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Abstract

To achieve security in wireless sensor networks, it is important to be able to encrypt messages sent
among sensor nodes. Keys for encryption purposes must be agreed upon by communicating nodes. Due
to resource constraints, achieving such key agreement in wireless sensor networks is non-trivial. Many
key agreement schemes used in general networks, such as Diffie-Hellman and public-key based schemes,
are not suitable for wireless sensor networks. Pre-distribution of secret keys for all pairs of nodes is not
viable due to the large amount of memory used when the networksize is large. Recently, a random key
pre-distribution scheme and its improvements have been proposed.

A common assumption made by these random key pre-distribution schemes is that no deployment
knowledge is available. Noticing that in many practical scenarios, certain deployment knowledge may
be availablea priori, we propose a novel random key pre-distribution scheme thatexploits deployment
knowledge and avoids unnecessary key assignments. We show that the performance (including connectiv-
ity, memory usage, and network resilience against node capture) of sensor networks can be substantially
improved with the use of our proposed scheme. The scheme and its detailed performance evaluation are
presented in this paper.

I. I NTRODUCTION

Recent advances in electronic and computer technologies have paved the way for the proliferation
of wireless sensor networks (WSN). Sensor networks usually consist of a large number of ultra-small
autonomous devices. Each device, called a sensor node, is battery powered and equipped with integrated
sensors, data processing, and short-range radio communication capabilities. In typical application sce-
narios, sensor nodes are spread randomly over the deployment region under scrutiny and collect sensor
data. Examples of sensor network projects include SmartDust [1] and WINS [2].

Sensor networks are being deployed for a wide variety of applications [3], including military sensing
and tracking, environment monitoring, patient monitoringand tracking, smart environments, etc. When
sensor networks are deployed in a hostile environment, security becomes extremely important, as they
are prone to different types of malicious attacks. For example, an adversary can easily listen to the traffic,

This paper is currently under submission to the IEEE Transactions on Dependable and Secure Computing. This paper is
an extended version of the conference paper,A Key Management Scheme for Wireless Sensor Networks Using Deployment
Knowledge, published in Proceedings of the IEEE INFOCOM, March 7-11, 2004, Hong Kong. Pages 586-597.



2

impersonate one of the network nodes (in this paper, we use the terms sensors, sensor nodes, and nodes
interchangeably), or intentionally provide misleading information to other nodes. To provide security,
communication should be encrypted and authenticated. An open research problem is how to bootstrap
secure communications among sensor nodes, i.e., how to set up secret keys among communicating nodes?

This key agreement problem is a part of thekey managementproblem, which has been widely studied
in general network environments. There are three types of general key agreement schemes: trusted-server
scheme, self-enforcing scheme, and key pre-distribution scheme. Thetrusted-serverscheme depends
on a trusted server for key agreement between nodes, e.g., Kerberos [4]. This type of scheme is not
suitable for sensor networks because there is usually no trusted infrastructure in sensor networks. The
self-enforcingscheme depends on asymmetric cryptography, such as key agreement using public key
certificates. However, limited computation and energy resources of sensor nodes often make it undesirable
to use public key algorithms, such as Diffie-Hellman key agreement [5] or RSA [6], as pointed out in [7].
The third type of key agreement scheme is keypre-distribution, where key information is distributed
among all sensor nodes prior to deployment. If we know which nodes are more likely to be in the same
neighborhood before deployment, keys can be decideda priori. However, because of the randomness of
deployment, it might be infeasible to learn the set of neighbors a priori.

There exist a number of key pre-distribution schemes. A naivesolution is to let all the nodes carry
a mastersecret key. Any pair of nodes can use this global master secret key to achieve key agreement
and obtain a new pairwise key. This scheme does not exhibit desirable network resilience: if one node
is compromised, the security of the entire sensor network will be compromised. Some existing studies
suggest storing the master key in tamper-resistant hardware to reduce the risk, but this increases the
cost and energy consumption of each sensor. Furthermore, tamper-resistant hardware might not always
be safe [8]. Another key pre-distribution scheme is to let each sensor carryN − 1 secret pairwise keys,
each of which is known only to this sensor and one of the otherN − 1 sensors (assumingN is the
total number of sensors). The resilience of this scheme is perfect because compromising one node does
not affect the security of communications among other nodes; however, this scheme is impractical for
sensors with an extremely limited amount of memory becauseN could be large. Moreover, adding new
nodes to a pre-existing sensor network is difficult because the existing nodes do not have the new nodes’
keys.

Eschenauer and Gligor proposed a random key pre-distribution scheme: before deployment, each sensor
node receives a random subset of keys from a large key pool. Toagree on a key for communication,
two nodes find one common key within their subsets and use this key as their shared secret key [9]. An
overview of this scheme is given in Section III. The Eschenauer-Gligor scheme has further been improved
by Chan, Perrig, and Song [10], by Du, Deng, Han, and Varshney [11], and by Liu and Ning [12].

A. Outline of Our Scheme

Although the proposed schemes [9]–[12] provided viable solutions to the key pre-distribution problem,
they have not exploited an important piece of information that might significantly improve their perfor-
mance. This piece of information isnode deployment knowledge, which, in practice, can be derived from
the way that nodes are deployed.

Let us look at a deployment method that uses an airplane to deploy sensor nodes. The sensors are first
pre-arranged in a sequence of smaller groups. These groups are dropped out of the airplane sequentially
as the plane flies forward. This is analogous to parachuting troops or dropping cargo in a sequence.
The sensor groups that are dropped next to each other have a better chance to be close to each other
on the ground. This spatial relation between sensors derivedprior to deployment can be useful for key
pre-distribution. The goal of this paper is to show that knowledge regarding the actual non-uniform sensor
deployment can help to improve the performance of key pre-distribution.
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Knowing which sensors are close to each other is important for key pre-distribution. In sensor networks,
long distance peer-to-peer secure communication between sensor nodes is rare and unnecessary in many
applications. The primary goal of secure communication in wireless sensor networks is to provide such
communications among neighboring nodes. Therefore, the most important knowledge that can benefit
a key-predistribution scheme is the knowledge aboutthe nodes that are likely to be the neighbors of
each sensor node. If we know perfectly the neighbors of each node in the network, key pre-distribution
becomes trivial: for each nodeni, we just need to generate a pairwise key betweenni and each of its
neighboring nodes, and save these keys inni’s memory. This guarantees that each node can establish a
secure channel with each of its neighbors after deployment.

However, because of the randomness of deployment, it is unrealistic to know the exact set of neighbors
of each node, but knowing the set ofpossibleor likely neighbors for each node is much more realistic.
Still, the number of possible neighbors can be very large and it may not be feasible for a sensor to store
one secret key for each potential neighbor due to memory limitations. This problem can be solved using
the random key pre-distribution scheme [9], i.e., instead of guaranteeing that any two neighboring nodes
can find a common secret key with certainty, we only guarantee that any two neighboring nodes can find
a common secret key with a certain probabilityp. In this paper, we exploit deployment knowledge in
the random key pre-distribution scheme [9], such that the probability p can be increased while the other
performance metrics (such as security and memory usage) arenot degraded.

Deployment knowledge can be modeled using probability density functions (pdfs). When the pdf is
uniform, no information can be gained on where a node is more likely to reside. In this paper, we look
at non-uniform pdfs, which imply that we know that a sensor ismore likely to be deployed in certain
areas. We will show how this knowledge can help to improve therandom key pre-distribution scheme
proposed by Eschenauer and Gligor in [9] and the scheme proposed by Du, Deng, Han, and Varshney
in [11]. To demonstrate the effectiveness of our method, we have studied a specific distribution, the
Normal (Gaussian) distribution, in great depth. Our results show substantial improvement over existing
schemes that do not exploit deployment knowledge.

