)|

is 6(k − 1) + 10 = 6k + 4.

Let Γ be a fullerene with a given chain decomposition and associated improper

face 3-coloring. A Fries scheme D consists of the faces in one of the three color

classes. In contrast with a Clar scheme, the set D includes the faces of that color

class within the augmented chains. We then construct the Kekulé scheme derived

from D, a partial Kekulé structure consisting of the edges that join two faces from

D. (See Figure 2.5.) Outside of the augmented chains, every vertex is on an edge

joining two faces in D, so all vertices outside of the augmented chains are incident

with exactly one edge in the Kekulé scheme derived from the Fries scheme.

Corollary 2.9. Let Γ be a fullerene with a chain decomposition in which the aug-

mented chains are detached. Let D be a Fries scheme and KD the Kekulé scheme

derived from D. Then there is a Kekulé structure K such that the symmetric differ-

ence KD4K is contained in the augmented chains.

Proof. Consider a fullerene Γ with a chain decomposition in which the augmented

chains are detached. Given a Fries scheme D and the Kekulé scheme KD derived
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(a) Here the Fries scheme, D, consists of the faces in the blue color class.

(b) Here the Fries scheme, D, consists of the faces in the pink color class.

Figure 2.5: The Kekulé scheme derived from D consists of edges joining two faces in

D. Dark blue edges represent Kekulé edges, red edges represent edges in T . In each

case, all vertices outside of the augmented chain are covered by exactly one edge in

the Kekulé scheme.
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from D, choose a second color class to contain a Clar scheme C, the set of hexagons

within the second color class and outside of the augmented chains. Construct a Kekulé

scheme KC derived from C consisting of three alternating edges on each face of C,

choosing the edges that join two faces in D. Outside of the augmented chains, this

KC is identical to KD: each of the edges in KC connects two faces in the color class

containing D. Since every face in the second color class is included in C outside of

the augmented chains, each of the vertices outside of the chains are covered by edges

from KC . By Theorem 2.8, we can extend KC to a Kekulé structure K while only

changing edges inside of the augmented chains. Thus K and KD differ only within

the augmented chains.

In summary, Corollary 2.9 shows that we can choose a set of faces D to be the

Fries scheme, we can create a Kekulé scheme KC based on C with the Fries scheme

in mind: for each face in C, we have two choices for the set of alternating bounding

edges to include in KC . We always choose faces that connect two faces in D. Since

outside of the chains, KC is equivalent to the Fries scheme we would derive directly

from D, extending KC to a Kekulé structure using the method of Theorem 2.8 forms

a Kekulé structure that differs from a Kekulé scheme derived directly from D only

within the augmented chains. We can then calculate a lower bound for the Fries

number from this Kekulé structure. This is not necessarily the best Kekulé structure

based on a Fries scheme; the corollary is showing only that one can be completed by

only repairing edges within the augmented chains.
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Theorem 2.8 and Corollary 2.9 show that when a fullerene admits a chain decom-

position with detached chains, we can construct Kekulé structures where the only

contributions to the Clar and Fries deficits come from the augmented chains.
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Chapter 3

Clar Structures

3.1 Clar Structures

Chapter 2 describes a method for calculating lower bounds for the Clar number of

a fullerene through a chain decomposition. In this chapter we construct a Kekulé

structure that achieves the Clar number for a fullerene and see that this structure

comes from a chain decomposition. We begin in a new general setting to describe

this construction.

Define a vertex covering (C,A) of a 3-regular plane graph Ω = (V,E, F ) to be a

set of faces C and edges A such that all vertices of Ω are incident with exactly one

element of C ∪ A.

Lemma 3.1. Let Ω be a plane graph with a vertex covering (C,A). On every face of

even degree, there is an even number (possibly zero) of edges in A that exit the face.
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On every face of odd degree that does not belong to C, there is an odd number of edges

in A that exit the face.

Proof. Let Ω be a plane graph with a vertex covering (C,A) and let f be a face of Ω

that is not in C. Note that every edge in A that lies on f covers two adjacent vertices

on f , as does every face in C adjacent to f . The proof proceeds exactly as in Lemma

2.2 of Chapter 2.

The vertex covering (C,A) is a face-only vertex covering if the set A is empty.

Lemma 3.2. If C is a face-only vertex covering of a plane graph Ω, then C must

contain all of the faces of Ω with odd degree.

Proof. We see in Lemma 3.1 that if p is a face of odd degree in Ω and p is not in a

vertex covering (C,A), then at least one edge from A exits p, so A 6= ∅.

Fowler and Pisanski referred to a face-only vertex covering in a fullerene Γ as a

perfect Clar structure [5]. We define a Clar structure (C,A) of a fullerene Γ to be a

vertex covering where C consists only of hexagonal faces and at most two edges in A

lie on any face of Γ. Given a Clar structure (C,A), choose three alternating edges on

each face in C. Together with the edges in A, these edges form a Kekulé structure K.

We say that K is a Kekulé structure associated with the Clar structure (C,A). Note

that the faces in C form a maximal independent set of benzene faces. Conversely,

given a fullerene Γ with a Kekulé structure K, we can form a Clar structure (C,A)

associated with K: take C to be a maximal independent set of benzene faces and A



CHAPTER 3. CLAR STRUCTURES 36

Figure 3.1: A benzene chain. Edges in A exit yellow faces from adjacent vertices to

form a short closed chain.

to be the remaining edges in K. The Clar number of a fullerene is given by a Clar

structure (C,A) with a maximum number of faces in C.

Lemma 3.3. Let Γ be a fullerene with |V | vertices and a Clar structure (C,A). Then

|C| = |V |
6
− |A|

3
.

Proof. We see in Proposition 1.2 that for an independent set C of benzene faces in a

Kekulé structure K, |C| = |V |
6
− |V

∗(C)|
6

where V ∗(C) is the set of vertices not incident

with a face in C. In a Clar structure (C,A), 2|A| = |V ∗(C)|.

We want to maximize the number of independent benzene faces, and we know

that |C| = |V |
6
− |A|

3
, so our goal is to find a Clar structure (C,A) that minimizes |A|.

Given a fullerene Γ with Clar structure (C,A), define a Clar chain to be an open or

closed chain using only edges from A. Let K be a Kekulé structure associated with

(C,A). For any face in C, we call the three edges in K bounding this face together

with the three faces exited by these edges a benzene chain (see Figure 3.1).
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Lemma 3.4. Let (C,A) be a Clar structure for a fullerene Γ. Let K be a Kekulé

structure associated with (C,A). Then there is a non-crossing coupling for K such

that:

1. The chains are either Clar chains or benzene chains corresponding to the faces

in C.

2. The coupling of edges in A can be chosen so that all edges coupled around pen-

tagons exit from adjacent vertices on the pentagon.

3. There are six open Clar chains connecting pairs of pentagons.

Proof. Let (C,A) be a Clar structure and let K be a Kekulé structure associated with

(C,A). We want to show that there is a non-crossing coupling of the edges in K that

has the properties above. We choose this coupling in accordance with Lemma 2.3 to

ensure that the edges in A do not cross one another. In this lemma, the first step to

couple the edges around a hexagon is to choose a pair of edges exiting the face from

adjacent vertices. Around a pentagon, the first step is to choose the initial exit edge,

and the second is to couple a pair of edges exiting from adjacent vertices.

Consider the three Kekulé edges bounding a face in C. These are not edges in A,

and therefore none can be the initial edge of a pentagon. Any two of these edges exit

a common face from adjacent vertices of that face. Thus for each face in C we can

couple the edges together to form a benzene chain. Only the edges in A remain to be

coupled. For each hexagon h of Γ, an even number of edges from A exit h by Lemma
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Figure 3.2: For Clar chains, edges in A coupled over pentagons must exit from adja-

cent vertices. The indicated couplings are avoided.

3.1. We can couple these edges around h in accordance with Lemma 2.3.

Consider a pentagon p of Γ. If a single edge from A exits p, this is the initial

edge and is not coupled over p. If more than one edge in A exits p, we know that

the edges from A exit from adjacent vertices on p. Couple the edges in the following

way: Choose edges exiting from adjacent vertices on p to be coupled. If a single

edge remains, it is the initial edge of the pentagon. If three remain, couple two edges

exiting from adjacent vertices and let the remaining edge be the initial edge of the

pentagon. From chapter 2, we see that there must be six open Clar chains connecting

pairs of pentagons.

This method is more restrictive than that of Lemma 2.3, because coupled edges

over pentagons only exit from adjacent vertices, ensuring (2) (see Figure 3.2).
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Let Γ be a fullerene with a Clar structure (C,A) with an associated Kekulé struc-

ture K and a coupling for K as in Lemma 3.4. We define the expansion E(C,A) to

be the graph obtained by the following operation: widen the edges in A into quadri-

lateral faces as described in Section 2.1. Each vertex incident with an edge in A

becomes an edge, and each edge in A splits lengthwise into two edges. Note that

the expansion in Chapter 2 only expanded edges contained in open chains; here there

may be additional edges in A contained in closed Clar chains. The advantage is that

the set C of independent hexagons is preserved; the faces of C and the quadrilateral

faces in E(C,A) corresponding to edges from A form a color class in E(C,A). Thus

in the associated improper face 3-coloring for Γ, no faces in the set C are improperly

colored.

Lemma 3.5. Let Γ be a fullerene with a Clar structure (C,A). The expansion E(C,A)

is face 3-colorable. All faces of E(C,A) corresponding to faces in C and edges in A in

Γ are in one color class of E(C,A). Furthermore, Γ has an associated improper face

3-coloring for which the only improperly colored faces are those that share edges in A.

For an open or closed Clar chain f0, a1, f1, a2, f2, ...ak, fk in this improper 3-coloring,

the faces fi are all in one of the remaining two color classes, and the faces incident

with edges in A over the chain are all in the third color class.

