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Visual Interactive Modeling in a Java-based
Hierarchical Modeling and Simulation System

Robert G. Sargent
Thorsten Daurnh
Syracuse University

Abstract

The desired set of properties of a modern simulation syssepndsented. The portion
of the Hierarchical Mvdeling And Smulation §/stem-&va (HIMASS-j) used for speci-
fying Hierarchical Control Flow Graph (HCFG) Models is dabed. The specification
of HCFG Models in HIMASS-j is by visual interactive modelitigrough the use of
graphical user interfaces and dialog boxes. HCFG Modelsgeeified using two com-
plementary hierarchical specification structures: oneptecsy the components that
comprise a model and how these components are intercomheatthe other to spec-
ify the behaviors of individual atomic components. A simigla of a traffic intersection
using HIMASS-j is briefly discussed.

1 Introduction

This paper has two purposes. First, in Section 2, we presehbeefly discuss a desired
set of properties that we believe a modern simulation systhould have. Second, we
describe the portion of the Hiiarchical Mbdeling and Smulation S/stem-ava (HIMASS-))
used for specifying Hierarchical Control Flow Graph (HCR@)dels via visual interactive
modeling (VIM). HIMASS-j is currently a prototype Java-leasdiscrete event simulation
system for specifying and executing HCFG Models.

In order to understand the specification of HCFG Models in B$&-j, a minimal
understanding of the HCFG Model paradigm is required. Thees give in Section 3 a
brief overview of the HCFG Model paradigm. We note, howeeedeeper understand-
ing of this model paradigm will provide more and better ifggyinto HIMASS-j. A
short description of the HCFG Model paradigm can be foundAn Overview of Hi-
erarchical Control Flow Graph Models” (Fritz and Sargen®3Pand a more detailed
description can be obtain in an expanded version of thisviser paper located at
http://www.cat.syr.edu/"srg/ .

Specifying HCFG Models in HIMASS-j is described in SectiarSéction 5 contains
a brief description of a simulation of a traffic intersectionrMagdeburg, Germany using
HIMASS-|. Section 6 contains a short discussion of the HiNBASoftware and Section 7
is the summary.

*Also a student at the Otto-von-Guericke Universitat Mdudg.
1439 Link Hall, Simulation Research Group, Syracuse UnitgrSyracuse, NY 13244,



2 Properties of a Modern Simulation System

In this section we first present and then briefly discuss tisael® set of properties that we
believe a modern simulation system should have. These gpirepare:

visual interactive modeling capability
layered modeling approach
model element reuse
library for model elements
experimental frame
simulation engine that can efficiently execute a simorathodel on different types
of computer architectures/computers (including the web)
7. visual interactive experimental design and (input andpwot) data analysis
capability
8. animation capability
9. be object oriented and
10. be designed and implemented using modern software agipes and techniques

oukwpnrE

We use the term ‘visual interactive’ in a broad sense. Viguatactive (VI) implies the
capability of a user to interact with objects on the compsteeen via a mouse or a key-
board. An object can be a string (e.g., a name), an icon, dtdtun, etc. VI usually occurs
with graphical user interfaces (GUIs) and dialog boxes. s/hot, e.g., writing computer
programs in text via a keyboard.

A modern simulation system should use a powerful modelimggigm. This paradigm
should have (i) a graphical representation that can be wsa&d fmodeling, (ii) hierarchical
modeling capability, (iii) a powerful behavior specifiaati capability (such as having a
‘wait until’ construct), (iv) scaling capability for modelements, and (v) the capability for
building models top down or bottom up. (See Sargent (1992adalitional requirements
of a modeling paradigm.)

Model specification should be VI wherever appropriate. Aeltaygl approach to mod-
eling should be used. This means that different levels ofehabstraction and different
levels of model elements can be used for model specificafiois. approach should allow
(i) a modeler to specify a model and its model elements at tbst toasic level such as
being able to write an event routine, (ii) the movement betwievels to be VI, and (iii)
a modeler to determine what a model element is doing (whidllilsmeans moving to a
lower level) and this should be visual (as contrasted, eagzomputer code) where appro-
priate. A library with VI capability should be provided fdne storage and reuse of model
elements. Model elements should allow the use of paramaiérerease element reuse.
The experimental frame concept should be used in order wfgphe desired values of a
model for each simulation run. This specification should be V

A modern simulation system should be able to execute a spe@fimulation model
on different types of computer architectures and systentisowt requiring a modeler to
add additional information to a model. This requires a mimgdgparadigm to have a rep-
resentation such that algorithms can be developed to ottaiinformation needed for
model execution algorithms automatically from the repnésion of a specified model.



The simulation engine should have model execution algmstifior sequential, parallel,
and distributed computers. Furthermore, in today’s emritent a simulation system should
provide for web use.

An extensive capability should be provided to perform siaioin input and output
analyses. Such capability should be VI wherever apprapi@aid include the ability to
specify (i) data collection, (ii) tactical and strategicpeximental designs, (iii) how the
input and output data analyses are to be conducted, and dw)the results are to be
presented. Exploratory data analysis capability shousd éle included. (See Robinson
(1997) for a limited discussion of visualization and sintida data analysis.) A straight
forward interface should be provided to allow the use of edEspread sheets. Animation
capability should be provided either internally or with aagght forward interface to an
external animation system.