B. Main Contributions of Our Scheme

The main contributions of this paper are summarized in the following:

1) We model node deployment knowledge in a wireless sensor network, and develop a key pre-
distribution scheme based on this model. We are the first to attempt the use of deployment
knowledge in key pre-distribution.

2) We show that key pre-distribution with deployment knowledge can substantially improve a network’s
connectivity (in terms of secure links) and resilience against node capture, and reduce the amount
of memory required.

II. RELATED WORK

The Eschenauer-Gligor scheme [9] has been briefly described earlier in Section I. We will give a
more detailed description of this scheme in Section III. Based on the Eschenauer-Gligor scheme, Chan,
Perrig, and Song proposed aq-composite random key pre-distribution scheme [10]. The major difference
between this scheme and the Eschenauer-Gligor scheme is thatq common keys (q ≥ 1), instead of just
a single one, are needed to establish secure communicationsbetween a pair of nodes. It is shown that,
by increasing the value ofq, network resilience against node capture is improved, i.e., an attacker has to
compromise many more nodes to achieve a high probability of compromised communication.

Du, Deng, Han, and Varshney proposed a new key pre-distribution scheme [11], which substantially
improved the resilience of the network compared to the existing schemes. This scheme exhibits a nice
threshold property: when the number of compromised nodes isless than the threshold, the probability that
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nodes other than the compromised ones are affected is close to zero. This desirable property lowers the
initial payoff of small-scale network breaches to an adversary, and makes it necessary for the adversary to
attack a significant portion of the network. A similar method was also developed by Liu and Ning [12].

Perrig et al. proposed SPINS, a security architecture specifically designed for sensor networks [7]. In
SPINS, each sensor node shares a secret key with the base station. Two sensor nodes cannot directly
establish a secret key. However, they can use the base station as a trusted third party to set up the secret
key. Chan and Perrig proposed PIKE, a class of key-establishment protocols that involves using one or
more sensor nodes as a trusted intermediary to facilitate key establishment [13]. Anderson, Chan, and
Perrig also studied how the key distribution problem can be dealt with in environments with a partially
present, passive adversary [14].

Blundo et al. proposed several schemes which allow any groupof t parties to compute a common
key while being secure against collusion between some of them [15]. These schemes focus on saving
communication costs while memory constraints are not placed on group members.

Several other key distribution schemes have been proposed for mobile computing, although they are not
specifically targeted at sensor networks. Tatebayashi, Matsuzaki, and Newman considered key distribution
for resource-starved devices in a mobile environment [16].This work is further improved by Park et
al. [17]. Other key agreement and authentication protocolsinclude the one by Beller and Yacobi [18].
A survey on key distribution and authentication for resource-starved devices in mobile environments
is given in [19]. The majority of these approaches rely on asymmetric cryptography, which is not a
feasible solution for sensor networks [7]. Several other methods based on asymmetric cryptography are
also proposed: Zhou and Hass propose to secure ad hoc network using secret sharing and threshold
cryptography [20]. Kong et al. also propose localized public-key infrastructure mechanisms, based on
secret sharing schemes [21].

Stajanor and Anderson studied the issues of bootstrapping security devices, and they proposed a solution
that requires physical contact of the new device with a master device to imprint the trusted and secret
information [22]. Key pre-distribution is similar to the “imprinting” process, but their objectives are
different.

III. B ACKGROUND

A. The Eschenauer-Gligor (EG) Scheme

TheEschenauer-Gligor scheme(referred to as the basic scheme or the EG scheme hereafter) proposed
in [9] consists of three phases: key pre-distribution, shared-key discovery, and path-key establishment.

In the key pre-distribution phase, each sensor node randomly selectsτ distinct cryptographic keys
from a key poolS, and stores them in its memory. This set ofτ keys is called the node’skey ring. The
number of keys in the key pool,|S|, is chosen such that two random subsets of sizeτ in S share at least
one key with some probabilityp.

After the nodes are deployed, akey-setup phaseis performed. During this phase, each pair of neigh-
boring nodes attempt to find a common key that they share. If such a key exists, the key is used to
secure the communication link between these two nodes. After key-setup is complete, a graph (called
key graph) of secure links is formed. Nodes can then set uppath keyswith their neighbors with whom
they do not share keys. If the key graph is connected, a path can always be found from a source node
to any of its neighbors. The source node can then generate a path key and send it securely via the path
to the target node.

The size of the key poolS is critical to both the connectivity and the resilience of the scheme.
Connectivityis defined as the probability that any two neighboring nodes share one key.Resilienceis
defined as the fraction of the secure links that are compromised after a certain number of nodes are
captured by the adversaries.
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At one extreme, if the size ofS is one, i.e.,|S| = 1, the scheme is actually reduced to the naive
master-key scheme. This scheme yields a high connectivity, but it is not resilient against node capture
because the capture of one node can compromise the whole network. At the other extreme, if the key pool
is very large, e.g.,|S| = 100, 000, resilience becomes much better, but connectivity of the sensor network
becomes low. For example, as indicated in [9], in this case, even when each sensor selectsτ = 200 keys
from this large key poolS, the probability that any two neighboring nodes share at least one key is only
0.33.

How can we use a large key pool while still maintaining high connectivity and the same memory
usage? In this paper, we use deployment knowledge to solve this problem.

B. The Du-Deng-Han-Varshney (DDHV) Scheme

Blom proposed a key pre-distribution method that allows anypair of nodes in a network to be able
to derive a pairwise secret key [23]. It has the property thatas long as no more thanλ nodes are
compromised, all communication links of non-compromised nodes remain secure (we refer to this as
being “λ-secure”). We now briefly describe Blom’s scheme (we have madesome slight modifications
to the scheme in order to make it more suitable for sensor networks, but the essential features remain
unchanged).

We assume some agreed-upon(λ + 1) × N matrix G over a finite fieldGF (q), whereN is the size
of the network andq > N . This matrixG is public information and may be shared by different systems;
even adversaries are allowed to knowG. During the key generation phase the base station creates a
random (λ + 1) × (λ + 1) symmetric matrixD over GF (q), and computes anN × (λ + 1) matrix
A = (D ·G)T , where(D ·G)T is the transpose ofD ·G. Matrix D must be kept secret, and should not
be disclosed to adversaries or to any sensor nodes (although, as will be discussed, one row of(D · G)T

will be disclosed to each sensor node). BecauseD is symmetric, it is easy to see that

A · G = (D · G)T · G = GT · DT · G = GT · D · G

= (A · G)T ;

i.e.,A ·G is a symmetric matrix. If we letK = A ·G, we know thatKij = Kji, whereKij is the element
in the ith row andjth column ofK. The idea is to useKij (or Kji) as the pairwise key between node
i and nodej. Figure 1 illustrates how the pairwise keyKij = Kji is generated. To carry out the above
computation, nodesi and j should be able to computeKij and Kji, respectively. This can be easily
achieved using the following key pre-distribution scheme,for k = 1, . . . , N :

1) store thekth row of matrixA at nodek, and
2) store thekth column of matrixG at nodek.1

Then, when nodesi andj need to establish their pairwise key, they first exchange their columns ofG and
then computeKij andKji, respectively, using their private rows ofA. BecauseG is public information,
its columns can be transmitted in plaintext. It has been shown [23] that the above scheme isλ-secure if
any λ + 1 columns ofG are linearly independent. Thisλ-secure property guarantees that no coalition of
up to λ nodes (not includingi and j) have any information aboutKij or Kji.

We define the set of keys generated fromA andG as akey space. According to the Blom scheme, if
any two nodes carry their corresponding information from the same key space, they can find a common
key between themselves. Roughly speaking, Blom’s scheme uses asingle key space. By changing the
values of matricesD andG, we can create different key spaces.