Proof. Let f be a face of degree d in the fullerene Γ. If j edges from A exit f , then

the corresponding face in E(C,A) has degree d + j. By Lemma 3.1, pentagons in

Γ are exited by an odd number of edges from A, hexagons by an even number of
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edges from A. Thus every face in E(C,A) is of even degree, and E(C,A) is face 3-

colorable by Theorem 2.1. Since (C,A) is a vertex covering of Γ, the faces of E(C,A)

corresponding to the faces in C and the edges in A comprise one color class. Suppose

that these faces are blue. For any open or closed chain f0, a1, f1, a2, f2, ...ak, fk (where

fk = f0 if the chain is closed), the argument given in Lemma 2.7 shows that the faces

fi are all in a second color class (red or yellow). Each face sharing an edge ai over

the chain is in the third color class (yellow or red).

Let f0, a1, f1, a2, f2, ...ak, fk = f0 be a closed Clar chain. The fullerene is now

partitioned into three parts: the chain f0, a1, f1, a2, f2, ...ak, fk = f0, and two regions.

We say that the region containing the least number of pentagons is the interior of

the chain and the region on the other side of the chain is the exterior. If both sides

contain the same number of pentagons, we arbitrarily choose one region to be the

interior. Define a chain circuit C around the interior to be an elementary circuit

containing the edges ai connected by paths on the boundaries of the fi. There are

many possible circuits for the closed chain f0, a1, f1, a2, f2, ...ak, fk = f0, depending

on whether we connect each edge ai to ai+1 by a path of vertices on fi incident with

the interior or the exterior of the Clar chain for each i. For a chain circuit C around a

closed Clar chain f0, a1, f1, a2, f2, ...ak, fk = f0, we define the interior of C to be the

interior of f0, a1, f1, a2, f2, ...ak, fk = f0 together with the faces fi that do not share

an edge of C with the interior of the chain f0, a1, f1, a2, f2, ...ak, fk = f0.

Lemma 3.6. Let Γ be a fullerene with a Clar structure (C,A) and an associated cou-
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pling. If |C| is the Clar number for Γ, then every closed Clar chain f0, a1, f1, a2, f2, ...ak, fk =

f0 has a pentagon in its interior.

Proof. Consider a closed Clar chain with no pentagons in its interior. There may

additionally be nested closed chains in the interior; let f0, a1, f1, a2, f2, ...ak, fk = f0

be the innermost closed Clar chain. For i = 1, 2, ..., k, let gi and di be the faces

incident with ai on the interior and exterior of the chain, repectively. Give Γ the

improper face 3-coloring associated with (C,A), and assume that C is contained in

the blue color class. By Lemma 3.5, all faces fi belong to a second color class, say

yellow, and all gi and di are in the remaining color class (red). By Lemma 3.4 Clar

chains are non-crossing. Consequently, there are no edges from A in the interior

of this innermost Clar chain. Thus by Lemma 3.5, all faces are in the interior of

f0, a1, f1, a2, f2, ...ak, fk = f0 properly 3-colored.

Consider two faces gi and di that share an edge ai of the chain. The faces gi and

di are red, and each is adjacent to the yellow faces fi−1 and fi. The interior face gi

conforms with the proper face 3-coloring of the interior of the chain. If the interior

coloring is extended to the exterior face di, then di would be a blue face. We see

that this is the case for all of the improperly colored faces dj, gj incident with edges

aj over the chain for 1 ≤ j ≤ k. The faces {dj} together with the set of blue faces

in the interior of the chain form an independent set. If we interchange the blue and

red color classes within the interior of the chain, then the set of faces in the interior

together with the faces {dj} are properly face 3-colored. All vertices on the chain
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circuit and its interior are then incident with exactly one blue face. Now let C ′′ be

the collection of all blue faces and let A′′ = A\{a1, a2, ..., ak}. Now (C ′′, A′′) is a Clar

structure, and |C ′′| > |C| by Lemma 3.3. Therefore, if (C,A) is a Clar structure that

attains the Clar number, then a closed chain containing only hexagons in its interior

cannot exist.

Lemma 3.7. A chain circuit C is of even length if and only if its interior contains

an even number of pentagons.

Proof. Suppose that there are h hexagonal faces and p pentagonal faces in the interior

of C. If an edge of one of these faces is on the circuit, then the edge is incident with

only one of these faces. If the edge is in the interior, it is incident with two of these

faces. Let I be the number of edges in the interior. Then the number of edges on the

circuit is 6h+ 5p− 2I = 2(3h− I) + 5p. So the number of edges on the circuit is even

exactly when p is even.

Lemma 3.8. Let f0, a1, f1, a2, f2, ...ak, fk = f0 be a closed Clar chain such that each

of the fi’s are hexagons. Then all of its chain circuits have even length.

Proof. By the construction of the coupling for the Clar structure (C,A), the paired

edges exiting a hexagon fi exit from adjacent vertices of fi (a sharp turn) or from

vertices on opposite sides of f . The distance traveled by the chain circuit from the

edge ai to ai+1 is odd (distance 1, 5, or 3). As the chain circuit goes around a hexagon

fi from ai to ai+1, it passes through an even number of vertices not included in the

coupled edges a1, a2, ..., ak. Thus the chain circuit is of even length.
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Lemma 3.9. For any closed Clar chain, there exists a chain circuit that includes an

even number of pentagons on its interior.

Proof. By Lemmas 3.7 and 3.8, if each of the faces fi in the closed Clar chain

f0, a1, f1, a2, f2, ...ak, fk = f0 is a hexagon, then there is an even number of pen-

tagons on the interior regardless of how the chain circuit is chosen. Suppose that

there is an odd number of pentagons in the interior of the chain. By Lemma 3.7,

some face fj must be a pentagon. We can choose the chain circuit to traverse the

outside of this pentagon, and the inside of every other face fi on the chain. We have

chosen a chain circuit for f0, a1, f1, a2, f2, ...ak, fk = f0 that contains an even number

of pentagons in its interior.

In Chapter 2, to define an improper face 3-coloring, the closed chains are ignored,

and we define a face 3-coloring for the graph E(Γ) obtained by expanding only the

edges in open chains joining pentagons and then choosing a color class for the Clar

faces. If we ignore the closed chains here, it may be the case that none of the resulting

color classes contains C. Hence we cannot ignore closed chains in this chapter.

We have shown that in a coupling of a Clar structure (C,A), the Clar chains are

a special case of the chains in Chapter 2, and thus the lemmas already proven about

chains hold. Define a straight chain segment to be an alternating chain f0, a1, f1, a2, ...ak, fk

of edges in A and hexagons fi such that the edges ai and ai+1 exit from opposite ver-

tices of fi for each i. A straight chain segment with k edges in A connects a pair

of faces with Coxeter coordinates (k, k). Any edge in A is part of a straight chain



CHAPTER 3. CLAR STRUCTURES 44

Figure 3.3: A straight chain segment with six edges in A joining a pair of faces with

Coxeter coordinates (6, 6). Dark blue edges represent edges in A.

segment of length at least one. Thus any Clar chain between two faces is a sequence

of straight chain segments. We can visualize a straight chain segment with k edges

as the diagonal of a parallelogram with edges of length k through faces and with the

straight chain along the diagonal of the parallelogram (see Figure 3.3).

Lemma 3.10. Every open Clar chain in a fullerene Γ with Clar structure (C,A) is

a sequence of straight chain segments with only sharp turns.

Proof. By Lemma 3.4, the coupling is chosen so that edges in A coupled over a

pentagon exit from adjacent vertices. Thus Clar chains always make sharp turns as

they pass through pentagons. Because the coupling is non-crossing, coupled edges

through a hexagon exit from adjacent vertices (a sharp turn) or vertices on opposite

sides of the hexagon (a continuation of a straight chain segment).
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We say that a Clar structure (C,A) has a coupling with non-interfering Clar

chains if for every pair of pentagons p1 and p2 joined by a Clar chain there is no other

pentagon that has a vertex in common with any shortest chain joining p1 and p2 in

any coupling of (C,A). For the rest of this paper, we consider pairs of pentagons

that can be joined by non-interfering Clar chains. When more than two pentagons

interact, chains can become quite complicated; a small example is given in Figure

3.4(a) containing pentagons p1, p2, p3, and p4. In this example, nearby pentagons p1

and p2 are in different color classes and cannot be joined directly with Clar chains

by Lemma 3.5. We must instead take a Clar chain between p1 and p3 that twists

around the pentagon p4. If we consider a similar patch that does not contain the

pentagons p2 and p4 (see Figure 3.4(b)), then the pentagons p1 and p3 are in different

color classes and cannot be connected by a Clar chain. The ability to connect a pair

of pentagons by a Clar chain can depend upon the positions of other pentagons when

we consider the more general case.

Restricting our attention to non-interfering Clar chains still permits us to solve

two major open problems: to classify fullerenes that attain the theoretical maximum

for the Clar number, as well as to find classes of fullerenes for which the Clar and

Fries number cannot be attained with the same Kekuklé structure. We are also able

to compute the Clar number for several classes of fullerenes. In future research, we

aim to develop an understanding of Clar chains more generally, but for now, we focus

on non-interfering chains.
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p4

p3

p2

p1

(a) A Clar chain connecting pentagons p1 and p3, another

connecting pentagons p2 and p4.

p1

p3

(b) When we remove the other two pen-

tagons, p1 and p3 cannot be connected by

a Clar chain. White faces represent faces

that cannot be colored in our improper

face 3-coloring.

Figure 3.4: Chains can become complicated when more than two pentagons interact.

Lemma 3.11. Assume two pentagons are joined by a non-interfering Clar chain.

Then any shortest Clar chain joining them is composed of alternating right and left

turns.

Proof. If a Clar chain takes two consecutive right turns, we have turned 120◦ and

are traveling toward the first straight chain segment. Thus a face reached by two

consecutive right turns could be reached by two shorter segments.

Suppose the chain connecting pentagons p1 and p2 consists of a straight chain

segment with k edges in A, then a sharp left turn followed by a straight chain segment

with l edges in A. Begin with the pentagon p1. The first straight chain segment goes

to the face with Coxeter coordinates (k, k). The side of the second parallelogram goes

backwards 2l faces along the side of the first parallelogram (in the first coordinate)
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and l faces in the positive direction in the second coordinate. If 2l ≤ k, the second

parallelogram ends at p2 with coordinates (k − 2l, k + l). (See Figure 3.5(a).) If we

instead have a sharp right turn and 2l ≤ k, then the coordinates are reversed, and

the segment has Coxeter coordinates (k + l, k − 2l).

