Syracuse University SURFACE

Center for Policy Research

Maxwell School of Citizenship and Public Affairs

2007

Copula-Based Tests for Cross-Sectional Independence in Panel Models

Chihwa Kao

Syracuse University. Center for Policy Research, cdkao@maxwell.syr.edu

Giovanni Urga

City University, Cass Business School (London, England), g.urga@city.ac.uk

Follow this and additional works at: http://surface.syr.edu/cpr

Part of the Econometrics Commons

Recommended Citation

Kao, Chihwa and Urga, Giovanni, "Copula-Based Tests for Cross-Sectional Independence in Panel Models" (2007). Center for Policy Research. Paper 66.

http://surface.syr.edu/cpr/66

This Working Paper is brought to you for free and open access by the Maxwell School of Citizenship and Public Affairs at SURFACE. It has been accepted for inclusion in Center for Policy Research by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

ISSN: 1525-3066

Center for Policy Research Working Paper No. 99

COPULA-BASED TESTS FOR CROSS-SECTIONAL INDEPENDENCE IN PANEL MODELS

Hong-Ming Huang, Chihwa Kao, and Giovanni Urga

Center for Policy Research

Maxwell School of Citizenship and Public Affairs

Syracuse University

426 Eggers Hall

Syracuse, New York 13244-1020

(315) 443-3114 | Fax (315) 443-1081

e-mail: ctrpol@syr.edu

December 2007

\$5.00

Up-to-date information about CPR's research projects and other activities is available from our World Wide Web site at **www-cpr.maxwell.syr.edu**. All recent working papers and Policy Briefs can be read and/or printed from there as well.

CENTER FOR POLICY RESEARCH - Fall 2007

Timothy Smeeding, Director Professor of Economics & Public Administration

Associate Directors

Margaret Austin Associate Director Budget and Administration

Douglas Wolf
Professor of Public Administration
Associate Director, Aging Studies Program

John Yinger Professor of Economics and Public Administration Associate Director, Metropolitan Studies Program

SENIOR RESEARCH ASSOCIATES

Kalena Cortes	Amy Lutz
---------------	----------

GRADUATE ASSOCIATES

Amy Agulay	Public Administration	Tamara Hafner	Public Administration
Javier Baez	Economics	Sung Hyo Hong	Economics
Sonali Ballal	Public Administration	Neelakshi Medhi	Social Science
Jesse Bricker	Economics	Larry Miller	Public Administration
Maria Brown	Social Science	Phuong Nguyen	Public Administration
II Hwan Chung	Public Administration	Wendy Parker	Sociology
Mike Eriksen	Economics	Shawn Rohlin	
Qu Feng	Economics	Carrie Roseamelia	Sociology
Katie Fitzpatrick	Economics	Cynthia Searcy	Public Administration
Chantell Frazier	Sociology	Jeff Thompson	Economics
Alexandre Genest	Public Administration	Coady Wing	Public Administration
Julie Anna Golebiewski	Economics	Ryan Yeung	Public Administration
Nadia Greenhalgh-Stanley .	Economics	Can Zhou	Economics

STAFF

Kelly Bogart	Administrative Secretary	Kitty Nasto	Administrative Secretary
, ,	Publications/Events Coordinator	•	•
Karen Cimilluca	Administrative Secretary	Mary Santy	Administrative Secretary
Roseann DiMarzo	Receptionist/Office Coordinator	-	•

Abstract

This paper processes copula-based tests for testing cross-sectional independence of panel models.

JEL classification: C13; C33

Keywords: Copulas; Panel Data; Cross-sectional Independence

Copula—Based Tests for Cross-Sectional Independence in Panel Models

Hong-Ming Huang*
Syracuse University and National Central University
hhuang08@syr.edu

Chihwa Kao Syracuse University cdkao@maxwell.syr.edu

Giovanni Urga Cass Business School G.Urga@city.ac.uk

December 11, 2007

Abstract

This paper proposes copula-based tests for testing cross-sectional independence of panel models.