Motivated by the random key pre-distribution schemes [9], [10], Du et al. developed an improved key
pre-distribution scheme usingmultiplekey spaces (we call it the DDHV scheme) [11]. The DDHV scheme

1In practice, sensors need not store the whole column, because each column can be generated from a single field element [11].
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Fig. 1. Generating keys in Blom’s scheme.

first constructsω spaces using Blom’s scheme, and then have each sensor node carry key information
from τ (with 2 ≤ τ < ω) randomly selected key spaces. Now (from the properties of the underlying
Blom scheme), if two nodes carry key information from a common space they can compute a shared
key. Of course, unlike Blom’s scheme, it is no longer certainthat two nodes can generate a pairwise
key; instead (as in the Eschenauer-Gligor random key pre-distribution scheme), such a connectivity is
probabilistic.

It should be noted that when a key space hasλ = 0, a compromise of one (i.e.λ + 1) node from this
key space will compromise the entire key space. This is equivalent to having one key in this key space.
Therefore, by lettingλ = 0, each key space collapses to one key, and thus the DDHV schemereduces to
the EG scheme. From this perspective, the EG scheme is actually aspecial case of the DDHV scheme.
Therefore, in this paper, we focus only on the DDHV scheme.

IV. M ODELING OF THEDEPLOYMENT KNOWLEDGE

We assume that sensor nodes are static once they are deployed. We definedeployment pointas the
desired point where a sensor is to be deployed. This is not likely the location where the sensor resides
eventually. The sensor node can reside at points around this desired point according to a certain pdf. As
an example, let us consider the case where sensors are deployed by being dropped from a helicopter.
The deployment point is the location of the helicopter. We also defineresident pointfor a sensor as the
point where the sensor finally resides.

A. Group-based Deployment Model

In practice, it is quite common that nodes are deployed in groups, i.e., a group of sensors are deployed
at a single deployment point, and the pdfs of the final residentpoints of all the sensors in each batch
(or group) are the same. In this work, we assume such a group-based deployment, and we model the
deployment knowledge as follows (we call this model thegroup-based deployment model):

1) N sensor nodes to be deployed are divided intot × n equal size groups so that each group,Gi,j ,
for i = 1, . . . , t and j = 1, . . . , n, is deployed from the deployment point with index(i, j). Let
(xi, yj) represent the deployment point for groupGi,j .

2) The deployment points are arranged in a grid. Note that the scheme we develop for grid-based
deployment can be easily extended to different deployment strategies. We choose this specific
strategy because it is quite common in realistic scenarios.

3) During deployment, the resident points of the nodek in groupGi,j follow the pdff(x, y|k ∈ Gi,j).
An example of the pdf is a two-dimensional Gaussian distribution.

Whenf(x, y|k ∈ Gi,j) is a uniform distribution over the deployment region for allGi,j ’s, we do not
know which nodes are more likely to be close to each othera priori because the resident point of a
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Fig. 2. Node Deployment

node can be anywhere within the region with the same probability. However, whenf(x, y|k ∈ Gi,j) is
a non-uniform distribution, we can determine which nodes are more likely to be close to each other.
For example, with Gaussian distribution, we know that the distance between a resident point and the
deployment point is less than3σ with probability 0.9987 (where σ is the standard deviation of the
Gaussian distribution). If the deployment points of two groups are6σ away, then the probability for two
nodes from these two different groups to be located near eachother is very low. Therefore, the probability
that two nodes from two different groups become neighbors decreases with an increase of the distance
between the two deployment points.

Recall that in the Eschenauer-Gligor random key pre-distribution scheme [9] and the DDHV scheme [11],
when the size of the key-space poolS becomes smaller, connectivity increases. Since these schemes
assume no deployment knowledge (i.e. the distributionf(x, y|k ∈ Gi,j) is uniform), every node should
choose from the same key-space pool because they are equallylikely to be neighbors. However, as we
have discussed, when the functionf(x, y|k ∈ Gi,j) is non-uniform, we know that nodes from a specific
group are more likely to be neighbors of nodes from the same group and those from nearby groups.
Therefore, when two groups are far away from each other, theirkey-space pools should be different,
rather than the same global key-space poolS.

We useSi,j to represent the key-space pool used by groupGi,j ; the union ofSi,j (for i = 1, . . . , t

and j = 1, . . . , n) equalsS. We use|Sc| to represent the size ofSi,j (for the sake of simplicity, we let
all Si,j ’s have the same size in this paper). Based on a specific deployment distribution, we can develop
a scheme, such that when the deployment points of two groupsGi1,j1 andGi2,j2 are farther away from
each other, the amount of overlap betweenSi1,j1 andSi2,j2 becomes smaller or zero.

B. Deployment Distribution

There are many different ways to deploy sensor networks, for example, sensors could be deployed using
an airborne vehicle. The actual model for deployment distribution depends on the deployment method.
Our key pre-distribution scheme is for the most part model independent. We propose our scheme in a
manner whereby it can be instantiated to use other deployment models. To keep the presentation concrete,
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we use an example model; namely, we model the sensor deployment distribution as a two-dimensional
Gaussian distribution (also called Normal distribution),Our methodology should be easily adaptable to
other deployment models.

We assume that the deployment distribution for any nodek in groupGi,j follows a two-dimensional
Gaussian distribution. When the deployment point of groupGi,j is at (xi, yj), we haveµ = (xi, yj) and
the pdf for nodek in groupGi,j is the following [24]:

f(x, y|k ∈ Gi,j) =
1

2πσ2
e−[(x−xi)2+(y−yj)2]/2σ2

. (1)

Although the distribution function for each single group isnon-uniform, we still prefer the sensor
nodes to be evenly deployed throughout the entire region. Bychoosing a proper distance between the
neighboring deployment points with respect to the value ofσ in the pdf of each deployment group, the
probability of finding a node in each small region can be made approximately equal. Assuming that a
sensor node is selected to be in a given group with an equal probability, 1

t·n , the average deployment
distribution (pdf) of any sensor node over the entire regionis:

foverall(x, y) =
1

t · n
·

t
∑

i=1

n
∑

j=1

f(x, y|k ∈ Gi,j). (2)

To see the overall distribution of sensor nodes over the entire deployment region, we have plotted
foverall in Eq. (2) for6× 6 = 36 groups over a600m× 600m square region with the deployment points
2σ = 100m apart (assumingσ = 50). Figure 2(a) shows all the deployment points, and Figure 2(b)
shows the overall pdf. From Figure 2(b), we can see that the pdf is almost flat (i.e. nodes are fairly
evenly distributed) in the whole region except near the boundaries.

V. K EY PRE-DISTRIBUTION USING DEPLOYMENT KNOWLEDGE

Based on the deployment model described in the previous section, we propose a new random key
pre-distribution scheme, which takes advantage of deployment knowledge. This new scheme is based on
the original DDHV scheme, so we call it the DDHV-D scheme.2 In this scheme, we assume that the
sensor nodes are evenly divided intot×n groupsGi,j , for i = 1, . . . , t, andj = 1, . . . , n. We assume that
the global key-space pool isS with size |S|, and also assume that the deployment points are arranged
in a grid depicted in Figure 2(a). Each node carriesτ key spaces.

A. Key Pre-distribution Scheme

The goal of this scheme is to allow sensor nodes to find a common secret key with each of their neigh-
bors after deployment. Our scheme consists of three phases:key pre-distribution, shared-key discovery,
and path-key establishment. The last two phases are exactly the same as the DDHV scheme [11], but
because of deployment knowledge, the first phase is considerably different.