If 2l > k ≥ l, then going backwards 2l faces in the first coordinate after a sharp

left turn takes us to k−2l < 0. Since this is negative, we re-orient the segment so that

it is in the positive direction, and we have 2l − k as our second Coxeter coordinate.

In the case of a sharp left turn, going backwards 2l faces takes us past the point (k);

it takes us to the coordinate (2k− 2l, 2l− k). Going forwards l faces in the now-first

coordinate takes us to (2k − l, 2l − k). (See Figure 3.5(b).) For a sharp right turn,

the Coxeter coordinates of the segment are (2l − k, 2k − l).

Lemma 3.12. Suppose two faces of a fullerene Γ can be connected by a Clar chain

and the orientations of the parallelograms are given. If the segments alternate between

right and left turns, the sum of the edges in A over any such Clar Chain is the same

regardless of the number of turns.

Proof. If a chain alternates between right and left turns, the jth parallelogram is in the

same orientation as the first parallelogram for j odd, and in the same orientation as the

second for j even since all turns are at 60◦ angles. Any parallelograms with the same

orientation are adding edges to A in the same direction. Thus one parallelogram with

k edges in |A| reaches the same face as r parallelograms with k1, k2, ...kr parallelograms

in the same orientation such that k1 + k2 + ... + kr = k. So a parallelogram with k
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(0, 0)p1

p2 (5, 5)
(5-4, 5+2)

(a) A straight chain segment of length k =

5 followed by a straight chain segment of

length l = 2. The Coxeter coordinates be-

tween p1 and p2 are (1, 7).

(0, 0)p3

p4

(5, 5)(10-4, 8-5)

(b) A straight chain segment of length k = 5 fol-

lowed by a straight chain segment of length l = 4.

The Coxeter coordinates between p3 and p4 are

(6, 3).

Figure 3.5: Pairs of pentagons connected by two straight chain segments. The pen-

tagonal faces are yellow.

edges in A followed by a parallelogram with l edges in A reaches the same point

as any number of parallelograms with alternating turns such that diagonals of the

odd-numbered parallelograms add up to k and the diagonals of the even-numbered

parallelograms add up to l.
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3.2 Calculating the Number of Edges in A over a

Clar Chain

To find the Clar number for classes of fullerenes, we would like to calculate the number

of edges in A over Clar structures (C,A) for these fullerenes, since |C| = |V |
6
− |A|

3
.

In this section, we calculate |A| over non-interfering Clar chains. We show that if

two pentagons can be connected by a non-interfering Clar chain, then there is a Clar

chain between them consisting of at most two straight chain segments. By Lemmas

3.11 and 3.12, any chain that alternates between right and left turns contributes

a minimum number of edges to A. Thus a chain with a single turn contributes a

minimum number of edges to A.

To describe Clar chains in the non-interfering case, consider two pentagons p1 and

p2 that are joined by a Clar chain. Start with the hexagonal tessellation and at each

pentagon, cut out a 60◦ wedge and identify the rays bounding the wedge. Assign the

faces the improper face 3-coloring given by the chain. The chain and the two wedges

split our region and the face 3-colorings above and below the split must match when

the wedges are collapsed (see Figure 3.6). For any Clar structure (C,A), the edges

in A in the Clar chain between p1 and p2 together with the faces in C must form a

vertex covering over this patch.

Let p1 and p2 be pentagons connected by a Clar chain. Suppose that the Coxeter

coordinates of the segment between p1 and p2 are (m,n). We can assume without loss
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P2

P1

Figure 3.6: The Coxeter coordinates of the segment between pentagons p1 and p2 are

(8, 2). If the yellow faces contain the set C, this chain is of Type 1. If the red faces

contain the set C, the chain is of Type 2. If the blue faces contain the set C, this

chain is of Type 3.

of generality that m ≥ n. Begin with p1 at the origin and consider a parallelogram

with sides parallel to the directions of the Coxeter coordinates (see Figure 3.6). The

chain is of Type 1 if all four of the vertices of p1 outside of the parallelogram are

covered by a face in C. The chain is of Type 2 if exactly two of the vertices outside

of the parallelogram are covered by a face in C. The chain is of Type 3 if none of the

vertices outside of the parallelogram is covered by a face in C.



CHAPTER 3. CLAR STRUCTURES 51

Lemma 3.13. Let p1 and p2 be two pentagons joined by a chain of Type 1 and let

(m,n) (or (m)) be Coxeter coordinates of the segment between them, where m ≥ n.

Then this chain contributes m edges to A and m ≡ n (mod 3).

Proof. Suppose the first straight segment has a edges in A and the second has b

edges in A. The Coxeter Coordinates between p1 and the face at the sharp turn

are (a, a). The next straight segment has Coxeter Coordinates (b, b), and travels

backwards b faces in the direction of the second coordinate, arriving at a face with

coordinates (a, a− b). Our final step goes b steps in the first coordinate and another

b steps backwards in the second coordinate. The Coxeter coordinates of the segment

between p1 and p2 are then (a + b, a − 2b), which we know is equal to (m,n). Since

a+ b and a− 2b are congruent modulo 3, m ≡ n (mod 3). Solving for a and b we find

that a = n+2m
3

and b = m−n
3

. The number of edges in the two straight chain segments

is a+ b = m. This argument works in the special case where the segment between p1

and p2 has Coxeter coordinate (m) since (m) is equivalent to the Coxeter coordinates

(m, 0).

A completed chain of Type 1 is shown in Figure 3.7(a).

Lemma 3.14. Let p1 and p2 be two pentagons joined by a chain of Type 2 and let

(m,n) be Coxeter coordinates of the segment between p1 and p2, where m ≥ n. This

chain contributes m+ n edges to A and m ≡ n (mod 3).

Proof. By definition of Type 2, exactly two of the vertices of p1 are covered by a

face in C. Let v1, v2, v3, v4, v5 be the vertices bounding p1 in clockwise order, with
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P1

P2

(a) A chain of Type 1 connecting pentagons p1 and

p2. The blue faces contain the set C.

v2

v1

P1

P2

(b) A chain of Type 2 connecting pentagons p1 and

p2. The red faces contain the set C. Vertices v1

and v2 are the vertices of p1 incident with a face

in C outside the parallelogram.

Figure 3.7: Chains of Type 1 and 2. Thick blue edges are edges in A.

v1 and v2 incident with a face in C. A chain of Type 1 is not possible: the first

edge would exit from the vertex v4, and the vertices v3 and v5 would not be covered

by an element of C ∪ A. The first edge in A must exit p1 from v3 or v5, and we

cover the remaining two adjacent vertices with another face in C. Thus there are two

choices for the direction of the first parallelogram; by symmetry, the direction chosen

is inconsequential.

Choosing to exit v5, we use two straight chain segments to reach p2 with the first
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h1 p1

Figure 3.8: A chain of Type 3 begins with a pentagon p1 and must also start a closed

Clar chain through the hexagon h1. Here the blue faces contain the set C, the thick

edges represent edges in A.

containing a edges in A and the second containing b edges in A, where a ≥ b. (See

Figure 3.7(b).) If we begin with the coordinates (0, 0), the coordinates at the end of

the first parallelogram are (a, a), and we are at distance (b, b) from p2. When traveling

along the next parallelogram, we go backwards 2b faces along the first parallelogram

(in the direction of the second coordinate) and b faces in the direction of the first

coordinate. The difference from Type 1 is that here, 2b > a. We end with the

coordinates (2a− b, 2b−a)=(m,n). Solving for a and b gives a = 2m+n
3

and b = 2n+m
3

and hence a+ b = n+m. Since m− n = 3a− 3b, m ≡ n (mod 3).

A completed chain of Type 2 is shown in Figure 3.7(b).

Lemma 3.15. Let p1 and p2 be two pentagons joined by a chain of Type 3 and let

(m,n) be Coxeter coordinates of the segment between them, where m ≥ n. Then this
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chain contributes 3m+ 2 edges to A and m ≡ n (mod 3).

Proof. By definition of Type 3, none of the vertices of p1 is covered by a face in C.

This means that p1 and p2 are in the independent set of faces containing C. Thus all

the vertices of the pentagon must be covered by edges in A. If exactly one edge in A

exits the pentagon, then the other four vertices of the pentagon are covered by two

edges in A lying on the pentagon. These two edges exit a hexagon h1 and are coupled

over h1, then continue a Clar chain with two adjacent hexagons each adjacent to p1

(see Figure 3.8). The Clar chains beginning with h1 end with a hexagon h2 adjacent

to p2. The union of the two chains connecting h1 and h2 form a closed chain around

the interior chain connecting p1 and p2. Because p1 is not adjacent to any face in C,

we can choose the direction of the Clar paths to be in the direction of the first Coxeter

coordinate. The coordinates between the h1 and h2 are also (m,n). The interior chain

connecting the pentagons p1 and p2 is a chain of Type 1; the interior consists of two

straight chain segments of lengths a and b, where a+ b = m. By Lemma 3.13, m ≡ n

(mod 3), and the interior Clar chain joining p1 and p2 contributes m edges to |A|.

The Clar chains between h1 and h2 are parallel to the open chain. One chain is of the

same length, and the other travels around the parallelogram, so its length is a+ b+2.

The total number of edges in A is 3m+ 2. This proof works in the special case where

the segment between p1 and p2 has Coxeter coordinate (m) since (m) is equivalent to

the Coxeter coordinates (m, 0).

To show that 3m+ 2 edges are needed, note that the shortest Clar chain between
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P1

P2

Figure 3.9: A chain of Type 3 connects pentagons p1 and p2. Thick blue edges

represent edges in A.

pentagons with coordinates (m,n) is of length m. This chain contains m−1 hexagons

and two pentagons. We know that none of the vertices on these faces is covered by

a face in C, so each of these vertices must be covered by an edge from A. There are

6(m− 1) vertices from the m− 1 hexagons and ten vertices from the two pentagons.

These 6m+ 4 vertices need 3m+ 2 edges in A to cover them.