JEL Classification: C13; C33

Keywords: Copulas; Panel data; Cross-sectional independence

1 Introduction

This paper considers tests of cross-sectional dependence using copulas in panel models. It is important to test the cross-sectional dependence in panel models because the existence of cross-sectional dependence will invalidate conventional tests such as t-tests and F-tests which use standard covariance estimators of parameter estimators. Moreover, the choice of estimation methods may depend upon whether there exists cross-sectional dependence in the errors of panel models. When the errors are cross-sectionally dependent in panel data models, for example, the computation of MLE and GMM could be rather complicated, and the feasible GLS estimator will be invalid or have to be modified substantially.

Since the pioneering work of Moran (1950), there has been a lot of work on testing for cross-sectional dependence or spatial correlation in the literature, e.g., Cliff and Ord (1973), Burridge (1980), King (1981). For a survey see Anselin and Bera (1997). Moran's test is similar in structure to Durbin-Watson test for serial correlation. Cliff and Ord (1973) generalize Moran's test in order to derive a test for spatial correlation in a linear regression model. King (1981) studies the small sample properties of Cliff-Ord test for spatial correlation. Burridge

^{*}Corresponding author. Department of Finance, Whitman School of Management, Syracuse University, Syracuse, NY 13210. TEL: +1 3152562117 and Department of Finance, National Central University, Jung-Li, Taiwan 320, R.O.C.

(1980) shows that Cliff-Ord test is a Lagrange multiplier (LM) test. Brett and Pinkse (1997) introduce a nonparametric test for spatial independence based on characteristic function and they showed the proposed test is consistent against a fairly general class of alternative.

There have been some tests for cross-sectional dependence in panel models, e.g., Baltagi et. al.. (2003), Pesaran (2004), and Ng (2006). Pesaran (2004) proposes a convenient OLS-based test for cross-sectional dependence by modifying Breusch and Pagan (1980)'s Lagrange multiplier (LM) statistic. However, none of the above literature uses copula method.

Copula method has been widely discussed in literature, e.g., Frees and Valdez (1998), Cherubini et. al. (2004), Oaks (1994), Genest et. al. (1995), Shih and Louis (1995), Joe and Xu (1996), Patton (2002b), Chen and Fan (2005a, 2006a, 2006b), to name a few. Moreover, copula method was also applied to model correlation structure or test dependence between time series data, e.g., Patton (2002a, b), Chen, Fan, and Patton (2004). Patton (2002a) uses the concept of conditional copula to model the time-varying correlation of exchange rates. Chen, Fan, and Patton (2004) apply integral transform and kernel estimation to test the dependence between financial time series. Nonetheless, there is still no research, as far we know, about using copulas to test the cross-sectional dependence in panel models.

The organization of the paper is as follows. In Section 2, we describe the panel models and copulas. In Section 3 we discuss the copula-based tests. Section 4 presents the conclusion. The introduction of copula families and their parameters under independence are in the Appendix.

2 The Model

Consider the following panel model

$$y_{it} = x_{it}'\beta + \mu_i + \lambda_t + v_{it} \tag{1}$$

i=1,...,n, and t=1,...,T, where y_{it} is a scalar, x_{it} is a $p \times 1$ vector of regressors that may contain lagged dependent variables, β is a $p \times 1$ vector of slope parameters, μ_i is the individual effect, λ_t is the time effect, and v_{it} is the error term. We allow for fixed or random effects. The slope parameter β is often of interest and it can be estimated, e.g., by the within estimator

$$\widehat{\beta} = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{x}_{it} \widetilde{x}'_{it} \right]^{-1} \left[\sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{x}_{it} \widetilde{y}'_{it} \right]$$
(2)

where

$$\widetilde{x}_{it} = x_{it} - \overline{x}_{i.} - \overline{x}_{.t} + \overline{x},$$

