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Abstract

This paper proposes copula-based tests for testing cross-sectional independence of panel
models.
JEL Classi�cation: C13; C33
Keywords: Copulas; Panel data; Cross-sectional independence

1 Introduction

This paper considers tests of cross-sectional dependence using copulas in panel models. It is
important to test the cross-sectional dependence in panel models because the existence of cross-
sectional dependence will invalidate conventional tests such as t-tests and F-tests which use
standard covariance estimators of parameter estimators. Moreover, the choice of estimation
methods may depend upon whether there exists cross-sectional dependence in the errors of
panel models. When the errors are cross-sectionally dependent in panel data models, for
example, the computation of MLE and GMM could be rather complicated, and the feasible
GLS estimator will be invalid or have to be modi�ed substantially.

Since the pioneering work of Moran (1950), there has been a lot of work on testing for
cross-sectional dependence or spatial correlation in the literature, e.g., Cli¤ and Ord (1973),
Burridge (1980), King (1981). For a survey see Anselin and Bera (1997). Moran�s test is
similar in structure to Durbin-Watson test for serial correlation. Cli¤and Ord (1973) generalize
Moran�s test in order to derive a test for spatial correlation in a linear regression model. King
(1981) studies the small sample properties of Cli¤-Ord test for spatial correlation. Burridge

�Corresponding author. Department of Finance, Whitman School of Management, Syracuse University,
Syracuse, NY 13210. TEL: +1 3152562117 and Department of Finance, National Central University, Jung-Li,
Taiwan 320, R.O.C.
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(1980) shows that Cli¤-Ord test is a Lagrange multiplier (LM) test. Brett and Pinkse (1997)
introduce a nonparametric test for spatial independence based on characteristic function and
they showed the proposed test is consistent against a fairly general class of alternative.

There have been some tests for cross-sectional dependence in panel models, e.g., Baltagi
et. al.. (2003), Pesaran (2004), and Ng (2006). Pesaran (2004) proposes a convenient OLS-
based test for cross-sectional dependence by modifying Breusch and Pagan (1980)�s Lagrange
multiplier (LM) statistic. However, none of the above literature uses copula method.

Copula method has been widely discussed in literature, e.g., Frees and Valdez (1998),
Cherubini et. al. (2004), Oaks (1994), Genest et. al. (1995), Shih and Louis (1995), Joe and
Xu (1996), Patton (2002b), Chen and Fan (2005a, 2006a, 2006b), to name a few. Moreover,
copula method was also applied to model correlation structure or test dependence between time
series data, e.g., Patton (2002a, b), Chen, Fan, and Patton (2004). Patton (2002a) uses the
concept of conditional copula to model the time-varying correlation of exchange rates. Chen,
Fan, and Patton (2004) apply integral transform and kernel estimation to test the dependence
between �nancial time series. Nonetheless, there is still no research, as far we know, about
using copulas to test the cross-sectional dependence in panel models.

The organization of the paper is as follows. In Section 2, we describe the panel models and
copulas. In Section 3 we discuss the copula-based tests. Section 4 presents the conclusion. The
introduction of copula families and their parameters under independence are in the Appendix.

2 The Model

Consider the following panel model

yit = x
0
it� + �i + �t + vit (1)

i = 1; :::; n; and t = 1; :::; T , where yit is a scalar, xit is a p � 1 vector of regressors that may
contain lagged dependent variables, � is a p�1 vector of slope parameters, �i is the individual
e¤ect, �t is the time e¤ect, and vit is the error term. We allow for �xed or random e¤ects. The
slope parameter � is often of interest and it can be estimated, e.g., by the within estimator

b� = " nX
i=1

TX
t=1

exitex0it
#�1 " nX

i=1

TX
t=1

exitey0it
#

(2)

where exit = xit � xi� � x�t + x;
xi� =

1

T

TX
t=1

xit;

x�t =
1

n

nX
i=1

xit;
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and

x =
1

n

1

T

nX
i=1

TX
t=1

xit:

The variables eyit; yi�; y�t; and y; are de�ned similarly. For interval estimation and hypothesis
testing, one often uses the standard covariance estimator

b
b� = b�2v
 

nX
i=1

TX
t=1

exitex0it
!�1

of b�, where b�2v is an estimator for �2v = V ar (vit) : This estimator is valid when fvitg in (1) is
cross-sectionally uncorrelated, among other things. The existence of cross-sectional dependence
of any form, however, will generally invalidate the covariance estimator and related inference.
in particular, conventional t and F tests will be misleading.