Lemma 3.16. Let Γ be a fullerene with a Clar structure (C,A) and a coupling. If

|C| is the Clar number for Γ, then any closed Clar chain with exactly two pentagons

p1 and p2 in its interior together with the open Clar chain connecting the pentagons
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contributes the same number of edges to A as a Clar chain of Type 3 between p1 and

p2.

Proof. Let f0, a1, f1, a2, f2, ...ak, fk = f0 be a closed Clar chain with exactly two pen-

tagons p1 and p2 in its interior. By Lemma 3.4, there are six open Clar chains

connecting pairs of pentagons, and the Clar chains are non-crossing. Thus there

must be some open Clar chain p1, e1, h1, e2, h2, ...el, p2 joining p1 and p2 that is con-

tained completely inside the closed Clar chain f0, a1, f1, a2, f2, ...ak, fk = f0. Give Γ

an improper face 3-coloring associated with the Clar structure (C,A). By Lemma

3.5, we can assume without loss of generality that the faces of C are blue in this face

3-coloring, and that the faces f0, f1, f2, ...fk = f0 of the closed chain are red.

Consider the case in which the faces p1, h1, h2, ...p2 of the open chain are also in the

red color class. We can remove the closed chain by interchanging the colors blue and

yellow in the interior. After this change, the pentagons p1 and p2 are still red. Since

they are not in the color class containing C, the chain between the pentagons is of

Type 1 or Type 2. We know from Lemmas 3.13 and 3.14 that for a pair of pentagons

with Coxeter coordinates (m,n), m ≥ n, a chain of Type 1 contributes m edges to A

and a chain of Type 2 contributes m+n edges. A closed chain surrounding them has

at least 2m edges in A, and there remain edges from A in the open chain. Therefore,

deleting the closed chain and interchanging the interior face colors decreases A. Such

a closed chain does not exist in a Clar structure that attains the Clar number.

Consider the case in which the faces of the open chain p1, h1, h2, ...p2 are in the
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yellow color class. Removing the closed chain interchanges the colors of the blue and

yellow faces, so p1 and p2 would be in the blue color class. Since the pentagons cannot

be in the set C, we no longer have a vertex covering (C,A). This results in a chain

of Type 3: there are 3m+ 2 edges in A connecting the pentagons, and all vertices of

the pentagons are covered by edges in A. The open chain p1, e1, h1, e2, h2, ...el, p2 is in

the interior of f0, a1, f1, a2, f2, ...ak, fk = f0. Thus if the coordinates between p1 and

p2 are (m,n) with m ≥ n, then an open chain containing these pentagons must have

length at least 2(m + 1). Therefore, the open chain p1, e1, h1, e2, h2, ...el, p2 together

with the closed chain f0, a1, f1, a2, f2, ...ak, fk = f0 contributes at least 3m + 2 edges

to A.

A chain of Type 3 occurs when the independent set containing C also contains the

paired pentagonal faces of an open chain. To change the color class of the pentagons,

we use a closed chain and then connect the pentagons with a chain of Type 1.

Let Γ be a fullerene that allows a coupling of a Clar structure with non-interfering

Clar chains. Let (mi, ni) be the Coxeter coordinates of the segments between each

pair of pentagons connected by a Clar chain in this coupling for 1 ≤ i ≤ 6. For an

arbitrary Clar structure of Γ, there are three choices for the set of faces containing C

outside of the six clear fields containing the pairs of pentagons. These three choices

give three distinct Clar structures. Given one of these Clar structures, the number of

edges contributed to |A| by the pair with Coxeter coordinates (mi, ni) is max{mi, ni}

if the chain is of Type 1, mi +ni if the chain is of Type 2, and 3 max{mi, ni}+2 if the
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chain is of Type 3. For each of the three choices, we determine the total number of

edges in |A| and let M be the minimum of these three sums. We define such a pairing

of pentagons to be widely separated over the fullerene if for any two pentagons that

are not paired together, one of the Coxeter coordinates of the segments joining them

is at least M
2
− 2.

Lemma 3.17. Let Γ be a fullerene over which the pairs of pentagons are widely

separated. If (C,A) is a Clar structure that attains the Clar number for Γ, then

(C,A) includes no closed chain with more than two pentagons in its interior.

Proof. Suppose (C,A) is a Clar structure that attains the Clar number for Γ, and that

(C,A) includes a closed Clar chain f0, a1, f1, ..., ak, fk = f0 with three or more pen-

tagons in its interior. By Lemma 3.9, there exists a chain circuit C for f0, a1, f1, ..., ak, fk =

f0 that includes an even number of pentagons in its interior. Thus at least four

pentagons are in the interior of C. By definition of widely separated, the interior

of C contains at least two pairs of pentagons for which one of the Coxeter coor-

dinates of the segments joining them is at least M
2
− 2. Therefore the length of

f0, a1, f1, ..., ak, fk = f0 is at least 2(M
2
− 2) + 2 = M − 2. There are additional edges

in A for each of the six chains between paired pentagons, so the total contribution to

|A| is greater than M . Thus, (C,A) does not attain the Clar number for Γ.

Theorem 3.18. Let Γ be a fullerene over which the pairs of pentagons are widely

separated. Let M be the minimum sum of the edges in A over the three possible choices

for the face set containing C. Then |V |
6
− M

3
is the Clar number for Γ.
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Proof. By Lemma 3.4, any Clar structure (C,A) over Γ contains six Clar chains

connecting pairs of pentagons. Let M denote the minimum number of edges in A

over the three possible choices for the set C outside of the six clear fields. If a different

pairing is chosen for any pentagon, then there are at least two new pairs of pentagons.

For each new pair, one of the Coxeter coordinates is at least M
2
− 2 since the original

chains were widely separated. Chains connecting the other four pairs each contribute

at least one edge to A, giving a total of at least M edges in A. By Lemma 3.17, any

closed Clar chain containing more than one pair of pentagons increases the size of A.

Thus any other Clar structure contains at least M edges in A. The conclusion follows

by Lemma 3.3.
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Chapter 4

Fullerenes with Complete Clar

Structure

In this chapter, we describe a class of fullerenes for which the Clar number is maximal

with respect to the number of vertices in Γ. Let Γ be a fullerene with a Clar structure

(C,A). By definition the cardinality of C is a lower bound for the Clar number of a

fullerene, and we proved in Lemma 3.3 that |C| = |V |
6
− |A|

3
. To describe a class of

fullerenes for which |C| is maximal with respect to the number of vertices, we find

fullerenes for which |A| is minimal. By Lemma 3.1 at least one edge from A exits

each of the twelve pentagons. There are additional edges in A if one of these edges

exits a hexagon. Therefore |A| ≥ 6, and equality holds exactly when all edges from

A connect pairs of pentagons. We say that a Clar structure is complete if |A| = 6, in

which case |C| = |V |
6
− 2. We can summarize the above in the following lemma:
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Figure 4.1: Two pentagons paired by a single edge in A

Lemma 4.1. If a fullerene Γ has a complete Clar structure (C,A), then there exists

a pairing of the twelve pentagonal faces such that each pair is connected by a single

edge. The only edges in A are the six edges between pairs of pentagonal faces.

Ye and Zhang called fullerenes with complete Clar structure extremal fullerenes

[12]. They went on to construct the 18 extremal fullerenes on 60 vertices.

4.1 The Leapfrog Construction

The leapfrog construction was described in Chapter 1. By Proposition 1.4, a fullerene

Γ = (V,E, F ) attains the Fries number |V |
3

if and only if Γ has a face-only vertex

covering. The Kekulé structure that attains the Fries number |V |
3

is constructed by

taking the faces in the face-only vertex covering to be the void faces. By Lemma

3.1, all of the pentagons of Γ must be in this face-only vertex covering. We say

that a fullerene with these properties has a complete Fries structure. We now use

the leapfrog construction in a different way to construct the fullerenes that admit a

complete Clar structure.
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Let Ω` be the leapfrog of the plane graph Ω = (V,E, F ). By Lemma 1.3, the faces

F ` of Ω` corresponding to the faces F of Ω form a face-only vertex covering of Ω`.

The set of edges that do not bound a face in F ` forms a perfect matching of Ω`, that

is, a Kekulé structure if Ω` is a fullerene. Extending this notation, we write V ` for

the set of faces in Ω` corresponding to the vertex set V of Ω and U ` to denote a set

of faces of Ω` corresponding to a subset U of V .

Lemma 4.2. Given a 3-regular plane graph Ψ with a face-only vertex covering Q,

there is a unique plane graph Ω = (V,E, F ) such that Ω`=Ψ and F ` = Q.

Proof. Consider the planar dual Ψ∗ of Ψ constructed by placing vertices in the centers

of faces and connecting vertices if the corresponding faces of Ψ share an edge. Now

construct a subgraph Ω = (V,E, F ) of Ψ∗ by deleting all the vertices corresponding to

the faces in Q and all edges incident with those vertices. (See Figure 4.2(c) with the

yellow faces as the vertex cover.) A face of degree j of Ψ that is not in Q corresponds

to a vertex of degree j
2

in Ω; a face of Ψ that is in Q and has degree k corresponds in

Ω to a face of degree k. Thus Ω = (V,E, F ) is a plane graph such that Ω` = Ψ and

F ` = Q, and Ω is unique up to isomorphism.

Given a 3-regular plane graph Ψ with a face-only vertex covering Q, we call the

graph obtained by the process in Lemma 4.2 the reverse leapfrog of (Ψ, Q) and denote

the graph by (Ψ, Q)−`, or simply Ψ−` if Q is understood. By Lemma 1.3, any leapfrog

graph is 3-regular and has a face-only vertex covering. Combining Lemma 1.3 with

Lemma 4.2 leads to the following characterization of leapfrog graphs:



CHAPTER 4. FULLERENES WITH COMPLETE CLAR STRUCTURE 63

(a) A bipartite plane graph

Ω = (V,E, F )

(b) The leapfrog graph Ω` is

shown superimposed on Ω.

(c) The yellow faces F ` are a

face-only vertex covering of

Ω`. The red and blue faces

of Ω` correspond to the ver-

tex bipartition of Ω.