$$\overline{x}_{i.} = \frac{1}{T} \sum_{t=1}^{T} x_{it},$$

$$\overline{x}_{.t} = \frac{1}{n} \sum_{i=1}^{n} x_{it},$$

and

$$\overline{x} = \frac{1}{n} \frac{1}{T} \sum_{i=1}^{n} \sum_{t=1}^{T} x_{it}.$$

The variables \tilde{y}_{it} , \bar{y}_i , \bar{y}_i , and \bar{y} , are defined similarly. For interval estimation and hypothesis testing, one often uses the standard covariance estimator

$$\widehat{\Omega}_{\widehat{\beta}} = \widehat{\sigma}_v^2 \left(\sum_{i=1}^n \sum_{t=1}^T \widetilde{x}_{it} \widetilde{x}_{it}' \right)^{-1}$$

of $\hat{\beta}$, where $\hat{\sigma}_v^2$ is an estimator for $\sigma_v^2 = Var(v_{it})$. This estimator is valid when $\{v_{it}\}$ in (1) is cross-sectionally uncorrelated, among other things. The existence of cross-sectional dependence of any form, however, will generally invalidate the covariance estimator and related inference. in particular, conventional t and F tests will be misleading.

We are interested in testing whether the error process $\{v_{it}\}$ is cross-sectionally dependent. To test the null hypothesis, we will examine the cross-sectional dependence in the demeaned estimated residual $\hat{v}_{it} = \hat{u}_{it} - \hat{u}_{i} - \hat{u}_{i} + \overline{u}$, where

$$\widehat{u}_{it} = y_{it} - x_{it}'\widehat{\beta},$$

$$\widehat{u}_{i\cdot} = \frac{1}{T} \sum_{t=1}^{T} \widehat{u}_{it},$$

$$\widehat{u}_{\cdot t} = \frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{it},$$

$$\overline{u} = \frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widehat{u}_{it},$$

and $\widehat{\beta}$ is a consistent estimator for β under the null of no cross-sectional dependence. When $\widehat{\beta}$ is the within estimator in (2), \widehat{v}_{it} is the usual within residual in the literature.

Let $v_t = (v_{1t}, \dots, v_{nt})'$. For each t, we assume that $\{v_t\}$ has a continuous joint distribution $H(v_{1t}, \dots, v_{nt})$ and continuous marginal distribution $F_i(v_i)$ for $i = 1, \dots, n$. By Sklar's (1959) theorem¹, there exists a unique copula function

$$H(v_{1t},..,v_{nt}) = C(F_1(v_{1t}),...,F_n(v_{nt})).$$

The essence of copulas is that one can always model any multivariate distribution by modeling its marginal distributions and its copula functions separately, where the copula captures all the scale-free dependence in the multivariate distribution. Thus, a copula is a multivariate distribution function that connects marginal distributions so that to exactly form the joint distribution. A copula thus completely parameterizes the entire dependence structure between two or more random variables. It is important to note that a given distribution function H defines only one set of marginal distribution functions F_i , i = 1, ..., n, where given marginal

¹About the detail description of copula method and its application, please refer to Nelson (1999), Cherubini et.al. (2004)

distributions do not determine a unique joint distribution. To connect copulas to likelihood-based model, let h and c be the derivatives of the distributions H and C, respectively. Then

$$h(v_{1t}, ..., v_{nt}) = \frac{\partial^{n} H(v_{1t}, ..., v_{nt})}{\partial v_{1t} ... \partial v_{nt}}$$

$$= \frac{\partial^{n} C(F_{1}(v_{1t}), ..., F_{n}(v_{nt}))}{\partial v_{1t} ... \partial v_{nt}}$$

$$= \frac{\partial^{n} C(U_{1t}, ..., U_{nt})}{\partial U_{1t} ... \partial U_{nt}} |_{U_{it} = F_{i}(v_{it})} \prod_{i=1}^{n} f_{i}(v_{it})$$

$$= c(F_{1}(v_{1t}), ..., F_{n}(v_{nt})) \prod_{i=1}^{n} f_{i}(v_{it}).$$

That is, the joint density is the product of the copula density and the marginal densities. The hypotheses of interest are

$$\begin{cases} H_0: c\left(F_1\left(v_{1t}\right),...,F_n\left(v_{nt}\right)\right) = 1 \text{ for all } t \\ H_A: c\left(F_1\left(v_{1t}\right),...,F_n\left(v_{nt}\right)\right) < 1 \text{ for some } t. \end{cases}$$