Step 1: Key Pre-distribution phase.This phase is conducted offline and before the sensors are deployed.
First we need to divide the key-space poolS into t × n key-space poolsSi,j (for i = 1, . . . , t and
j = 1, . . . , n), with Si,j corresponding to the deployment groupGi,j . We say that two key-space pools
are neighbors (or near each other) if their corresponding deployment groups are deployed in neighboring
(or nearby) locations. The goal of setting up the key-space pools Si,j is to allow the nearby key-space
pools to share more key spaces, while those far away from eachother share fewer key spaces or no key
space at all. Steps for setting up key-space pools will be discussed in details later.

2“D” after the hyphen indicates the use of deployment knowledge.
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After the key-space pools are set up, for each sensor node in the deployment groupGi,j , we randomly
selectτ key spaces from its corresponding key-space poolSi,j ; then for each selected key space, we load
the corresponding row of its matrix (i.e. matrixA) into the memory of the node.

Step 2: Shared-key discovery phase.After deployment, each node needs to discover whether it shares
any key space with its neighbors. To do this, each node broadcasts a message containing the indices of
the key spaces it carries. Each neighboring node can use thesebroadcast messages to find out if there
exists a common key space it shares with the broadcasting node. If such a key space exists, using the
Blom scheme, the two neighboring nodes can derive a pair-wise key from the common key space, and
use the key to secure the communication channel between themselves.

After the above step, the entire sensor network forms aKey-Space Sharing GraphGKS, which is
defined in the following:

Definition 1: (Key-Space Sharing Graph) LetV represent all the nodes in the sensor network.
A Key-Space Sharing GraphGKS(V, E) is constructed in the following manner: For any two
nodesi andj in V , there exists an edge between them if and only if (1) nodesi andj have at
least one common key space, and (2) nodesi and j can reach each other within the wireless
transmission range, i.e., in a single hop.

Step 3: Path-key establishment phase.It is possible that two neighboring nodes cannot find any common
key space between them. In this case, they need to find a secure way to agree upon a common key.
We now show how two neighboring nodes,i and j, who do not share a common key space could still
come up with a secret key between them. The idea is to use the secure channels that have already been
established in the key-space sharing graphGKS: as long as the graph is connected, two neighboring
nodesi and j can always find a path inGKS from i to j. Assume that the path isi, v1, . . ., vh, j. To
find a common secret key betweeni and j, i first generates a random keyK. Then i sends the key to
v1 using the secure link betweeni and v1; v1 forwards the key tov2 using the secure link betweenv1

andv2, and so on untilj receives the key fromvh. Nodesi andj use this secret keyK as their pairwise
key. Because the key is always forwarded over a secure link, no nodes beyond this path can find out the
key.

To find such a secure path for nodesi and j, the easiest way is to use flooding [25], a common
technique used in multi-hop wireless networks. As we will show later in our analysis, in practice, the
probability that the secure path betweeni andj is within three hops is very high (close to one). Therefore,
we can always limit the lifetime of the flooding message to three hops to reduce flooding overhead.

B. Setting Up Key-Space Pools

Next, we show how to assign key spaces to each key-space poolSi,j , for i = 1, . . . , t andj = 1, . . . , n,
such that key-space pools corresponding to nearby deployment points have a certain number of common
key spaces. In our scheme, we have:

1) Two horizontally or vertically neighboring key-space pools share exactlya|Sc| key spaces3, where
0 ≤ a ≤ 0.25.

2) Two diagonally neighboring key-space pools share exactly b|Sc| key spaces, where0 ≤ b ≤ 0.25
and4a + 4b = 1.

3) Two non-neighboring key-space pools share no key spaces.

We call a and b the overlapping factors. To achieve the above properties, we divide the key spaces
in each key-space pool into eight partitions (see Figure 3(a)). Key spaces in each partition are those

3If a|Sc| is not an integer,⌊a|Sc|⌋ should be used instead.
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Fig. 3. Key-Space Pools

key spaces that are shared between the corresponding neighboring key-space pools. For example, in
Figure 3(a), the partition in the upper left corner ofE consists ofb · |Sc| key spaces shared betweenA

andE; the partition in the left part ofE consists ofa · |Sc| key spaces shared betweenD andE.
Given the global key-space poolS and the overlapping factora andb, we now describe how we can

select key spaces for each key-space poolSi,j for i = 1, . . . , t and j = 1, . . . , n. The procedure is also
depicted in Figure 3(b) for a4 × 4 case. First, key spaces for the first groupS1,1 are selected fromS;
then key spaces for the groups in the first row are selected fromS and their left neighbors. Then key
spaces for the groups in the second row to the last row are selected fromS and their left, upper-left,
upper, and upper-right neighbors. For each row, we conduct the process from left to right. The following
procedure describes how we choose key spaces for each key-space pool:

1) For groupS1,1, select|Sc| key spaces from the global key-space poolS; then remove these|Sc|
key spaces fromS.

2) For groupS1,j , for j = 2, . . . , n, selecta · |Sc| key spaces from the key-space poolS1,j−1; then
selectw = (1− a) · |Sc| key spaces from the global key-space poolS, and remove the selectedw
key spaces fromS.

3) For groupSi,j , for i = 2, . . . , t and j = 1, . . . , n, selecta · |Sc| key spaces from each of the
key-space poolsSi−1,j andSi,j−1 if they exist; selectb · |Sc| key spaces from each of the key-space
poolsSi−1,j−1 andSi−1,j+1 if they exist; then selectw (defined below) key spaces from the global
key-space poolS, and remove thesew key spaces fromS.

w =











(1 − (a + b)) · |Sc|, for j = 1

(1 − 2(a + b)) · |Sc|, for 2 ≤ j ≤ n−1

(1 − (2a + b)) · |Sc|, for j = n

Note that after any group (e.g.,G1) selectss key spaces (s = a · |Sc| or s = b · |Sc|) from its neighbor
(e.g.,G2), no other neighboring groups ofG1 or G2 can select any one of theses key spaces, i.e., these
s key spaces are only shared byG1 andG2. In other words, no key space is shared by more than two
neighboring groups in our scheme. Although this requirement is not necessary in practice, it significantly
simplifies our analysis.
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VI. PERFORMANCE ANDSECURITY: ANALYTICAL RESULTS

In this section we analyze the performance and security of our scheme. We present our analytical
results on the following two metrics:

• Local connectivity. We use local connectivity to refer to the probability of anytwo neighboring nodes
sharing at least one key space. We useplocal andp interchangeably to refer to the local connectivity.
The local connectivity directly affects the performance of the scheme.

• Resilience against node capture. In a hostile environment, adversary can mount physical attacks on
a sensor node after it is deployed and read secret information from its memory. We need to find how
a successful attack onx sensor nodes by an adversary affects the rest of the network.In particular,
we want to find the fraction of additional communications (i.e., communications among uncaptured
nodes) that an adversary can compromise based on the information retrieved from thex captured
nodes.

A. Computing Local Connectivity

We randomly pick any two nodesu andv in the network. LetA(u, v) be the event thatu andv are
neighbors; letB(u, v) be the event thatu and v share at least one common key space. Therefore, the
local connectivityplocal (i.e., the probability of two neighboring nodes being able to find a common key
space), is the following conditional probability:

plocal = Pr(B(u, v) | A(u, v)) =
Pr(B(u, v) andA(u, v))

Pr(A(u, v))
. (3)

Sinceu andv are picked randomly, the above probability is the average over all possible pairs of nodes.
Defining Ψ as the set of all deployment groups in our scheme, we have

Pr(A(u, v)) =
∑

j∈Ψ

∑

i∈Ψ

Pr(A(u, v) | u ∈ Gi andv ∈ Gj) · Pr(u ∈ Gi andv ∈ Gj)

=
1

(n · t)2

∑

j∈Ψ

∑

i∈Ψ

Pr(A(u, v) | u ∈ Gi andv ∈ Gj).