Figure 4.2: The leapfrog transformation of a bipartite plane graph

Theorem 4.3. A plane graph Ψ is a leapfrog graph if and only if Ψ is 3-regular and

has a face-only vertex covering.

Lemma 4.4. Given a bipartite plane graph Ω = (V,E, F ) with vertex partition V =

U ∪W , the sets of faces U `, W `, F ` form a face 3-coloring of Ω`.

Proof. The set of faces F ` is a face-only vertex covering for Ω`. The remaining faces

in Ω` correspond to vertices in Ω. Since Ω is bipartite, each face in F ` is bounded

by alternating faces from U ` and W `. By Lemma 1.3 any leapfrog graph is 3-regular.

Thus each vertex in Ω` is incident with exactly one face from each of the sets U `, W `

and F `.

Theorem 4.5. Suppose Ψ is a 3-regular plane graph. Then the following are equiv-

alent:
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1. Ψ is bipartite;

2. Ψ is face 3-colorable;

3. Ψ = Ω` for some bipartite plane graph, Ω.

Proof. (1 ⇐⇒ 2) Ψ is bipartite if and only if all faces have even degree. Thus by

Theorem 2.1, Ψ is face 3-colorable if and only if it is bipartite.

(2 =⇒ 3) The graph Ψ is 3-regular, so if Ψ has a proper face 3-coloring, each

vertex is incident with a face of each color and each color class Qi is a face-only vertex

covering. By Lemma 4.2, there is a unique graph Ωi acquired by taking the reverse

leapfrog of Ψ with respect to the vertex-covering Qi for each i. In Ωi = (Ψ, Qi)
−`,

the faces of Qi correspond to the faces of Ωi. The remaining face-only vertex covers,

Qj, Qk, correspond to the vertices of Ωi. Since Qj and Qk are independent in Ψ, the

corresponding vertices form a bipartition of the vertices in Ωi.

(3 =⇒ 2) Suppose that Ψ = Ω` for some bipartite plane graph Ω with vertex

bipartition V = U ∪W . By Lemma 4.5, the sets of faces U `, W `, F ` form the color

classes for a face 3-coloring of Ψ.

4.2 Fullerenes with Complete Clar Structures

An {(a, b), k}-sphere is a k-regular plane graph with faces only of degrees a and b.

Fullerenes are exactly the class of {(5, 6), 3}-spheres. Given a fullerene Γ with a

complete Clar structure (C,A), we see that the six pairs of pentagons together with



CHAPTER 4. FULLERENES WITH COMPLETE CLAR STRUCTURE 65

Figure 4.3: Expansion of Γ over an edge in A

the edges between them are equivalent to the open chains discussed in Chapter 2 and

3. As in Section 3.1, we define the expansion of the fullerene as follows: widen each

of the six edges in A between pentagonal pairs into a quadrilateral faces. Each vertex

covered by A becomes an edge, and each pentagon becomes a hexagon. We denote

this new {(4, 6), 3}-sphere by E(C,A) and the set of quadrilateral faces by A′. If Γ

has f faces, then E(C,A) has six quadrilateral faces and f hexagonal faces.

Lemma 4.6. Let Γ be a fullerene with a complete Clar structure (C,A). Let E(C,A)

be the expansion of Γ and let C ′ = C ∪ A′. Then:

1. There is a face 3-coloring of E(C,A) such that the set C ′ forms one color class.

2. The reverse leapfrog (E(C,A), C ′)−` = Θ is a {(4, 6), 3}-sphere.

3. The two face color classes of E(C,A) other than C ′ correspond to the vertex

color classes of the bipartite graph Θ.

Proof.

1. By Lemma 3.5, the expansion E(C,A) is face 3-colorable with the faces in C ′

forming one color class.
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2. Since E(C,A) is a 3-regular graph and C ′ is a face-only vertex covering of

E(C,A), there is a unique graph Θ such that Θ` = E(C,A) and the faces of Θ

correspond to C ′ by Lemma 4.2. The faces of E(C,A) in C ′ are of degree 4 and

6, so by Lemma 1.3, the faces of Θ are of degree 4 and 6. The remaining faces

of E(C,A) are hexagons and correspond to the vertices of Θ. Thus by Lemma

1.3, Θ is 3-regular. So Θ is a {(4, 6), 3}-sphere.

3. By Theorem 4.5, the remaining two face color classes of E(C,A) correspond to

a bipartition of the vertices in Θ.

We see that a fullerene with complete Clar structure corresponds to a {(4, 6), 3}-

sphere Θ. We want to determine the conditions under which a {(4, 6), 3}-sphere

corresponds to one or more fullerenes with complete Clar structure.

Consider an arbitrary {(4, 6), 3}-sphere Θ and let Θ` be the leapfrog graph of Θ.

By Lemma 1.3, Θ` is also a {(4, 6), 3}-sphere; Θ` is 3-regular and has a face of degree

j corresponding to each face of degree j from Θ and a face of degree 6 corresponding

to each vertex of Θ. Also by Lemma 1.3, the faces of Θ` corresponding to the faces

from Θ form a face-only vertex covering of Θ`. Thus the quadrilateral faces of Θ`

are part of an independent set, and each quadrilateral face in Θ` is bounded by four

hexagons.

For each quadrilateral face of Θ`, choose two opposite hexagons adjacent to the

quadrilateral to form a pair. We denote this set of paired hexagons by P . We define
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Figure 4.4: The reverse expansion around a quadrilateral face in (Θ`,P).

the reverse expansion procedure on the pair (Θ`,P) as follows: for each quadrilateral

face of Θ`, contract each of the two opposite edges that the quadrilateral shares with

paired hexagons into a vertex. We then obtain the graph E−1(Θ`,P), the reverse

expansion of Θ` with respect to P . Now each quadrilateral of Θ` has become an edge

in E−1(Θ`,P) and the degree of each face in P is decreased by 1 for each quadrilateral

that the face is paired over.

Lemma 4.7. Let Θ` be the leapfrog of a {(4, 6), 3}-sphere Θ. Let P be the set of

hexagons paired on opposite sides of the quadrilateral faces of Θ`. The reverse ex-

pansion of this pair, Γ = E−1(Θ`,P) is a fullerene if and only if P is a set of twelve

distinct hexagons. When Γ is a fullerene, Γ admits a complete Clar structure. Γ

also admits a complete Fries structure if and only if the hexagons in P are part of a

face-only vertex covering of Θ`.

Proof. It follows from Euler’s formula that any {(4, 6), 3}-sphere has exactly six

quadrilateral faces. Thus in Θ`, there are six quadrilaterals across which we pair

opposite hexagons to create the set P . If P is a set of twelve distinct hexagons, then

each hexagon belongs to exactly one pairing and is contracted into a pentagon. Hence
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Γ is a fullerene. If |P| < 12, then some hexagon in P is paired across two or more

quadrilaterals. That hexagon is contracted into a face of degree less than 5 and thus

Γ is not a fullerene.

The quadrilaterals of Θ` are part of a face-only vertex covering corresponding to

the faces of Θ by Lemma 1.3. Denote this face-only vertex covering by C ′. Let C

denote the hexagons of Γ = E−1(Θ`,P) corresponding to hexagons in C ′ of Θ` and let

A denote the set of edges formed by collapsed quadrilaterals from Θ`. The set C ∪A

forms a vertex covering of Γ, and thus if Γ is a fullerene, then (C,A) is a complete

Clar structure for Γ.

Every face of Θ` has even degree, and thus Θ` is face 3-colorable by Theorem 2.1.

A face 3-coloring of Θ` corresponds to an improper face 3-coloring of Γ in which the

only incompatible faces are those that share an edge in A. Hence the pentagons of Γ

are in the same color class exactly when the faces of P are in the same color class of

Θ`, that is, if and only if P is part of a face independent set since Θ` is 3-regular. The

pentagons are all in one color class in the improper face 3-coloring if and only if they

are part of of a face-only vertex covering, which is equivalent to the condition that

the trivalent graph Γ be a leapfrog graph by Theorem 4.3. By Proposition 1.4, the

fullerene Γ is a leapfrog graph if and only if Γ admits a complete Fries structure.

When is it not possible to find a disjoint set P of opposite hexagonal faces ad-

jacent to each quadrilateral? Consider the {(4, 6), 3}-sphere Θ. Quadrilaterals in Θ

correspond to quadrilaterals in Θ`. The four hexagons bounding a quadrilateral in Θ`
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correspond to the vertices of the quadrilateral in Θ. Pairing disjoint hexagons with

quadrilaterals in Θ` is equivalent to choosing diagonal vertices for each quadrilateral

in Θ. These diagonal vertices become opposite hexagons in Θ`, and contract into

pentagons in the fullerene. We indicate these vertices around a quadrilateral face in

Θ by drawing a diagonal line connecting the vertices. (See Figure 4.5.) We define a

diagonalization of a {(4, 6), 3}-sphere Θ to be a choice of pairs of diagonal vertices

for each quadrilateral face so that no vertex is chosen twice. We can contract Θ`

into a fullerene with a complete Clar structure exactly when a diagonalization of Θ

is possible. A perfect diagonalization of a {(4, 6), 3}-sphere Θ, is a diagonalization in

which all vertices chosen are in the same cell of the bipartition and hence correspond

to faces in the same color class of a face 3-coloring of Θ` by Lemma 4.5. We have

proven the following lemma:

Lemma 4.8. Let Θ be a {(4, 6), 3}-sphere. Then

1. Θ` admits a pairing of hexagons with |P| = 12 if and only if Θ admits a diago-

nalization.

2. Θ` admits a pairing of hexagons with |P| = 12 where P is part of a face-only

vertex covering of Θ` if and only if Θ admits a perfect diagonalization.

Lemma 4.9. Let Θ be a {(4, 6), 3}-sphere. Then

1. Θ admits a diagonalization if and only if no vertex meets three quadrilaterals.
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(a) A diagonal pair of vertices inci-

dent with a quadrilateral in Ω.

(b) Take the leapfrog, Ω`.

(c) The diagonal vertices in Ω cor-

respond to hexagons in Ω`.