The alternative hypothesis H_A allows (but not all) the time series to be independent. Then log-likelihood function for (1) under the alternative hypothesis is $l = \sum_{t=1}^{T} \sum_{i=1}^{n} \left[\ln f_i \left(v_{it}; \theta \right) + \ln c \left(F_1, ..., F_n; \alpha \right) \right]$, where θ is regression parameter in (1), and α is the copula parameter. Under the null hypothesis the log-likelihood function can be reduced to $l = \sum_{t=1}^{T} \sum_{i=1}^{n} \ln f_i \left(v_{it}; \theta \right)$.

3 Copula-Based Tests

In the literature, the estimation for copula parameter can be categorized into three types: exact maximum likelihood estimation (MLE), two-step MLE, and semiparametric two-step estimation². In this paper, we use the semiparametric two-step approach.

Let $C^0(\bullet; \alpha)$ denotes a class of correctly-specified parametric copulas with unknown parameter α . The two-step semiparametric estimator, $\widehat{\alpha}$, is defined as

$$\widehat{\alpha} = \arg \max_{\alpha \in \Theta} \left[\frac{1}{T} \sum_{t=1}^{T} \log c^{0} \left\{ \widetilde{F}_{1} \left(\widehat{v}_{1t} \right), \dots, \widetilde{F}_{n} \left(\widehat{v}_{nt} \right); \alpha \right\} \right]$$

where $\widehat{v}_{it} = v_{it}\left(\widehat{\beta}\right)$, $c^{0}\left(\bullet;\alpha\right)$ is the density of the parametric copula $C^{0}\left(\bullet;\alpha\right)$ and $\widetilde{F}_{i}\left(v\right)$ is the rescaled empirical distribution function of $\widehat{v}_{i1},\ldots,\widehat{v}_{iT}$:

$$\widetilde{F}_{i}(v) = \frac{1}{T+1} \sum_{t=1}^{T} \mathbf{I}(\widehat{v}_{it} \leq v), i = 1, \dots, n$$
(3)

and $\mathbf{I}(\bullet)$ is an indicator function.

²Chap5 in Cherubini et.al (2004) provides a thorough introduction about the estimation of copula model.

Notice that we use \hat{v}_{it} in (3), instead of v_{it} , because v_{it} is not observable. In particular, we are interested in seeing how the asymptotic behavior of $\tilde{F}_i(v)$ and hence $\hat{\alpha}$ depend on the estimator $\hat{\beta}$ of β in $\hat{v}_{it} = v_{it}(\hat{\beta})$. Let

$$\widehat{F}_{i}(v) = \frac{1}{T+1} \sum_{t=1}^{T} \mathbf{I}(v_{it} \leq v).$$

Then it can be shown that (e.g., Mammen, 1996, p. 308)

$$\sqrt{T}\left(\widetilde{F}_{i}\left(v\right)-\widehat{F}_{i}\left(v\right)\right)=\frac{1}{\sqrt{T}}f\left(v\right)\sum_{t=1}^{T}\left[\widetilde{x}_{it}'\left(\widehat{\beta}-\beta\right)\right]+o_{p}\left(1\right)$$

where f(v) is the density of F(v). Hence, one has to expect that the asymptotics of $\widehat{\alpha}$ will depend on the $\widehat{\beta} - \beta$. However, interestingly and surprisingly, Chen and Fan (2006b, Proposition 3.1) have shown that the asymptotics of $\widehat{\alpha}$ is not affected by the initial estimator $\widehat{\beta}$ in the context of a copula-based multivate GARCH model, Following the similar steps in Chen and Fan (2006b), we can establish that