We are interested in testing whether the error process fvitg is cross-sectionally dependent.
To test the null hypothesis, we will examine the cross-sectional dependence in the demeaned
estimated residual bvit = buit � bui� � bu�t + u; where

buit = yit � x0itb�;
bui� = 1

T

TX
t=1

buit;
bu�t = 1

n

nX
i=1

buit;
u =

1

nT

nX
i=1

TX
t=1

buit;
and b� is a consistent estimator for � under the null of no cross-sectional dependence. When b�
is the within estimator in (2), bvit is the usual within residual in the literature.

Let vt = (v1t:; ; ; ; vnt)
0
. For each t, we assume that fvtg has a continuous joint distribution

H (v1t:; ; ; ; vnt) and continuous marginal distribution Fi (vi) for i = 1; :::; n. By Sklar�s (1959)
theorem1, there exists a unique copula function

H (v1t; ::; vnt) = C (F1 (v1t) ; :::; Fn (vnt)) :

The essence of copulas is that one can always model any multivariate distribution by modeling
its marginal distributions and its copula functions separately, where the copula captures all
the scale-free dependence in the multivariate distribution. Thus, a copula is a multivariate
distribution function that connects marginal distributions so that to exactly form the joint
distribution. A copula thus completely parameterizes the entire dependence structure between
two or more random variables. It is important to note that a given distribution function H
de�nes only one set of marginal distribution functions Fi; i = 1; :::; n; where given marginal

1About the detail description of copula method and its application, please refer to Nelson (1999), Cherubini
et.al. (2004)
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distributions do not determine a unique joint distribution. To connect copulas to likelihood-
based model, let h and c be the derivatives of the distributions H and C, respectively. Then

h (v1t; :::; vnt) =
@nH (v1t; ::; vnt)

@v1t:::@vnt

=
@nC (F1 (v1t) ; :::; Fn (vnt))

@v1t:::@vnt

=
@nC (U1t; :::; Unt)

@U1t:::@Unt
jUit=Fi(vit)

nY
i=1

fi (vit)

= c (F1 (v1t) ; :::; Fn (vnt))
nY
i=1

fi (vit) :

That is, the joint density is the product of the copula density and the marginal densities. The
hypotheses of interest are

�
H0 : c (F1 (v1t) ; :::; Fn (vnt)) = 1 for all t

HA : c (F1 (v1t) ; :::; Fn (vnt)) < 1 for some t:

The alternative hypothesis HA allows (but not all) the time series to be independent. Then log-
likelihood function for (1) under the alternative hypothesis is l =

PT
t=1

Pn
i=1 [ln fi (vit; �) + ln c (F1; :::; Fn;�)] ;

where � is regression parameter in (1), and � is the copula parameter. Under the null hypoth-
esis the log-likelihood function can be reduced to l =

PT
t=1

Pn
i=1 ln fi (vit; �) :

3 Copula-Based Tests

In the literature, the estimation for copula parameter can be categorized into three types:
exact maximum likelihood estimation (MLE), two-step MLE, and semiparametric two-step
estimation2. In this paper, we use the semiparametric two-step approach.

Let C0 (�;�) denotes a class of correctly-speci�ed parametric copulas with unknown para-
meter �. The two-step semiparametric estimator, b�, is de�ned as

b� = argmax
�2�

"
1

T

TX
t=1

log c0
n eF1 (bv1t) ; : : : ; eFn (bvnt) ;�o#

where bvit = vit �b�� ; c0 (�;�) is the density of the parametric copula C0 (�;�) and eFi (v) is
the rescaled empirical distribution function of bvi1; : : : ; bviT :

eFi (v) = 1

T + 1

TX
t=1

I (bvit � v) , i = 1; : : : ; n (3)

and I (�) is an indicator function.
2Chap5 in Cherubini et.al (2004) provides a thorough introduction about the estimation of copula model.
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Notice that we use bvit in (3), instead of vit; because vit is not observable. In particular,
we are interested in seeing how the asymptotic behavior of eFi (v) and hence b� depend on the
estimator b� of � in bvit = vit �b�� : Let

bFi (v) = 1

T + 1

TX
t=1

I (vit � v) :