(d) The hexagons become pen-

tagons in E−1(Θ`,P).

Figure 4.5: Choose diagonal vertices for each quadrilateral in Θ. These vertices

correspond to opposite hexagons bounding a quadrilateral face in Θ`. We collapse an

edge of each of the paired hexagons to construct E−1(Θ`,P).
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2. Θ admits a perfect diagonalization if and only if no vertex in Θ is incident with

more than one quadrilateral.

Proof. There are at most three quadrilateral faces at any vertex in Θ. Since Θ is

3-regular, any two faces that share a vertex share an edge containing that vertex.

Suppose some vertex x is incident with three quadrilateral faces s1, s2, and s3. One

easily checks that any multiset of diagonal edges through these quadrilaterals includes

some vertex twice. (See Figure 4.6.) If every vertex in Θ is incident with at most two

quadrilaterals, then one easily checks that we may choose diagonal vertices incident

with each quadrilateral such that no vertex is chosen twice.

If two quadrilaterals s and s′ share an edge, then the vertices incident with s

and s′ must both be part of any diagonalization, and so the diagonalization cannot

be perfect; the vertices chosen cannot be in the same cell of the bipartition. If the

quadrilaterals are disjoint and U is one cell of the vertex bipartition, we may choose

diagonal vertices in U for each quadrilateral.

Theorem 4.10.

1. The fullerenes on n vertices that admit a complete Clar structure are in one-to-

one correspondence with the diagonalized {(4, 6), 3}-spheres on n
3

+ 4 vertices.

2. The fullerenes on n vertices that admit a complete Clar structure and a complete

Fries structure are in one-to-one correspondence with the perfectly diagonalized

{(4, 6), 3} spheres on n
3

+ 4 vertices.
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Figure 4.6: If three quadrilaterals in Θ share a vertex, then any choice of diagonal

vertices for each quadrilateral includes some vertex twice. If at most two quadrilat-

erals share each vertex, we can choose diagonal vertices for each quadrilateral of Θ

so that no vertex is chosen twice.

Proof. By Lemma 4.7, a leapfrog {(4, 6), 3}-sphere Θ` can be contracted into a fullerene

Γ with complete Clar structure exactly when it is possible to find a set of pairings

P of twelve distinct hexagons bounding opposite sides of the six quadrilateral faces

and by Lemma 4.8 this is equivalent to a diagonalization of Θ. By Proposition 1.4

and Lemma 4.7, the contracted fullerene Γ is leapfrog exactly when the hexagons we

choose to collapse are all in the same color class. By Lemmas 4.5 and 4.9, this occurs

for each perfect diagonalization of a {(4, 6), 3}-sphere.

If the fullerene Γ = E−1(Θ`,P) has n vertices, then Θ` has n + 12 vertices; the

reverse expansion contracts the six quadrilateral faces into six edges. Thus Θ is

one-third the order of Θ` and has n
3

+ 4 vertices.

For each {(4, 6), 3}-sphere in which no vertex lies on two quadrilaterals, two perfect

diagonalizations are possible. We have two choices for the diagonal in a quadrilat-
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Figure 4.7: Two choices for contracting a quadrilateral face in Θ`. A different choice

is equivalent to a Stone-Wales transformation of the fullerene.

eral face. For each of the other quadrilaterals, we must choose diagonal vertices in

this same bipartition. Thus for each {(4, 6), 3}-sphere on which no two quadrilaterals

share a vertex, there are two perfectly diagonalized {(4, 6), 3}-spheres and two corre-

sponding fullerenes with a complete Fries structure and a complete Clar structure.

For each diagonalization of a {(4, 6), 3}-sphere Θ, Θ` can be contracted into a

different fullerene with complete Clar structure. How many such diagonalizations are

there for a {(4, 6), 3}-sphere? Given a quadrilateral face in Θ, we have two choices

for the pair of diagonal vertices incident with that face. Suppose two quadrilaterals,

s1 and s2, share a vertex in Θ. Then s1 and s2 share an edge, and a diagonal pair of

vertices incident with s1 includes one vertex on that edge. A diagonal pair of vertices

incident with s2 must also include a vertex on this edge, and there is only one choice

remaining for the pair of diagonal vertices incident with s2.

We call a set of quadrilaterals in Θ a block if each of the quadrilaterals in the

set shares a vertex with another quadrilateral in the set. Once we choose a pair of

diagonal vertices for one quadrilateral, the choice of diagonal vertices is forced for each

of the other quadrilaterals in the block. (See Figure 4.6.) Thus if Θ has b blocks, there
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are 2b diagonalized {(4, 6), 3}-spheres and 2b corresponding fullerenes with complete

Clar structure. Note that 1 ≤ b ≤ 6, so a given {(4, 6), 3}-sphere could yield as many

as 64 fullerenes with complete Clar structure. Choosing a different diagonal in Θ

corresponds to choosing the other pair of hexagons around a quadrilateral in Θ` to be

in P . Choosing a different pair of hexagons around a quadrilateral in Θ` to contract

is equivalent to a Stone-Wales transformation [4] of the four faces in the fullerene (see

Figure 4.7). We can get from any one of these fullerenes to another through a series

of Stone-Wales transformations. Thus each {(4, 6), 3}-sphere Θ in which no vertex

lies on three quadrilaterals represents an equivalence class of fullerenes with complete

Clar structure under the Stone-Wales equivalence.
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Chapter 5

Class for which the Clar and Fries

Number Cannot be Attained by

the Same Kekulé Structure

5.1 Introduction

It is part of the folklore of fullerenes that a set of independent benzene faces that

attains the Clar number for a fullerene is contained in the set of benzene faces that

gives the Fries number. In this chapter, we describe a class of fullerenes for which

this does not hold: for fullerenes in this class, any Kekulé structure that attains the

Fries number cannot give the Clar number; any Kekulé structure that attains the

Clar number cannot give the Fries number.
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A face 3-coloring is not possible over a fullerene, but a partial 3-coloring can be

constructed except over relatively small excluded patches containing the pentagonal

faces. We can begin to construct a Kekulé structure consisting of edges connecting

the faces in one color class as described previously. This structure must be extended

inside each excluded patch to complete the Kekulé structure. To attain the Fries

number, this extension must be chosen so that |B1(K)|+ 2|B2(K)| is minimized. To

achieve the Clar number, this extension must be chosen so that |A|, the number of

Kekulé edges not on a Clar face, is minimized. In the examples we construct here,

pairs of nonadjacent pentagons are joined by a single edge, and we refer to such

patches as basic patches. These basic patches are widely separated to ensure that no

other pairing of pentagons could yield the Fries or Clar number.

To construct the partial Kekulé structure outside of the basic patches, we choose

one color class of independent faces to be the void faces. We must then choose another

color class to be the set C contributing to the Clar number. Thus there are six possible

options for choosing the partial Kekulé structure and the partial Clar structure. In

Section 5.2, we show that for exactly one of these six choices around a basic patch, no

completion of the Kekulé structure simultaneously minimizes the contribution to |A|

and |B1(K)| + 2|B2(K)| over the patch. In Section 5.3, we construct fullerenes with

six basic patches so that for each of the six choices for void and Clar faces, exactly

one of these basic patches requires different extensions of the Kekulé structure to

minimize the Clar deficit and the Fries deficit. Thus for our class of fullerenes, no
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V
C

(a) A partial face 3-coloring out-

side of a basic patch.

(b) A partial Kekulé structure

given by the choice of void faces

outside of the basic patch.

Figure 5.1: The white faces represent a basic patch. The void faces are contained in

the set of blue faces, the Clar faces in the set of pink faces.

Kekulé structure attains both the Fries and the Clar number for the fullerene.

5.2 Basic Patches

5.2.1 A choice for the void and Clar faces that requires two

Kekulé extensions.

Figure 5.1(a) depicts a basic excluded patch. For the faces surrounding the basic

patch, the set of blue faces is chosen to be the set of void faces and the pink faces

are chosen to be Clar faces. Figure 5.1(b) shows the partial Kekulé structure given
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by this choice of void faces; all edges that join two blue faces are in the partial

Kekulé structure. We need to extend this to a Kekulé structure. Figure 5.2(a) shows

the extension of this choice that minimizes |A| and 5.2(b) shows the extension that

minimizes |B1(K)| + 2|B2(K)|. We prove that no single extension minimizes both

deficits.

Extension 1: We first extend the Kekulé structure to minimize the Clar deficit.

Outside the patch, we start with a partial Kekulé structure in which each pink hexag-

onal face is a benzene face (Figure 5.1(b)). None of the ten vertices incident with

one of the two pentagons is covered by a face in C, so these vertices must be covered

by edges from A in the vertex covering (C,A). In the partial Kekulé structure, every

hexagon that is not in C is adjacent to a face in C. Thus no extension can increase

|C| over the patch. Any extension that does not reduce |C| must cover only the ten

vertices incident with the pentagons. There is only one perfect matching for these

ten vertices, and it is shown as a completion of the Kekulé structure in Figure 5.2(a).

Note that this is a Clar chain of Type 3 between the two pentagons. Over the patch in

this extension, |A| = 5 and |B2(K)| = 6, |B1(K)| = 4, giving |B1(K)|+2|B2(K)| = 16

Extension 2: The Kekulé structure in Figure 5.2(b) has |A| = 8 and |B2(K)| = 4,

|B1(K)| = 2, giving |B1(K)|+2|B2(K)| = 10. While |A| is not minimized, B2(K) and

B1(K) are both smaller than in Extension 1. Extension 1 is the only extension that

minimizes the Clar deficit, and that extension does not minimize the Fries deficit.

Thus for this choice of void and Clar faces over a basic patch, any structure that
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(a) Extension 1 minimizes the Clar

deficit. Here |A| = 5 and |B2(K)| =

6, |B1(K)| = 4.

(b) Extension 2 minimizes the Fries

deficit. Here |A| = 8 and |B2(K)| =

4, |B1(K)| = 2.

Figure 5.2: Extension 1 and Extension 2 on a basic patch where the Clar faces are

pink and the void faces are blue.

contributes the maximum number of faces toward the Clar number over this patch

cannot achieve the maximum number of benzene faces.