$$\widehat{\alpha} = \arg \max_{\alpha \in \Theta} \left[\frac{1}{T} \sum_{t=1}^{T} \log c^{0} \left\{ \widetilde{F}_{1} \left(\widehat{v}_{1t} \right), \dots, \widetilde{F}_{n} \left(\widehat{v}_{nt} \right); \alpha \right\} \right]$$

$$\approx \arg \max_{\alpha \in \Theta} \left[\frac{1}{T} \sum_{t=1}^{T} \log c^{0} \left\{ \widehat{F}_{1} \left(v_{1t} \right), \dots, \widehat{F}_{n} \left(v_{nt} \right); \alpha \right\} \right].$$

$$(4)$$

Let $U_t = (U_{1t}, \dots, U_{nt})^{\mathsf{T}}$ with $U_{it} = F_i^0 \left(v_{it} \right), i = 1, \dots, n$; where $F_i^0 \left(\bullet \right)$ is the true marginal distribution, $l \left(u_1, \dots, u_n; \alpha \right) = \log c^0 \left(u_1, \dots, u_n; \alpha \right), \ l_{\alpha} \left(u_1, \dots, u_n; \alpha \right) = \frac{\partial}{\partial \alpha} l \left(u_1, \dots, u_n; \alpha \right), \ l_{j} \left(u_1, \dots, u_n; \alpha \right) = \frac{\partial}{\partial \alpha \partial u_j} l \left(u_1, \dots, u_n; \alpha \right), \ l_{\alpha\alpha} \left(u_1, \dots, u_n; \alpha \right) = \frac{\partial^2}{\partial \alpha \partial u_j} l \left(u_1, \dots, u_n; \alpha \right), E^0 \left\{ \bullet \right\}$ is an expectation taken with respect to distribution $C^0 \left(u_1, \dots, u_n; \alpha^0 \right), B \equiv -E^0 \left\{ l_{\alpha\alpha} \left(U_{1t}, \dots, U_{nt}; \alpha^0 \right) \right\}$ is positive definite, $\Sigma \equiv var^0 \left\{ l_{\alpha} \left(U_{1t}, \dots, U_{nt}; \alpha^0 \right) + \sum_{i=1}^n W_i \left(U_{it}; \alpha^0 \right) \right\}$ is finite, positive definite, and $W_i \left(U_{it}; \alpha^0 \right) \equiv E^0 \left[\left\{ \mathbf{I} \left(U_{it} \leq U_{is} \right) \right\} l_{\alpha i} \left(U_{1s}, \dots, U_{ns}; \alpha^0 \right) | U_{it} \right].$

The asymptotic properties of $\hat{\alpha}$ in (4) have been discussed by Genest *et.al.* (1995):

Proposition 1 Under suitable regularity conditions stated in Genest et al. (1995), we have $\sqrt{T} (\widehat{\alpha} - \alpha^0) \xrightarrow{d} N(0, B^{-1}\Sigma B^{-1})$ as $T \longrightarrow \infty$.

The B and Σ in asymptotic variance are not observable; therefore, some consistent estimators must be given. From Genest *et. al.* (1995), we note that B can be consistently estimated by:

$$\widehat{B} = -\frac{1}{T} \sum_{t=1}^{T} l_{\alpha\alpha} \left(\widetilde{U}_t; \widehat{\alpha} \right)$$

where
$$\widetilde{U}_{t} = \left(\widetilde{U}_{1t}, \dots, \widetilde{U}_{nt}\right)^{\mathsf{T}}$$
, $\widetilde{U}_{it} = \widetilde{F}_{i}\left(\widehat{v}_{it}\right)$ for $i = 1, \dots, n$, and