Note that in the above equation, because the two nodesu and v are selected independently, and each
of them is selected to be in any given deployment group with anequal probability, we havePr(u ∈
Gi andv ∈ Gj) = 1

(nt)2 , wheren · t is the number of deployment groups. Similar to the above equation
for Pr(A(u, v)), we have the following equation:

Pr(B(u, v) andA(u, v))

=
∑

j∈Ψ

∑

i∈Ψ

Pr(B(u, v) andA(u, v) | u ∈ Gi andv ∈ Gj) · Pr(u ∈ Gi andv ∈ Gj)

=
1

(nt)2

∑

j∈Ψ

∑

i∈Ψ

Pr(B(u, v) andA(u, v) | u ∈ Gi andv ∈ Gj).

Because eventsB(u, v | u ∈ Gi andv ∈ Gj) andA(u, v | u ∈ Gi andv ∈ Gj) are independent,4 we

4Note that unconditional eventsB(u, v) andA(u, v) are not independent, because they both depend on the deployment groups
that u andv come from.
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Fig. 4. Resilience against node capture. An attack circle, centered atZ(x, y) with radiusRc, is shown in the network. The
adversary randomly picksxc nodes from this circle.

have the following:

Pr(B(u, v) andA(u, v))

=
1

(nt)2

∑

j∈Ψ

∑

i∈Ψ

Pr(B(u, v) | u ∈ Gi andv ∈ Gj) · Pr(A(u, v) | u ∈ Gi andv ∈ Gj).

Therefore, to compute the local connectivity, we just need tocomputePr(A(u, v) | u ∈ Gi andv ∈ Gj)
andPr(B(u, v) | u ∈ Gi andv ∈ Gj). To simplify notations, we useni to replaceu andnj to replacev;
the subscriptsi andj indicate thatni is from Gi andnj is from Gj . We can therefore omit the condition
(u ∈ Gi andv ∈ Gj) in our notation. The probability of local connectivity in Eq. (3) becomes

plocal =

∑

j∈Ψ

∑

i∈Ψ

Pr(B(ni, nj)) · Pr(A(ni, nj))

∑

j∈Ψ

∑

i∈Ψ

Pr(A(ni, nj))
. (4)

Therefore, we need to computePr(A(ni, nj)) andPr(B(ni, nj)) in order to findplocal. The detailed
derivations of these two are given in Appendices I and II, with Pr(A(ni, nj)) given by Equation (8)
andPr(B(ni, nj)) given by Equation (10). It should be noted thatPr(A(ni, nj)) solely depends on the
deployment model, whilePr(B(ni, nj)) solely depends on the key pre-distribution.

B. Resilience Analysis

In order to analyze the resilience of the DDHV-D scheme, we need to have a model for the adversary’s
attacks. While establishing such models, we consider a realistic scenario in which the adversary intrudes
a region inside the sensor network and randomly captures andcompromisesxc sensors within this region.
We explain the attack model in the following:

• We assume that the adversary captures nodes randomly withina region;
• The region is assumed to be a circle5 centered at pointZ(x, y) with radius Rc. We term such

circle as theattack circleand callRc the attack radius. An example of an attack circle is shown

5The analysis of other shapes is similar, albeit with more complicated formulas.
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in Figure 4. Note that when the circle is large enough to contain the entire deployment region, the
attack model reduces to the uniform-random attack, in whichthe probability that any node in the
entire deployment region is compromised is the same.

Under this attack model, we analyze the resilience of our keypre-distribution scheme. We explore
the effect of the capture ofxc sensor nodes by an adversary on the security of the rest of thenetwork.
In particular, we calculate the fraction of additional communication (i.e., communication among the
uncaptured nodes) that an adversary can compromise based onthe information retrieved from thexc

captured nodes. To compute this fraction, we first compute theprobability that any one of the additional
communication links is compromised afterxc nodes are captured. Note that we only consider the links in
the key-space-sharing graph, and each of these links is secured using a key computed from the common
key space shared by the two nodes of this link.

Before we present our detailed analysis on resilience, we summarize our approach in the following for
the benefit of clarity: based on the above assumptions, we can calculate, among all sensors in the attack
circle, the average number of sensors that are deployed fromeach specific group. Since the adversary
compromisesxc sensors randomly inside the circle, the average number of compromised sensors that
are deployed from the specific group can be derived. Based on the key pool sharing technique shown in
Figure 3(b), we derive the average number of sensors that are compromised and are carrying keys from
the same key pool. Then we use the method in [11] to calculate the fraction of additional communication
that an adversary can compromise based on the information retrieved from thexc captured nodes.

Let zi denote the distance between the deployment point of groupGi and locationZ, the center of the
attack circle (cf. Figure 4). Letgi = g(zi | ni ∈ Gi) represent the probability that a sensor nodeni from
groupGi resides within the attack circle. The details of the derivation for gi is given in Appendix I, and
the results are given in Equations (6) and (7).

With N sensors divided intot×n groups, each group hasNt×n sensors. The expected number of sensors
that are from groupGi and reside in the attack circle is

Ni =
N

t · n
gi ,

with the expected number of total sensors in the attack circle center atZ(x, y) as

N(Z(x, y), Rc) =
∑

i∈Ψ

Ni =
∑

i∈Ψ

N

t · n
gi .

Since the adversary randomly choosesxc sensors among theseN(Z(x, y), Rc) sensors, the expected
number of captured sensors that are deployed from groupGi is

xi(x, y, Rc) = xc ·
Ni

N(Z(x, y), Rc)
= xc ·

gi
∑

j∈Ψ

gj

.

Next, we look for the expected number of sensors that draw their keys from the same group of key
spaces (from groupGi). Since the sensors that are deployed from the neighboring groups ofGi share
some key spaces with this groupGi, we need to count the weighted sum of the numbers of nodes that
have been captured from all these groups:

Xi(x, y, Rc) =
∑

j∈Ψi

ξ(i, j)

|Sc|
· xj(x, y, Rc) ,

where Ψi representsi and the indices of all neighboring groups of groupi, and ξ(i, j), given by
Equation (9), is the number of common key spaces shared by the key pools of groupsGi and Gj .
For example,Ψi = {A, · · · , I} when i = E in Figure 4.
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Let A be the deployment area,c the link betweenu andv, andC(x, y) the event that the attack circle
is centered at(x, y). Due to the fact thatC(x, y) is independent ofA(u, v) andB(u, v), we have

Pr(c is compromised| A(u, v) andB(u, v))

=
1

A

∫

A
Pr(c is compromised| C(x, y) andA(u, v) andB(u, v)) dxdy.

The derivation ofPr(c is compromised| C(x, y) andA(u, v) andB(u, v)) is rather cumbersome.
Therefore, we move it to Appendix III (cf. Equation (13)).

VII. PERFORMANCE ANDSECURITY EVALUATION : NUMERICAL RESULTS

An important goal of this study is to understand the performance of the DDHV-D scheme. However,
because of the complexity of the analytical results obtained for local connectivity and resilience, it is
difficult to understand the performance from the equations that we have derived. In this section, we present
numerical results corresponding to those derived equations. We show the performance of the DDHV-D
scheme as well as the comparisons with the existing key pre-distribution schemes. More importantly, we
will use the numerical results to understand the relationships among the parametersλ, memory usagem,
local connectivityplocal, and resilience, as their relationships are difficult to understand from the rather
complicated analytical results. Note thatm is defined in units of key size; namely, if each key is 64 bits
long, then the total amount of memory usage is64 ·m bits. The relationship between the memory usage
m and the number (τ ) of key spaces each sensor can carry is the following [11]:

τ = ⌊
m

λ + 1
⌋.