5.2.2 Extending Kekulé structures over basic patches with

other choices for the void and Clar faces

We show that the choice for the void faces and faces in C described in Section 5.2.1

is the only case over such a patch for which |A| and |B1(K)| + 2|B2(K)| cannot be
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minimized simultaneously. There are five options remaining for the choice of void

and Clar faces around the patch, and for each of these choices, only one extension is

necessary to minimize both the Clar and Fries deficits.

Suppose we let the blue faces be the void faces and the yellow faces be the Clar

faces. Then the Kekulé structure in Figure 5.2(b) has a minimal Fries deficit of

|B1(K)|+ 2|B2(K)| = 10. Every yellow hexagon is a benzene face, so we also have a

maximum number of faces contributing to the Clar count, with |A| = 2 (a Clar chain

of Type 2).

Suppose that the void faces are in color class that includes the pentagons (here,

the pink faces). Then the edges joining these faces complete a Kekulé structure over

the patch, as seen in Figure 5.3(b). |B1| = |B2| = 0, so the number of benzene faces

over the patch is clearly maximized. We must also choose a color class to be the Clar

faces. Since all hexagons in the remaining two color classes are benzene faces, |C|

is also maximized over the patch for either choice. Thus the same Kekulé structure

maximizes the number of Clar faces and the number of benzene faces over the patch.

Suppose that the yellow faces are the void faces. Begin a partial Kekulé structure

consisting of all edges that join two yellow faces. Extend this Kekulé structure so that

all blue and pink hexagons are benzene faces as in Figure 5.3(c). For either choice

of the Clar faces, |C| is clearly maximized over this patch. |B1| = |B2| = 2, and any

local change increases |B1(K)|+ 2|B2(K)| and decrease the number of benzene faces.

Thus both the Clar and Fries deficits are minimized in this extension.
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(a) A basic patch with a partial

face 3-coloring.

(b) The pink faces represent the

void faces.

(c) The Yellow faces are void.

Figure 5.3: Over a basic patch, we choose other color classes for the void and Clar

faces and consider extensions of the resulting Kekulé structure.
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2

2
1.5 1.5

1.5

r ≠ 0 mod 3
r = s mod 3 

(1,1)

(r+s)

(r)

Figure 5.4: The vertices of this auxiliary graph represent the pentagons in a fullerene.

The edges give the Coxeter coordinates of the segments between nearby pentagons.

We see that for every case except that described in section 5.2.1, the same Kekulé

structure maximizes the number of faces contributing to the Clar number and the

Fries number over the basic excluded patch.

5.3 Fullerenes over which the Clar and Fries num-

bers cannot be attained simultaneously

We saw in the previous section that there are six choices for the void faces and the Clar

faces. We also saw that given an excluded patch, the Kekulé structure of all but one

of these choices can be extended to the basic patch while simultaneously maximizing

the number benzene faces and the number of Clar faces. To force the existence of a
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patch in which these parameters cannot be maximized by the same Kekulé structure,

we need a fullerene with patches so that one of them is the exceptional patch for each

the six choices. One infinite class of examples can be found in Graver’s “Catalog of

Highly Symmetric Fullerenes,” pictured in Figure 5.4 with segment and angle types.

The paper describes these parameters [6]. For our purpose, it is only necessary to

understand that the vertices represent pentagonal faces and in our case the green

edges represent the excluded patches which, in our example, are pairs of pentagons

joined by a single edge. Furthermore, the partial face 3-coloring is different around

each of the six excluded patches. Thus regardless of which of the six color choices

for the color class of the void faces and the color class of the Clar faces is made,

one of the six patches is such that one Kekulé structure maximizes the Clar number,

while another Kekulé structure maximizes the Fries number, and the two parameters

cannot be maximized simultaneously.

An example with s = 1, r = 7 is shown on the next page. In the next chapter,

we show that a fullerene in this class with r ≥ 7 is widely separated. Thus the

Clar number is achieved by a Kekulé structure with Clar chains between pentagons

together in basic patches. In this coloring, the red faces indicate the set containing

C and the void set is contained in the blue color class. A pair of pentagons lies in

a basic patch on each interior corner. The edges in A are represented by thick red

edges and the remaining edges in the Kekulé structure are represented by thick blue

edges. A blue arrow indicates the excluded patch over which the number of faces in
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C and the number of benzene faces cannot be maximized simultaneously.

In the first figure, there are 272 benzene faces and there are 135 faces in C. In the

second figure, there are 274 benzene faces and 134 faces in C. The first figure attains

the Clar number but not the Fries number for the fullerene, and the reverse is true

for the second. Hence the set of faces that attains the Clar number is not contained

in a set of faces that attains the Fries number.
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Figure 5.5: The Clar faces are red and the void faces are blue. An arrow indicates

the patch over which the Fries and Clar deficits cannot be minimized simultaneously.

Figure (a) minimizes the Clar deficit, Figure (b) minimizes the Fries deficit. The

numerals represent faces in the sets B1 and B2.
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Chapter 6

Examples and Future Research

In this Chapter, we use the methods established in Chapters 2 and 3 to find the

Clar number for several classes of fullerenes. The first two examples are taken from

Graver’s “A Catalog of All Fullerenes with Ten or More Symmetries” [6], and the Clar

number is found when the parameters are such that we have pairs of pentagons that

are widely separated. In the next section, we find the Clar number for Icosahedral

Leapfrog fullerenes. Recall from Lemma 3.3 that for a fullerene with a Clar structure

(C,A), the number of faces in C is |V |
6
− |A|

3
. We regularly use Lemmas 3.13, 3.14,

and 3.15, which state that for a pair of pentagons joined by a segment with Coxeter

coordinates (m,n) where m ≥ n, a chain of Type 1 contributes m edges to A, a chain

of Type 2 contributes m + n edges to A, and a chain of Type 3 contributes 3m + 2

edges to A.
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f

e d

c

b

(p,p)

(r+s)

(r)

1.5

1.5
1.5

2

a

(a) The vertices of this auxiliary graph repre-

sent the pentagons in a fullerene. The edges

give the Coxeter coordinates of the segments be-

tween nearby pentagons.

to f'

to b'

a'

 to a

(b) The pentagon a′ in the fullerene Γ is

represented by a red vertex of the auxil-

iary graph. Here we see the patch sur-

rounding the pentagon a′.

Figure 6.1: Class of Fullerenes that generalizes the family described in Chapter 5.

The pentagons are paired over green segments with Coxeter coordinates (p, p).

6.1 Two Classes of Widely Separated Fullerenes

We first find the Clar number for a family of fullerenes that generalizes the class

given in Chapter 5. Figure 6.1(a) shows an auxiliary graph that represents a general

fullerene in this class. The vertices of the auxiliary graph represent the twelve pen-

tagons in the fullerene. The edges represent segments between nearby pentagons, and

the colors code the Coxeter coordinates of these segments, defined by the parameters

p, r and s. The numbers shown in Figure 6.1(a) represent angle types between two

segments joined by a common pentagon, and the meaning of these numerals is shown

in Figure 6.1(b). For a detailed description, see [6]. Different choices for parameters

r, p, and s result in all fullerenes within this family. Graver showed in [6] that the
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number of vertices for a fullerene in this family is 12r2 + 2s2 + 12rs + 12p(2r + s).

These fullerenes are widely separated when p is much smaller than r (an inequality is

given shortly). In this case, the six open Clar chains must pair pentagons joined by

segments with Coxeter coordinates (p, p), represented by green edges in Figure 6.1.

There are several cases depending on the congruence classes of r and s modulo 3. We

consider the congruence in Chapter 5 as well as the congruence resulting in a leapfrog

fullerene.

Suppose that r 6≡ 0 (mod 3) and r ≡ s (mod 3), giving r + s 6≡ 0 (mod 3). Let

a, b, c, d, e, f be pentagonal faces on the fullerene in clockwise order as shown in Figure

6.1. In a partial face 3-coloring that avoids the Clar chains between segments with

Coxeter coordinates (p, p), a and b are in different color classes since the segment

between a and b has coordinate (r + s), where r + s 6≡ 0 (mod 3). Similarly, the

segment between b and c has Coxeter coordinate (r), and so b and c are in different

color classes. Since r 6≡ 0 but r ≡ s (mod 3), r + s 6≡ r (mod 3). Thus a and c are

in different color classes. We see that a and d are in one color class, b and e are in a

second color class, and c and f are in a third color class. Each of these pentagons is

paired over a segment with another pentagon and the Coxeter coordinates over these

segments are (p, p), so each pair is in the same color class. We want to compare the

segment types for faces in the same color class. Without loss of generality, say that

a and d are red, b and e are yellow, and c and f are blue. Note that the Coxeter

coordinates between a and the yellow face b are (r+s), the coordinate between d and
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the yellow face e is (r). There are two possibilities for the position of the yellow color

class around a red pentagon. The pentagon a and the pentagon d must each have

a different position with respect to the yellow faces. Thus all six possible colorings

around these segments are represented. The type of Clar chain only depends on

the position of the faces in the color class containing C. This class is symmetric,

and regardless of the color chosen, there are two chains of each of the three types.

Thus the total contribution to A is 2p + 2(p + p) + 2(3p + 2) = 12p + 4. The next

closest pentagons that are unpaired have coordinates (r). This choice of Clar chains

is widely separated when r ≥ 12p+4
2
− 2 = 6p. For this class, the number of vertices is

|V | = 12r2 + 2s2 + 12rs + 12p(2r + s). Thus, when the chains are widely separated,

the Clar number is

12r2 + 2s2 + 12rs+ 12p(2r + s)

6
− 12p+ 4

3

= 2r2 +
1

3
(s2 − 4) + 2rs+ 4rp+ 2p(s− 2)

Note that s 6≡ 0 (mod 3), and so s2 ≡ 1 (mod 3). Thus the above expression is

always an integer.

Suppose that r ≡ s ≡ 0 (mod 3). By Proposition 1.4, this is a leapfrog fullerene.