$$\widehat{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} \left\{ l_{\alpha} \left(\widetilde{U}_{t}; \widehat{\alpha} \right) + \sum_{i=1}^{n} \widehat{W}_{i} \left(\widetilde{U}_{it}; \widehat{\alpha} \right) \right\} \left\{ l_{\alpha} \left(\widetilde{U}_{t}; \widehat{\alpha} \right) + \sum_{i=1}^{n} \widehat{W}_{i} \left(\widetilde{U}_{it}; \widehat{\alpha} \right) \right\}^{\top}$$

with

$$\widehat{W}_i\left(\widetilde{U}_{it};\widehat{\alpha}\right) = \frac{1}{T} \sum_{s=1,s\neq t}^T l_{\alpha i}\left(\widetilde{U}_s;\widehat{\alpha}\right) \left\{ I\left(\widetilde{U}_{it} \leq \widetilde{U}_{is}\right) \right\}$$

Then the test of independence in panel models can be stated as:

$$\begin{cases} H_0: \alpha^0 = \alpha^* \\ H_A: \alpha^0 \neq \alpha^* \end{cases}$$

where α^* is the copula parameter under the null of independence which are discussed in the Appendix, and α^0 is the true copula parameter. Using the asymptotic property of $\widehat{\alpha}$, we can construct a Wald test, for example,

$$W = (\widehat{\alpha} - \alpha^*)^{\top} \left(\frac{1}{T} \widehat{B}^{-1} \widehat{\Sigma} \widehat{B}^{-1} \right)^{-1} (\widehat{\alpha} - \alpha^*)$$
 (5)

and it can be shown that W follows a χ_k^2 asymptotically under H_0 , where k is the dimension of α .

4 Conclusion

This paper presents copula-based tests to detect cross-sectional dependence in panel models. Some commonly used copula families and their related properties are provided in Appendix. By checking respective copula parameter under independence, we can construct tests, e.g., Wald test statistic, to test cross-sectional dependence in panel models.

References

- [1] Anselin, L., and Bera, A. K., 1997, Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics, Handbook of applied Economic Statistics, Amman Ullah and David E. A. Giles, eds, Marcel Dekker, New York.
- [2] Baltagi, B. H., Song, S. H., and Koh, W., 2003, Testing Panel Data Regression Models with Spatial Error Correlation, Journal of Econometrics 117, 123-150.
- [3] Brett, C. and Pinkse, J., 1997, Those Taxes are All Over the Map: A Test of Spatial Independence, International Regional Science Review 20, 131-151.
- [4] Burridge, P., 1980, On the Cliff-Ord Test for Spatial Correlation, Journal of the Royal Statistical Society B 42, 107-108.

- [5] Chen, X. and Fan, Y., 2005a, Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection, The Canadian Journal of Statistics, forthcoming.

- [8] Cherubini, U., Luciano, E., and Vecchiato, W., 2004, Copula Method in Finance, Wiley
- [9] Cliff, A. and Ord, K. J., 1973, Spatial Autocorrelation, Pion, London.
- [10] Frees, E.W. and Valdez, E., 1998, Understanding relationship using copulas, North American Actuarial Journal 2, 1-25.
- [11] Genest, C., Choudi, K., and Rivest, L.-P., 1995, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika 82, 543-552.
- [12] Hu, L., 2003, Dependence Patterns across Financial Markets: a Mixed Copula Approach, OSU.
- [13] Joe, H. and Xu, J.J., 1996, The Estimation Method of Inference Functions for Margins for Multivariate Methods, Dep. of Statistics, University of British Columbia, Tech. Rept. 166.
- [14] King, M., 1981, A Small Sample Property of the Cliff-Ord Test for Spatial Correlation, Journal of the Royal Statistical Society B 43, 263-264.
- [15] King, M. L., 1986, Efficient Estimation and Testing of Regressions with a Serially Correlated Error Component, Journal of Quantitative Economics 2, 231-247.
- [16] Mammen, E. (1996), "Empirical Process of Residuals for High-Dimensional Linear Models," *Annals of Statistics*, 24, 307-335.
- [17] Moran, P. A. P., 1950, A Test for the Serial Independence of Residuals, Biometrika 37, 178-181.
- [18] Nelsen, R. B., 1999, An Introduction to Copulas, Lecture Notes in Statistics, Vol. 39, Springer.
- [19] Ng, S., 2006, Testing Cross-Section Correlation in Panel Data Using Spacings, Journal of Business & Economic Statistics 24, 12-23.
- [20] Patton, A.J., 2002a, Modeling Time-Varying Exchange Rate Dependence Using the Conditional Copula, Working Paper 01-09, Department of Economics, University of California, San Diego.
- [21] Patton, A.J., 2002b, Estimation of Copula Models for Time Series of Possibly Different Lengths, Working Paper 01-17, Department of Economics, University of California, San Diego.