Then it can be shown that (e.g., Mammen, 1996, p. 308)

p
T
� eFi (v)� bFi (v)� = 1p

T
f (v)

TX
t=1

hex0it �b� � ��i+ op (1)
where f (v) is the density of F (v). Hence, one has to expect that the asymptotics of b�
will depend on the b� � �: However, interestingly and surprisingly, Chen and Fan (2006b,
Proposition 3.1) have shown that the asymptotics of b� is not a¤ected by the initial estimatorb� in the context of a copula-based multivate GARCH model, Following the similar steps in
Chen and Fan (2006b), we can establish that

b� = argmax
�2�

"
1

T

TX
t=1

log c0
n eF1 (bv1t) ; : : : ; eFn (bvnt) ;�o#

� argmax
�2�

"
1

T

TX
t=1

log c0
n bF1 (v1t) ; : : : ; bFn (vnt) ;�o# : (4)

Let Ut = (U1t; : : : ; Unt)
| with Uit = F 0i (vit), i = 1; : : : ; n; where F

0
i (�) is the true marginal

distribution, l (u1; : : : ; un;�) = log c0 (u1; : : : ; un;�), l� (u1; : : : ; un;�) = @
@� l (u1; : : : ; un;�) ;

lj (u1; : : : ; un;�) =
@
@uj
l (u1; : : : ; un;�), l�� (u1; : : : ; un;�) = @2

@�@�0 l (u1; : : : ; un;�) ; l�j (u1; : : : ; un;�) =

@2

@�@uj
l (u1; : : : ; un;�) ; E

0 f�g is an expectation taken with respect to distribution C0
�
u1; : : : ; un;�

0
�
,

B � �E0
�
l��
�
U1t; : : : ; Unt;�

0
�	
is positive de�nite, � � var0

�
l�
�
U1t; : : : ; Unt;�

0
�
+
Pn
i=1Wi

�
Uit;�

0
�	

is �nite, positive de�nite, and Wi

�
Uit;�

0
�
� E0

�
fI (Uit � Uis)g l�i

�
U1s; : : : ; Uns;�

0
�
jUit
�
:

The asymptotic properties of b� in (4) have been discussed by Genest et.al. (1995):
Proposition 1 Under suitable regularity conditions stated in Genest et al. (1995), we havep
T
�b�� �0� d�! N

�
0; B�1�B�1

�
as T �!1:

The B and � in asymptotic variance are not observable; therefore, some consistent estima-
tors must be given. From Genest et. al. (1995), we note that B can be consistently estimated
by:

bB = � 1
T

TX
t=1

l��

�eUt; b��

where eUt = �eU1t; : : : ; eUnt�>, eUit = eFi (bvit) for i = 1; : : : ; n, and
5



b� = 1

T

TX
t=1

(
l�

�eUt; b��+ nX
i=1

cWi

�eUit; b��)(l� �eUt; b��+ nX
i=1

cWi

�eUit; b��)>

with

cWi

�eUit; b�� = 1

T

TX
s=1;s 6=t

l�i

�eUs; b��nI �eUit � eUis�o

Then the test of independence in panel models can be stated as:

�
H0 : �

0 = ��

HA : �
0 6= ��

where �� is the copula parameter under the null of independence which are discussed in the
Appendix, and �0 is the true copula parameter. Using the asymptotic property of b�, we can
construct a Wald test, for example,

W = (b�� ��)> � 1
T
bB�1b� bB�1��1 (b�� ��) (5)

and it can be shown that W follows a �2k asymptotically under H0, where k is the dimension
of �:

4 Conclusion

This paper presents copula-based tests to detect cross-sectional dependence in panel models.
Some commonly used copula families and their related properties are provided in Appendix.
By checking respective copula parameter under independence, we can construct tests, e.g.,
Wald test statistic, to test cross-sectional dependence in panel models.
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A Appendix

A.1 Copula families and parameters under independence

In this appendix, we list the properties of a few widely-used copulas, including copula forms,
copula density, and copula parameters under independence. In this section, C (:) denotes copula
function, c (:) denotes copula density, and �� denotes copula parameter under independence
which either makes copula function become independent copula or makes copula density equal
1, where independent copula C (u; v) = uv. About more detail explanation, please refer to
Nelson (1999).