All of the pentagons are in the same color class, say the set of red faces. We choose

one of the remaining color classes to contain the set C in order to avoid having any

chains of Type 3. Consider one pair of pentagons with Coxeter Coordinates (p, p)

and choose C to be the color class that allows this chain to be of Type 1. This
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is possible because the chain type is defined by the position of the Clar faces with

respect to the segment between the two pentagons. Once we choose the set C around

the first segment, the types for the remaining segments are forced. As we go around

this chain, the red color class remains the same (it is a perfect face-independent set)

and the remaining two colors are transposed. Thus, at the next pair of pentagonal

faces, the position of the remaining two color classes in relation to the pentagons has

switched, and the segment is of Type 2. The segment types alternate between Type

1 and Type 2, so we have three chains of Type 1, each contributing p edges to A,

and three chains of Type 2, each contributing 2p edges to A. The total number of

edges in A is 9p. Again, the Coxeter coordinates between the next closest unpaired

pentagons is (r). The (p, p) Clar chains are widely separated when r ≥ 9p
2
− 2. In

this case, the Clar number is

12r2 + 2s2 + 12rs+ 12p(2r + s)

6
− 9p

3

= 2r2 +
1

3
s2 + 2rs+ 4rp+ 2ps− 3p

Since s ≡ 0 (mod 3), the expression is always an integer.

We compute the Clar number for another class of fullerenes with a different sym-

metry group, and the auxiliary graph for this class is pictured in Figure 6.2. Again,

the vertices of the auxiliary graph represent pentagons. The five segments with ar-

rows connect to a common pentagon. The fullerenes in this class are attained by

choosing values for the parameters r and s. Graver showed in [6] that the number of

vertices for a fullerene in this class is 24p2 + 48pr + 20r2. The fullerenes are widely
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 (r)

(p, p+r)

(p+r, p)

Figure 6.2: The auxiliary graph for a class of symmetric fullerenes. Vertices rep-

resent pentagons, edges show the Coxeter coordinates of segments between nearby

pentagons. The pentagons paired over segments with coordinates (r).

separated when r ≡ 0 (mod 3) and r is small in comparison with p (an inequality

follows shortly). The paired pentagons are then connected by segments with Coxeter

coordinates (r), and the six open Clar chains are between these pairs, represented by

green edges in Figure 6.2. All coordinates between nearby pentagons are congruent

modulo 3, so this is a leapfrog fullerene by Proposition 1.4. All of the pentagonal

faces are in the same color class, so we choose the set C to be either of the two

independent sets of faces that do not contain the pentagons. Then each of the Clar
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chains must be of Type 1 or Type 2. For segments with only coordinate (r), Type 1

and Type 2 each contribute r edges to A. Thus the total number of edges in A over

the fullerene is 6r. We see that these chains are widely separated if for any other

pair of pentagons, one of the Coxeter coordinates is at least 6r
2
− 2 = 3r − 2. The

next closest pairs have coordinates (p+ r, p) and (p, p+ r). Thus if p ≥ 2r − 2, then

chains with Coxeter coordinates (r) are widely separated. The number of vertices for

fullerenes in this class is |V | = 24p2 + 48pr + 20r2, so the Clar number is

|V |
6
− |A|

3
=

24p2 + 48pr + 20r2

6
− 6r

3
= 4p2 +

10

3
r2 + 8pr − 2r.

The restriction that r ≡ 0 (mod 3) ensures that this is always an integer.

These few examples were chosen to illustrate our computational approach to the

Clar number. Using these techniques in conjunction with the Catalog [6], the Clar

number can be easily computed for many infinite families of fullerenes. In the next

section, we employ our theory to compute the Clar number for a family of fullerenes

in which the pentagons are not widely separated.

6.2 Icosahedral Leapfrog Fullerenes

The natural generalization of C60 is the class of icosahedral leapfrog fullerenes. To

construct an icosahedral fullerene, choose an equilateral triangle from the hexagonal

tessellation with vertices at the centers of hexagons and copy this triangle onto each

face of the icosahedron. The result is a fullerene with the twelve pentagonal faces at
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Dodecahedron

C60

    (4,2)
Icosahedral
  Fullerene

Figure 6.3: To form an icosahedral fullerene, replace each face of an icosahedron with

an equilateral triangle from the hexagonal tessellation with vertices at the centers of

faces.

the twelve vertices of the icosahedron. This construction was first given by Coxeter

[2]. An icosahedral fullerene is uniquely determined by the Coxeter coordinates (m,n)

of the sides of the triangle, and the icosahedral fullerene is a leapfrog fullerene exactly

when m and n are congruent modulo 3.

Consider an icosahedral leapfrog fullerene with parameters (m,n) and assume

without loss of generality that m ≥ n. Since the fullerene is leapfrog, any pair

of pentagons can be connected by a Clar Chain. The shortest segments between

pentagons have Coxeter coordinates (m,n), and thus 6m is a lower bound for A,

which would be achieved if we could pair pentagons with six Clar chains of Type 1.

Attaining this lower bound for |A| would show that the Clar number for Γ is |V |
6
−2m.

We show that such a pairing is possible.
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H3

H2

H1
P1

P3

P2

P4

P4

P5

P6

Figure 6.4: Five equilateral triangles that share P3 as a vertex.

Theorem 6.1. Suppose Γ is an icosahedral fullerene with parameters (m,n) where

m ≥ n and m ≡ n (mod 3). Then the Clar number for Γ is |C| = |V |
6
− 2m.

Proof. Since all of the segments between nearby pentagons are congruent modulo 3,

the pentagons are all in one color class, say red, in any an improper face 3-coloring

derived from a Clar structure. To attain the Clar number, we must choose the color

class containing C to be one of the remaining two colors. Consequently, all chains are

of Type 1 or Type 2. Choose a pair of pentagons P1 and P2 with Coxeter coordinates
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(m,n), to connect with a Clar chain. We can then choose the color class for C so that

the chain is of Type 1. We may assume that this is the blue color class, and begin

a partial face 3-coloring. Now choose a pentagon P3 that completes the equilateral

triangle with P1 and P2. There are five equilateral triangles with a P3 as a vertex,

with edges {P1, P2}, {P2, P4}, {P4, P5}, {P5, P6}, {P6, P1} in clockwise order (see

Figure 6.4). The improper face 3-coloring in Figure 6.4 results when the Clar chain

connecting P1 and P2 is of Type 1 and forces the chain connecting P3 and P5 to also

be of Type 1. We now show that this holds in general.

Assume that n 6= 0. (If all the segments have coordinates (m), then Type 1 and

Type 2 are the same, and any pairing will work). There is an (m,n) segment from

P3 to P1; consider the (m − 1, n − 1) segment contained in this segment between

hexagons H3 and H1 adjacent to P3 and P1, respectively. The coordinates between

these two faces are also congruent modulo 3, so these faces are in the remaining color

class, say yellow. We have constructed a Clar chain of Type 1 between P1 and P2,

and the face H1 is incident with an edge of this Clar chain. The faces of the partial

3-coloring alternate yellow and blue around the red pentagon P3. Thus as we reach

the second face from H3 on either side of the pentagon, both are in the yellow color

class, and shares an edge of the Clar chain. This is a Clar chain of Type 1 between

the pentagons P3 and P5.

If we choose Clar chains between adjacent pairs of pentagonal faces so that all

nearby segments have this relationship, then each of the Clar chains can be of Type
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Figure 6.5: The Leapfrog Icosahedron with a pairing of pentagons, all of Type 1.

1 with length m. There are many such pairings, and one is shown for an arbitrary

icosahedral fullerene in Figure 6.5. This set of chains meets the lower bound |A| = 6m

over the icosahedral fullerene, and so the Clar number is of Γ is |C| = |V |
6
− 2m.

6.3 Future Research

A major area for future research is the general structure of chain decompositions.

In particular, what is the Fries analog to Clar chains? We now understand non-

interfering Clar chains, and can use them to find the Clar number for fullerenes with

widely separated pairs of pentagons. The interaction between two or more chains is

not understood; if chains share adjacent faces, the number of edges contributed to
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A is often different from when the chains are non-interfering. As we saw in Figure

3.4, chains may also zigzag around pairs of pentagons, and the ability to connect two

pentagons through a Clar chain may depend upon the relation of the chain to other

pentagons.

As noted above, we can use Clar chains to find the Clar number for many classes of

fullerenes with widely separated pairs of pentagons. This method could be applied to

other classes of fullerenes to catalog the Clar number for large classes of fullerenes. We

would like to have an analogous understanding of widely separated sets of four or six

pentagons (we need only consider even groupings of pentagons, because we know that

pairs must be connected by open Clar chains). Fullerenes with two widely separated

sextets of pentagons would be a subset of the class of nanotubes. Nanotubes are

fullerenes with two caps each containing six pentagons and separated by a cylinder of

hexagons. We would like to distinguish between classes in which chains must connect

pentagons in different caps and those for which each of the open chains can connect

two pentagons within the same cap.

For fullerenes with widely separated pairs of pentagons, we have shown that any

Clar structure that attains the Clar number does not include closed Clar chains other

than those equivalent to chains of Type 3. It remains to be determined whether closed

chains may exist more generally.

We know that there are fullerenes for which the Clar number and the Fries num-

ber cannot be attained by the same Kekulé structure; that is, there is no Kekulé
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structure K such that a set of faces B3(K) attaining the Fries number contains an

independent subset attaining the Clar number. One open question would be to clas-

sify fullerenes that do satisfy this property. For example, it may be the case that in

leapfrog fullerenes, the Fries and Clar number can always be attained from the same

Kekulé structure.

In Chapter 2, we introduced chain decompositions and show that Clar and Fries

schemes can be completed into Kekulé structures for decompositions with detached

chains. We would like to show that these decompositions can be completed in general.

The decomposition of a fullerene could also be used to find bounds for the Fries

number. Under what restrictions does a chain decomposition result in the Fries

number, and when does the same decomposition result in both the Clar number and

Fries number?

Chain decompositions allowed us to find an improper face 3-coloring for fullerenes.

This approach may lead to a similar result for planar graphs in general. A 3-regular

plane graph contains open chains connecting pairs of faces of odd degree, and we can

consider an improper face 3-coloring from the expansion of the edges of these chains

as in Theorem 2.6.
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