A. System Configuration

In our numerical analysis and simulations, we use the following setup:

• The number of sensor nodes in the sensor network is10, 000.
• The deployment area is1000m × 1000m.
• The area is divided into a grid of size100 = t×n = 10×10, with each grid cell of size100m×100m.
• The center of each grid cell is the deployment point (see Figure2(a)).
• The wireless communication range for each node isR = 40m.
• We assume that the node deployment follows a two-dimensional Gaussian distribution.

B. Connectivity

We show the results for bothlocal connectivityandglobal connectivity. Global connectivity refers to the
ratio of the number of nodes in the largest isolated component in the final key-space-sharing graph to the
size of the whole network. If the ratio equals99%, it means that99% of the sensor nodes are connected,
and the rest1% are unreachable from the largest isolated component. So, theglobal connectivity metric
indicates the percentage of nodes that are wasted because oftheir unreachability. Both global connectivity
and local connectivity are affected by the key pre-distribution scheme.

1) Local Connectivity: In this experiment, we evaluate how much the deployment knowledge can
improve the local connectivity. We conduct two evaluations, one for the EG scheme (i.e.,λ = 0), and
the other for the DDHV scheme (we setλ = 19).

A number of parameters can affect the local connectivity; tosimplify the evaluation, we seta = 0.15
and b = 0.10. In addition, we make the local connectivity form = 100 the same for both EG and
DDHV schemes. Once these parameters are fixed, we can decide the size of the global key-space pool
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(a) Comparison of EG and EG-D schemes (λ = 0).
|S| = 100, 000 and |Sc| = 1770.
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Fig. 5. Local Connectivity Performance Comparisons

and the local key-space pools. Then based on Equation (4), we can computeplocal for the EG, EG-D6,
DDHV, and DDHV-D schemes for various memory usage scenarios. The results are plotted in Figure 5.
Figure 5(a) and Figure 5(b) clearly show that the deployment-knowledge-based EG-D and DDHV-D
schemes significantly improve the local connectivity of their counterparts.

There are two “abnormal” phenomena in Figure 5(b). First, it seems thatplocal for DDHV-D can
never reach1. The reason for this phenomenon is that some neighboring nodes might come from non-
neighboring deployment groups. According to our key pre-distribution scheme, they do not share any
key space because their deployment groups are not neighbors. Therefore, the local connectivity can never
reach1. The second abnormal phenomena is the discrete steps for bothDDHV and DDHV-D schemes.
This is because of roundings: when|S| is fixed, the only parameter that can affect the local connectivity
is τ , the number of key spaces carried by each sensor. Becauseτ = ⌊ m

λ+1⌋= ⌊m
20⌋, there will be discrete

steps forτ when m is increased, causing the discrete steps forplocal.
2) Global Connectivity:It is possible that the key-space-sharing graph in our scheme has a high local

connectivity, but the graph can still have isolated components. Since those components are disconnected,
no secure links can be established among them. Therefore, it is important to determine whether the
graph will have too many isolated components. To this end, wemeasure the global connectivity of the
key-space-sharing graph, namely, we measure the ratio of the size of the largest isolated component in
G and the size of the whole network. We consider that all the nodes that are not connected to the largest
isolated component are useless nodes because they are “unreachable” via secure links.7

When node distribution and key sharing are uniform, global connectivity can be estimated using the
local connectivity and other network parameters using Erdős random graph theorem [26], just like what has
been done in [9], [10]. However, since neither our node distribution nor our key sharing is uniform, Erdős
random graph theorem will not be a good estimation method. Recently, Shakkottai et al. have determined

6EG-D stands for the scheme that combines the original EG scheme and deployment knowledge. It is a special case of
DDHV-D (i.e., theλ = 0 case).

7Some of the “unreachable” nodes might be reachable physically because they are within the communication range, but they
cannot find a common key with any of the nodes in the largest isolated component.
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TABLE I

LOCAL CONNECTIVITY VS. GLOBAL CONNECTIVITY

Local Connectivity 0.024 0.383 0.697 0.871 0.892 0.929 0.956
Global Connectivity 0.0132 0.9963 0.9988 0.9997 0.9999 0.9999 1.0000

the connectivity of a wireless sensor grid network with unreliable nodes [27]. Their results have been
corrected and further improved in [28]. In our future work, we will estimate the global connectivity by
using the results given in [28]. In this work, we only use simulation to estimate global connectivity. We
use the configuration described in Section VII-A to conduct thesimulation. The relationships between
the local connectivity and the global connectivity are shown in Table I.

The simulation results indicate that when the local connectivity plocal reaches0.697, only 0.12% of
the sensor nodes will be wasted due to the lack of secure links; whenplocal reaches0.956, no nodes are
wasted. These results exclude those nodes that are not withinthe communication range of the largest
isolated component because they are caused by the deployment, not by our key pre-distribution scheme.

C. Resilience Against Node Capture

We assume that an adversary can mount a physical attack on a sensor node after it is deployed and
read secret information from its memory. We need to find how a successful attack onx sensor nodes
by an adversary affects the rest of the network. In particular, we want to find the fraction of additional
communication (i.e., communications among uncaptured nodes) that an adversary can compromise based
on the information retrieved from thex captured nodes.

1) Comparison with the Existing Schemes:In Figure 6, we show the numerical results on the resilience
performance of the DDHV-D scheme against node compromise (capture). The attack circle is assumed
to be Rc = 250 m. Our main performance metric is,Pc, the fraction of communication links that are
compromised whenx nodes are captured. We plotPc for the Eschenauer-Gligor scheme (EG) [9], the
Chan-Perrig-Song (CPS) scheme [10], and the DDHV scheme [11] in Figures 6(a) and 6(b). We plotPc

of the DDHV-D scheme in Figures. 6(c) and 6(d).
In Figures. 6(c) and 6(d), the network average curve shows theaverage of all groups in the network.

Since the adversary only captures nodes inside the attack circle, only the keys of a few groups are
affected. Those groups that are far away from this region are not likely to be affected at all. Therefore,
the resilience performance of the network on an average is very good for thex values that we show.
However, if we calculate the average resilience performance of those groups that have been affected the
most, “worst groups”, their resilience is quite different from the network average. For example, if we
consider the worst group,Pc approaches 1 more quickly than the others. As we increase thenumber
k in the “k worst groups” performance,Pc increases more slowly. Such a trend is shown in both of
Figures. 6(c) and 6(d).

As we mentioned before, whenλ = 0, the DDHV-D scheme reduces to the EG-D scheme. To see the
difference between the EG scheme and the EG-D scheme, we plot the resilience of the EG-D scheme in
Figure 7 forplocal equal to0.33 and0.50. Comparing Figure 7 with Figure 6, we can see that the EG-D
scheme out-performs the EG scheme in resilience. However, wenotice that the EG-D scheme is worse
than the DDHV scheme and DDHV-D scheme. This is due to theλ value used in EG-D (λ = 0).

2) Relationships Between Resilience and Various Parameters:In the following experiments, we study
how various parameters, such as memory usagem, local connectivityplocal, and attack radiusRc affect
the resilience. For the sake of simplicity, it is better to use one value to represent the resilience, rather
than using a series of values (a curve) based onx. The representative number we choose is the minimum
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(a) EG, CPS, and DDHV:p = 0.33, m = 200
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(b) EG, CPS, and DDHV:p = 0.50, m = 200
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(c) DDHV-D: p = 0.33, m = 200, λ = 19
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(d) DDHV-D: p = 0.50, m = 200, λ = 19

Fig. 6. Comparing the Network Resilience of EG, CPS, DDHV and DDHV-D Schemes.

number of nodes (denoted asxmin) that need to be compromised if attackers want to compromiseat least
10% of the communication links from the worstk = 5 groups (excluding the ones that are connected to the
compromised nodes). The reason that we choose10% is that usually resilience deteriorates exponentially
after this threshold. In the following experiments, we willusexmin as our resilience score and plot it
on the Y-axis.

a) Resilience versus Memory Usage.:When the memory usagem increases, the local connectivity
also increases. In other words, if we want to maintain the same local connectivity, we can increase the
size of the global key-space poolS, such that there are more key spaces to choose from. As a result, the
resilience gets better. In this experiment, we study how theincrease ofm affects the resilience. We fix
λ = 9 andplocal = 0.50. 8 Figure 8(a) shows that resilience increases almost linearlywith the memory
usage.