A modern simulation system should be object oriented. Thosiges for abstraction,
encapsulation, types, and instances. This should incteageuse of model elements. De-
sign and implemention of the software system should follbject oriented methodology.
The graphical representations used by VIM and the logicehtiodel should be separated
by using a suited design approach such as the Model-Vievir@lar paradigm (Gamma
et al. 1995).

3 An Overview of HCFG Models

An HCFG Model can conceptually be viewed as consisting oftaobendependent and
encapsulated components which interact with each othelysalb message passing. Two
kinds of encapsulated components are used: an atomic canp@C), which has its own
thread of control and operates concurrently with other A@sl a coupled component (CC),
which couples together ACs and/or other CCs. The CCs prdvietarchical relationships
among components. Each CC is specified by the use of a CC 8p#oifi (CCS). A CCS
is a directed graph whose nodes represent components argkwlirected edges repre-
sent channels between component ports. Channels carnagessbetween the input and
output ports of components. Each channel connects exacdyoatput port to one input
port and each port is connected to only one channel. Therbfecal relationships of all
components and their interconnections are contained itdtbrarchical Interconnection
Graph (HIG). A HIG tree shows the hierarchical relationstagong the components but
not their interconnections.

Each AC contains a set of (local) variables including a (psenulation clock, a set
of input ports, a set of output ports, a set of parametersaandCFG, which describes the
behavior of that AC. An HCFG is a hierarchically organizetlgeMacro Control States
(MCSs) and their interconnections. A MCS is a state-basé&aer specification struc-
ture and is an augmented directed graph whose nodes arelcstates (CSs) and/or other
MCSs and whose directed edges give the set of possible tastdte transitions. A CS is
a formalization of the “process reactivation point” (CotadéSargent 1992). Edges origi-
nating from CSs have three attributes: a condition, a gsicand an event. The condition
specifies when an edge can become a candidate for travémsgribrity is used to break



ties when more then one edge is a candidate for traversad &atine simulation time, and
the event specifies a state transition for the AC which is @est whenever that edge is
traversed during simulation execution. Three differends of edges, which depend on the
condition attribute, are used: TimeEdges, BoolEdges, anttBges. (These can be viewed
as different types of 'wait until.’) To specify an edge, agsiiy and event is specified along
with an edge type and either a time delay function, a booleastfon, or an input port,
depending on the type of edge. Edges originating from MCSsaddave attributes. Each
HCFG has a point of control (POC), which moves from CS to CSdicete the state that
the HCFG (i.e., the AC) is in. The POC leaves a CS over the edgiebitomedrue
first. An HCFG tree shows the hierarchical relationships agnthe MCSs but not their
interconnections.

The HCFG Model paradigm supports and HiIMASS-j implemengstibe of types and
instances of model elements. The model elements are theG@s,MCSs, event routines,
time delay functions, and boolean functions. The types alehelements are specified and
instances of the types are used to specify HCFG Models. tidsraf types can be estab-
lished and this provides for reuse. Having libraries of typBows the “layered” approach
to modeling to be used where ACs, CCs, and MCSs can be usedftelspecification if
the appropriate ones are available, and if not, then theaukeldments can be build.

The specification of an HCFG Model requires one HIG and one GI@¥ each type
of AC in the model. HCFG Model specification in HIMASS-j is WdaM through the use
of graphical user interfaces (GUIs) which includes the usdialog boxes. The HCFG
model paradigm supports and HIMASS-j implements the usgmémental frames (EFs)
(Zeigler 1984). The use of EFs allows the values of the patrensi®f the model elements,
the model’s initial conditions, etc. to be specified sepdyairom the HCFG Model speci-
fication.

The HCFG model paradigm favors an “active resource” view otlgling over an “ac-
tive transaction” view. Modeling from an active resourcewimeans that the system is
modeled from the point of view of the system’s resources tscdeing the behaviors and
interactions of those resources. We use the active reseigaefor specifying models in
this paper.

4 Specifying HCFG Models in HIMASS-j

In this section we discuss how HIMASS-j can be used to spéd¢@fG Models. HCFG
Models are specified in HIMASS-j via VIM using GUIs. Our emplsawill be on specify-
ing HCFG Models top down and from scratch, i.e., not usingplites of model elements.
A simple way to specify and view HCFG Models is to use the Madaligator window.
The Model Navigator contains the HCFG Model tree and is usethtigate, i.e. to move,
among the model’'s CCs, ACs, and MCSs. The model tree comdidie HIG tree and the
HCFG tree of each AC in the model. (The model tree does not ghevwop MCS of an
HCFG since it is the internal view of an AC.) The Model Naviatontaining a sample
model tree is shown in Figure 1. Each node of the model treeah@anbol to indicate
the kind of model element, the instance name of the modelezigrand the type name of
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Figure 1: Model Navigator Window

the model element given in parentheses. Each componentatsaéas a priority which
is used to established priorities among ACs to break everd ties that may occur across
ACs. The top node (named root unless renamed) of the moeeistedways displayed and
this is the HIG root (top) node.