- [22] Oakes, D., 1994, Multivariate survival distributions, Journal of Nonparametric Statistics 3, 343-354.
- [23] Pesaran, M. H., 2004, General Diagnostic Tests for Cross Section Dependence in Panels, Working Paper, University of Cambridge & USC.
- [24] Shih, J. H. and Louis, T. A., 1995, Inferences on the association parameter in copula models for bivariate survival data, Biometrics 51, 1384-1399.
- [25] Sklar, A., 1959, Fonctions de répartition à n dimensions et leurs marges, Publications de l'Institut de Statistique de l'Université de Paris 8, 229-231.

A Appendix

A.1 Copula families and parameters under independence

In this appendix, we list the properties of a few widely-used copulas, including copula forms, copula density, and copula parameters under independence. In this section, C(.) denotes copula function, c(.) denotes copula density, and α^* denotes copula parameter under independence which either makes copula function become independent copula or makes copula density equal 1, where independent copula C(u, v) = uv. About more detail explanation, please refer to Nelson (1999).

A.1.1 Elliptical copulas

1. Gaussian copula

Let **R** be symmetric, positive definite correlation matrix and $\Phi_{\mathbf{R}}(.,.)$ be the standard bivariate normal distribution with correlation matrix **R**. The density function of bivariate Gaussian copula is:

$$c\left(u,v\right) = \frac{1}{|\mathbf{R}|^{0.5}} \exp\left(-\frac{1}{2}\boldsymbol{\eta}^{\top} \left(\mathbf{R}^{-1} \mathbf{-I}\right)\boldsymbol{\eta}\right)$$

where, $\boldsymbol{\eta} = \left(\Phi^{-1}\left(u\right), \Phi^{-1}\left(v\right)\right)^{\top}$ and $\Phi^{-1}\left(.\right)$ is the inverse of the univariate normal CDF. The bivariate Gaussian copula is:

$$C\left(u,v,\mathbf{R}\right)=\Phi_{\mathbf{R}}\left(\Phi^{-1}\left(u\right),\Phi^{-1}\left(v\right)\right)$$

Hu (2003) shows the bivariate Gaussian copula can be approximated by Taylor's expansion:

$$C\left(u,v,\pmb{
ho}\right)pprox uv+
ho\phi\left(\Phi^{-1}\left(u
ight)
ight)\phi\left(\Phi^{-1}\left(v
ight)
ight)$$

where, ϕ (.) is the density function of univariate Gaussian distribution and ρ is the correlation coefficient between $\Phi^{-1}(u)$, $\Phi^{-1}(v)$ It is very trivial that when ρ is 0, this copula is an independent copula. In multivariate case, independence holds when \mathbf{R} is an identity matrix.

A.1.2 Copulas with quardratic-sections

In this family, copula can be represented as:

$$C(u_1, u_2, \dots, u_n) = a(v)u^2 + b(v)u + c(v)$$
, for appropriate functions a, b, c .