8It is impossible to achieve the exact value0.50 for the local connectivity; we maintain the value ofplocal around0.50.
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(a) EG-D:p = 0.33, m = 200, λ = 0
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(b) EG-D: p = 0.50, m = 200, λ = 0

Fig. 7. Network Resilience of the EG-D scheme (a special case of DDHV-D).

b) Resilience versus Local Connectivity.:In this experiment, we would like to answer the following
question:is it possible to achieve both high local connectivity and resilience whenλ and m are fixed?
To this end, we fixλ = 9 andm = 200; we then changeS, so plocal can change accordingly. We plot
the resilience result for eachplocal value. Figure 8(b) depicts the results. It clearly shows thatresilience
and connectivity are two conflicting properties; higher connectivity leads to lower resilience.

c) Resilience versusRc.: The resilience of our scheme is also affected by the attack radius Rc.
When the compromised nodes are more concentrated (i.e.Rc is smaller), the damage to the worstk = 5
groups should be more severe. To verify this hypothesis, we fixλ = 9, m = 200, andp = 0.50; we then
plot the resilience results for a number of different valuesof attack radiusRc. Figure 8(c) depicts the
results. It does show that resilience gets better when the compromised nodes are less concentrated. This
result is easy to understand: whenRc gets larger, the compromised nodes become more and more evenly
distributed among all the deployment groups. Therefore, given the samex (the number of compromised
nodes), the number of compromised nodes for each particulardeployment group is less for a largerRc

than that for a smallerRc; thus the damage to any particular deployment group becomesless severe.

D. Communication Overhead

Since the probability that two neighboring nodes share a key space is less than one, when the two
neighboring nodes do not have a common key space (i.e., they are not connected directly in the key-
space-sharing graph), they need to find a route in the key-space-sharing graph to connect to each other.
We need to determine the number of hops required on this route. Obviously, when the two neighbors
are connected directly, the number of hops needed is 1. When more hops are needed to connect two
neighboring nodes, the communication overhead of setting up the security association between them is
higher. We useph(ℓ) to denote the probability that the smallest number of hops needed to connect two
neighboring nodes isℓ. Obviously,ph(1) equals the local connectivityplocal.

The communication overhead only depends on the local connectivity; therefore, we study the relation-
ship between the local connectivity and the communication overhead. We use simulations to estimate
how many of the key setups have to go throughℓ hops, for ℓ = 1, 2, .... Figure 9(a) depicts the
communication overhead when the local connectivity changes. In Figure 9(b), we show the change of
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(c) Resilience versus Attack RadiusRc

Fig. 8. Resilience as a function of Various Parameters.

communication overhead vs. memory usagem for the EG-D scheme. As we can observe from the figure,
whenplocal = 0.3, the sum ofph(1), ph(2), andph(3) is almost 1, which means that most of the key
setups can be conducted within 3 hops.

E. Saving on Computational Costs

Compared to the DDHV scheme, the computation for computing pairwise keys can be more efficient
for the DDHV-D scheme, and can thus save energy. We explain the cause of such a difference.

According to [11], the matrixG is defined over a finite fieldGF (q). A natural choice is to work with
fields of characteristic 2 (i.e., fields of the formGF (2k)) both because multiplications in this field are
rather efficient and also because elements in such fields naturally map to bit strings which can then be
used as cryptographic keys. In [11], it is observed that to derive a 64-bit key it is not necessary to work
over GF (2k) with k ≥ 64; instead, one can define the key as the concatenation of multiple “sub-keys”
each of which lies in a smaller field. As an example, a 64-bit keycan be composed of four 16-bit keys
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Fig. 9. Communication Overhead

TABLE II

TIME (MS) FOR COMPUTING A64-BIT SECRET KEY (λ = 50).

eight 8-bit keys Four 16-bit keys Two 32-bit keys One 64-bit key
Time (ms) 5.44 8.94 14.45 25.67

or eight 8-bit keys. The key observation is that security is not affected by working overGF (q) where
q is “small”; this is because the security arguments are information-theoretic and do not rely on any
“cryptographic hardness” of the fieldGF (q).

Since the number of multiplications for generating an 8-bit key is the same as that for a 16-bit key, and
the cost of a multiplication inGF (216) is equivalent to four multiplications inGF (28), usingGF (28)
to generate a 64-bit key can reduce the total cost by half, compared toGF (216). However, there is
a requirement onq: it must be larger thanN , the number of columns of the matrixG in the DDHV
scheme [11].

Recall that each column of the matrixG in the DDHV scheme corresponds to a node; therefore, the
total number of nodes that can use a key space is the number of columns ofG. We call this number the
capacityof a key space. In the original DDHV scheme, each key space canbe selected by any node in
the network, so the capacity of a key space must be larger thanthe size of the networkN . However, in
the DDHV-D scheme, each key space can only be used by at most two deployment groups. Namely, the
capacity of a key space can beN50 (assuming that the total number of deployment groups is100). This
means that forN = 10, 000, the original DDHV scheme has to work overGF (216), while the DDHV-D
scheme can work overGF (28).

We measured the actual time of computing a 64-bit key using a key space withλ = 50. The
measurement was conducted on MICAz sensor nodes [29]. TableII describes the results for various
underlying fields. The results show that being able to useGF (28) can save39% of energy compared to
usingGF (216).
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VIII. C ONCLUSIONS ANDFUTURE WORK

We have described a random key pre-distribution scheme thatuses deployment knowledge. Our scheme
takes advantage of the prior knowledge about deployment, and reduces the number of unnecessary
key spaces carried by each sensor. We have conducted a comprehensive study on the connectivity and
resilience of our scheme. The results have shown significant improvement in both the connectivity and
resilience over the other existing key pre-distribution schemes [9]–[11]. We have presented both the
analytical and numerical results. In our future work, we will study how the accuracy of the deployment
model affects those results.
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APPENDIX I
COMPUTING Pr(A(ni, nj))

In this appendix, we present our calculation ofPr(A(ni, nj)), the probability that two sensors deployed
from groupsi and j are physical neighbors.

We divide the entire deployment region into many infinitesimal rectangular areas of sizedx dy. Let
θ = (x, y) represent a point in the region, and we useθ(dx, dy) to represent the infinitesimal rectangular
area aroundθ. Assuming that thex-axis of the deployment region ranges from0 to X andy-axis ranges
from 0 to Y , we can use the following formula to compute the probabilitythat ni andnj are neighbors:

Pr(A(ni, nj))

=

∫ X

x=0

∫ Y

y=0
Pr(A(ni, nj) | nj is in θ(dx, dy)) · Pr(nj is in θ(dx, dy)) · dx dy.