A.1.1 Elliptical copulas

1. Gaussian copula

Let R be symmetric, positive de�nite correlation matrix and �R (:; :) be the standard
bivariate normal distribution with correlation matrixR. The density function of bivariate
Gaussian copula is:

c (u; v) = 1
jRj0:5 exp

�
�1
2�

> �R�1�I���
where, � =

�
��1 (u) ;��1 (v)

�> and ��1 (:) is the inverse of the univariate normal CDF.
The bivariate Gaussian copula is:

C (u; v;R) = �R
�
��1 (u) ;��1 (v)

�
Hu (2003) shows the bivariate Gaussian copula can be approximated by Taylor�s expan-
sion:

C (u; v;�) � uv + ��
�
��1 (u)

�
�
�
��1 (v)

�
where, � (:) is the density function of univariate Gaussian distribution and � is the corre-
lation coe¢ cient between ��1 (u) ;��1 (v) It is very trivial that when � is 0, this copula
is an independent copula. In multivariate case, independence holds when R is an identity
matrix.

A.1.2 Copulas with quardratic-sections

In this family, copula can be represented as:

C (u1; u2; : : : ; un) = a (v)u
2 + b (v)u+ c (v), for appropriate functions a; b; c.

1. Farlie-Gumbel-Morgenstern family:

C (u; v; �) = uv (1 + � (1� u) (1� v))
c (u; v; �) = 1 + �� 2�u� 2�v + 4�uv
� 2 [�1; 1]
�� = 0

9



A.1.3 Archimedean copulas

Archimedean copulas can be constructed by an originator, ' (t), via this generator function:

C (u1; u2; : : : ; un) = '
�1 (' (u1) + ' (u2) + : : :+ ' (un))

where, ' : I! [0;1], continuous, '0 (t) < 0 and '00 (t) > 0, for all t 2 (0; 1)

Hence, the density of copula can be expressed as:

c (u1; u2; : : : ; un) =
@nC(u1;u2;:::;un)

@u1:::@un
= @n'�1('(u1)+'(u2)+:::+'(un))

@'(u1):::@'(un)
@'(u1)
@u1

: : : @'(un)@un

Here, we only list bivariate case. They can be easily extended to n-variate case.

1. Joe family:

C (u; v; �) = 1� ((1� u)� + (1� v)� � (1� u)� (1� v)�)1=�
� 2 [1;1)
' (t) = � log (1� (1� t)�)
�� = 1

2. Ali-Mikhail-Haq family:

C (u; v; �) = uv
1��(1�u)(1�v)

� 2 [�1; 1)
' (t) = log

�
1��(1�t)

t

�
�� = 0

3. Clayton family:

C (u; v; �) =

(
uv � = 0

(u�� + v�� � 1)�1=� � 6= 0
� 2 [0;1)
' (t) = 1

� (t
�� � 1)

�� = 0

4. Gumble family:

C (u; v; �) = exp
h
� ((� lnu)� + (� ln v)�)1=�

i
� 2 [1;1)

' (t) = (� log t)�
�� = 1

5. Frank family:

C (u; v; �) =

8<: uv � = 0

� 1
� ln

�
1 +

(e��u�1)(e��v�1)
e���1

�
� 6= 0

� 2 (�1;1)
' (t) = � ln e��t�1

e���1
�� = 0
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A.1.4 Others

1. Plackett family:

C (u; v; �) =

8<: uv � = 1�
1+(u+v)(��1)�

p
(1+(u+v)(��1))2�4uv�(��1)

�
2(��1) � 6= 1

� 2 (0;1)
�� = 1
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