1. Farlie-Gumbel-Morgenstern family:

$$C(u, v, \alpha) = uv (1 + \alpha (1 - u) (1 - v))$$

$$c(u, v, \alpha) = 1 + \alpha - 2\alpha u - 2\alpha v + 4\alpha uv$$

$$\alpha \in [-1, 1]$$

$$\alpha^* = 0$$

A.1.3 Archimedean copulas

Archimedean copulas can be constructed by an originator, $\varphi(t)$, via this generator function:

$$C(u_1, u_2, \dots, u_n) = \varphi^{-1}(\varphi(u_1) + \varphi(u_2) + \dots + \varphi(u_n))$$

where,
$$\varphi: \mathbf{I} \to [0, \infty]$$
, continuous, $\varphi'(t) < 0$ and $\varphi''(t) > 0$, for all $t \in (0, 1)$

Hence, the density of copula can be expressed as:

$$c\left(u_{1},u_{2},\ldots,u_{n}\right) = \frac{\partial^{n}C(u_{1},u_{2},\ldots,u_{n})}{\partial u_{1}\ldots\partial u_{n}} = \frac{\partial^{n}\varphi^{-1}(\varphi(u_{1})+\varphi(u_{2})+\ldots+\varphi(u_{n}))}{\partial \varphi(u_{1})\ldots\partial \varphi(u_{n})} \frac{\partial \varphi(u_{1})}{\partial u_{1}} \ldots \frac{\partial \varphi(u_{n})}{\partial u_{n}}$$

Here, we only list bivariate case. They can be easily extended to n-variate case.

1. Joe family:

$$C(u, v, \alpha) = 1 - ((1 - u)^{\alpha} + (1 - v)^{\alpha} - (1 - u)^{\alpha} (1 - v)^{\alpha})^{1/\alpha}$$

$$\alpha \in [1, \infty)$$

$$\varphi(t) = -\log(1 - (1 - t)^{\alpha})$$

$$\alpha^* = 1$$

2. Ali-Mikhail-Haq family:

$$C(u, v, \alpha) = \frac{uv}{1 - \alpha(1 - u)(1 - v)}$$

$$\alpha \in [-1, 1)$$

$$\varphi(t) = \log\left(\frac{1 - \alpha(1 - t)}{t}\right)$$

$$\alpha^* = 0$$

3. Clayton family:

$$\begin{split} C\left(u,v,\alpha\right) &= \left\{ \begin{array}{cc} uv & \alpha=0 \\ \left(u^{-\alpha}+v^{-\alpha}-1\right)^{-1/\alpha} & \alpha\neq0 \end{array} \right. \\ \alpha &\in [0,\infty) \\ \varphi\left(t\right) &= \frac{1}{\alpha}\left(t^{-\alpha}-1\right) \\ \alpha^* &= 0 \end{split}$$

4. Gumble family:

$$C(u, v, \alpha) = \exp\left[-\left((-\ln u)^{\alpha} + (-\ln v)^{\alpha}\right)^{1/\alpha}\right]$$
$$\alpha \in [1, \infty)$$
$$\varphi(t) = (-\log t)^{\alpha}$$
$$\alpha^* = 1$$

5. Frank family:

$$C(u, v, \alpha) = \begin{cases} uv & \alpha = 0\\ -\frac{1}{\alpha} \ln \left[1 + \frac{\left(e^{-\alpha u} - 1\right)\left(e^{-\alpha v} - 1\right)}{e^{-\alpha} - 1} \right] & \alpha \neq 0 \end{cases}$$

$$\alpha \in (-\infty, \infty)$$

$$\varphi(t) = -\ln \frac{e^{-\alpha t} - 1}{e^{-\alpha} - 1}$$

$$\alpha^* = 0$$

A.1.4 Others

1. Plackett family:

$$C(u, v, \alpha) = \begin{cases} uv & \alpha = 1\\ \frac{\left(1 + (u + v)(\alpha - 1) - \sqrt{(1 + (u + v)(\alpha - 1))^2 - 4uv\alpha(\alpha - 1)}\right)}{2(\alpha - 1)} & \alpha \neq 1 \end{cases}$$

$$\alpha \in (0, \infty)$$

$$\alpha^* = 1$$