The probability that the nodenj (from groupGj) resides within this small rectangle areaθ(dx, dy)
can be computed directly using the probability density function fR of the deployment:

Pr(nj is in θ(dx, dy)) = fR(djθ | nj ∈ Gj) · dx dy,

wheredjθ is the distance betweenθ and the deployment point of groupj. Based on the two-dimensional
Gaussian deployment distribution as shown in Eq. (1), we have

fR(djθ|nj ∈ Gj) =
1

2πσ2
e−

(djθ)2

2σ2 . (5)

Next, we show howPr(A(ni, nj) | nj is in θ(dx, dy)) can be computed. We usez to represent the
distance from pointθ to the deployment point of groupGi. We draw two circles. The first circle has
a radiusℓ, and is centered ati, the deployment point of groupGi. We call this circle thei-circle. The
second circle has a radiusR (whereR is the wireless transmission range), and is centered atθ = (x, y).
We call this circle theθ-circle. When two circles intersect, we call thei-circle’s arc within theθ-circle
the Larc, and we useLarc(ℓ, z, R) to represent the length of the arc. We now consider an infinitesimal
ring areaLarc(ℓ, z, R) · dℓ. The bold areas in Figure 10(a) and 10(b) show the infinitesimal ring areas.
Using geometry, we can compute the length of the arc using thefollowing formula:

Larc(ℓ, z, R) = 2ℓ cos−1

(

ℓ2 + z2 − R2

2ℓz

)

.

Recall thatfR(ℓ | ni ∈ Gi) represents the probability density function of the deployment for group
Gi. Therefore, the probability that the nodeni resides within this small ring area is

fR(ℓ | ni ∈ Gi) · Larc(ℓ, z, R) · dℓ.

We defineg(z | ni ∈ Gi) as the probability that the sensor nodeni from groupGi resides within the
θ-circle, wherez is the distance betweenθ and the deployment point of groupGi. It is not hard to see
that Pr(A(ni, nj) | nj is in θ(dx, dy)) = g(z | ni ∈ Gi).

To calculateg(z | ni ∈ Gi), we integrate the probabilities over all the ring areas (fordifferentℓ) within
the θ-circle. Therefore, whenz > R (as shown in Figure 10(a)),
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g(z | ni ∈ Gi) =

∫ z+R

z−R
fR(ℓ | ni ∈ Gi) · Larc(ℓ, z, R) dℓ . (6)

Whenz < R (as shown in Figure 10(b)),

g(z | ni ∈ Gi) =

∫ R−z

0
ℓ · 2πfR(ℓ | ni ∈ Gi) dℓ +

∫ z+R

R−z
fR(ℓ | ni ∈ Gi) · Larc(ℓ, z, R) dℓ . (7)

Combining the above equations together, we get

Pr(A(ni, nj)) =

∫ Y

y=0

∫ X

x=0
fR(djθ | v ∈ Gj) · g(diθ | u ∈ Gi) · dx dy, (8)

wherediθ (resp.djθ) is the distance between the deployment point ofGi (resp.Gj) andθ = (x, y).

APPENDIX II
COMPUTING Pr(B(ni, nj))

In this appendix, we calculatePr(B(ni, nj)), the probability that two sensors deployed from groupsi

and j share at least one common key. The probability of this event does not depend on the deployment
knowledge. It only depends on the key pre-distribution, i.e., the key-space pools, shared key spaces
between key-space pools, and the number of key spaces each sensor carries.

Let ξ(i, j) represent the number of shared key spaces between the deployment groupsGi and Gj .
According to our key-space pool construction scheme, we have the following:

ξ(i, j) =















|Sc|, when i = j;
ξa = ⌊a|Sc|⌋, when i and j are horizontal or vertical neighbors;
ξb = ⌊b|Sc|⌋, when i and j are diagonal neighbors;
0, otherwise.

(9)

To calculatePr(two nodes do not share any key space), we use the following strategy: the first node
selectsk key spaces from theξ shared key spaces, it then selects the remainingτ −k key spaces from the
non-shared key spaces. To avoid sharing any key space with the first node, the second node cannot select
any of thek key spaces from thoseξ shared key spaces that are already selected by the first node, so it
has to selectτ key spaces from the remaining(|Sc| − k) key spaces from its key-space pool. Therefore,
p(ξ(i, j)), the probability that two nodes share at least one key space when their key-space pools have
ξ(i, j) key spaces in common, can be calculated in the following:9

9Whenξ(i, j) = |Sc|, p(ξ(i, j)) can be simplified to1 −
(|Sc|−τ

τ )
(|Sc|

τ )
; whenξ(i, j) = 0, p(ξ(i, j)) = 0.
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Pr(B(ni, nj)) = p(ξ(i, j)) = 1 − Pr(two nodes do not share any key space)

= 1 −

min(τ,ξ(i,j))
∑

k=0

(

ξ(i, j)

k

)(

|Sc| − ξ(i, j)

τ − k

)(

|Sc| − k

τ

)

(

|Sc|
τ

)2 , (10)

whereξ(i, j) is given by Equation (9).

APPENDIX III
RESILIENCE ANALYSIS

We present our detailed derivation ofPr(c is compromised| C(x, y) andA(u, v) andB(u, v)) of
Section VI-B in this appendix.

Let Ki be the event thatc is using a key space associated with groupi. Then

Pr(c is compromised| C(x, y) andA(u, v) andB(u, v))

=
∑

i∈Ψ

Pr(c is compromised| Ki andC(x, y) andA(u, v) andB(u, v)) ·

Pr(Ki | A(u, v) andB(u, v)) . (11)

The last equation is obtained due to the fact thatKi is independent toC(x, y).
According to the result given in [11], for any of the|Sc| keys belonged to groupi that might be used

by any link, we have

Pr(c is compromised| Ki andC(x, y) andA(u, v) andB(u, v))

=

Xi(x,y,Rc)
∑

j=λ+1

(

Xi(x, y, Rc)

j

)(

τ

|Sc|

)j (

1 −
τ

|Sc|

)Xi(x,y,Rc)−j

.

Now we need to calculate the probability

Pr(Ki | A(u, v) andB(u, v)) =
Pr((Ki andB(u, v)) andA(u, v))

Pr(A(u, v) andB(u, v))
,

in (11). Note that, the probabilityPr(A(u, v) andB(u, v)) has been given in the previous subsection.
Since that the eventKi is true implies that the eventB(u, v) is true, we get

Pr((Ki andB(u, v)) andA(u, v)) = Pr(Ki andA(u, v)).

By a similar procedure given in previous subsection we have

Pr(Ki andA(u, v)) =
1

(nt)2

∑

j∈Ψi

p(ξ(i, j)) · Pr(A(u, v) | u ∈ Gi andv ∈ Gj).
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Combing the above Equations and Equation (10), we have

Pr(c is compromised| A(u, v) andB(u, v))

=
1

XY

∫ Y

y=0

∫ X

x=0
Pr(c is compromised| C(x, y) andA(u, v) andB(u, v)) dxdy

=
1

XY

∫ Y

y=0

∫ X

x=0

∑

i∈Ψ







Xi(x,y,Rc)
∑

j=λ+1

(

Xi(x, y, Rc)

j

)(

τ

|Sc|

)j (

1 −
τ

|Sc|

)Xi(x,y,Rc)−j

·

∑

j∈Ψi
p(ξ(i, j)) · Pr(A(ni, nj))

∑

j∈Ψ

∑

i′∈Ψ p(ξ(i′, j)) · Pr(A(ni′ , nj)

}

dxdy, (12)

=
1

XY
·
∑

i∈Ψ

∑

j∈Ψi
p(ξ(i, j)) · Pr(A(ni, nj))

∑

j∈Ψ

∑

i′∈Ψ p(ξ(i′, j)) · Pr(A(ni′ , nj)
·

∫ Y

y=0

∫ X

x=0







Xi(x,y,Rc)
∑

j=λ+1

(

Xi(x, y, Rc)

j

)(

τ

|Sc|

)j (

1 −
τ

|Sc|

)Xi(x,y,Rc)−j






dxdy, (13)

wherePr(A(ni, nj)) is given in Equation (8).
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