The Model Navigator has four tool buttons on its right: Imsta opens a GUI window
containing the instance of the selected model element imtiéel tree, Type opens a GUI
window containing the type of the selected model element tha other two buttons open
dialog boxes to rename either a selected model elemenhiesta type. HIMASS-j has a
CC GUI window for working with the CCs of a HIG and a MCS GUI wind for working
with the MCSs of the HCFGs. A CC GUI window opens if an instamice component (AC
or CC) or if atype of CC is selected, and a MCS GUI window opé&as\vICS or a type of
AC is selected.

4.1 HIG Specification

The first step in specifying an HCFG Model from top down is tewmphe Model Naviga-
tor. The model tree in the Model Navigator will contain onedaavhich is a CC with the
instance name ‘root’ of type ‘Root’. A modeler opens the CCI@lhdow for Root by
selecting the Type button while the root node is selectegh(fghted). Figure 2 shows the
CC GUI window with a sample Root CC init. (The canvas area Wl blank when Root
is initially opened.) Note that the type name of the CC is giat the top of the window
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Figure 2: CC Graphical User Interface Window

and that there are several tool buttons on the right sideisfGlJI. These tools are used
to either specify a CC (which contains ACs and/or other C@8m)dify a CC, or change
the layout of the CC on the canvas. A user selects a tool bitisticon the appropriate
button, and then uses the tool in the canvas area. To crea® @amponent, a modeler
first selects the Component tool and then clicks on the caatvi® desired location for the
new component. A Component dialog box will open for the med#& select the kind of
component and to enter the component type name, the comipostance name, and for
the component priority either a numerical value or a vagalthose value is specified in
the EF. (A Component dialog box is similar to the Array dialmx shown in Figure 3.) In
Figure 2 there are two CCs called ccl and cc2 and an AC called\axte the symbols used
for these two different kinds of components and that ingtarames are given on the com-
ponents. Type names and priorities can also be shown, @itfoAs new components are
specified in a CC, they are automatically added to the modelitr the Model Navigator.
Note how the components contained in Root CC are in the moekein Figure 1.

In Figure 2 there are, e.g., two channels between acl anc€Ctehnels are specified by
using the Channel tool. A new channel between componenpeigfed by first selecting
the Channel tool and then clicking inside the component w/iiiee channel originates.
A Port dialog box will open to enter the name of that comporseng&w output port for
connection to the new channel. Next, click inside the conepbmvhere this new channel
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Figure 3: Internal View of a CC with Array Dialog Box

terminates. A Port dialog box will open to enter the name of toanponent’s new input
port for connection to the new channel. The new channel anshéimes of the new ports
automatically appear.

HiIMASS-j provides scaling for components, channels, andspé component array
consists of a homogeneous array of components. (A compaequivalent to a compo-
nent array of size one.) A typical element of the array is sfgecand shown. After the
Component Array tool is selected and the mouse clicked atiés&red location for the
component array on the canvas, the Array dialog box showinguaré 3 opens. A modeler
selects the kind of component that the array has and enteegiifly’s instance name, type
name, either a numerical value or variable (if the EF is beisgd) for the array’s priority,
and either a numerical value or a variable whose value isifspgn the EF for the array
size in the dialog box. In Figure 2 there is an array contgj#mACs called arr. Note that
the array symbol indicates whether the components are AC€arand that the size of the
array is given with the instance name. As new arrays are fpecthey are automatically
added to the model tree. Multichannels are arrays (or bghdlechannels that have their
size specified by a modeler and are created similarly to aflanithe major differences are
that multichannels are connected to multiports and that #iee must be specified in the
MultiPort dialog box.



Because model elements in a HIG can be of different sizesalhohannels between
model elements can be clearly represented using a purgihigad notation. A “connection
box” that is represented by a diamond can be used to connaahels and multichannels of
different sizes to model elements. A Connection Box tootivmed to specify connection
boxes on the canvas similar to how components are specifi€brhection Box window
(obtained by using the Edit button) is used to make the cdiorexof the channels entering
and leaving a connection box. The ports that the channetsiegtand leaving the connec-
tion box are connected to are automatically given by HIMAS&Rd it is straightforward
and simple to make the appropriate connections througlaMsteraction. In Figure 2 note
the connection box named 1, the multichannels of size 3 legtwlee multiports of CC cc2
and the connection box, and the channels between the (#lesagnts of the array arr and
the connection box.

The Open tool opens up a GUI window of the component’s typeitteeeview or
specify that component. If the component is a CC, then a C@aviris opened; otherwise
a MCS window is opened. If a CC window is opened for a CC othen the top CC, then
the ports for that CC are shown. (By definition the top CC haparts.) For example, the
CC GUI window for CC CoC (which is the type for the CC instancé contained within
Root) is shown in Figure 3. If no components have yet beenifsgeéor CoC, then only
the input port in1 and output port outl would be shown. In towd modeling these ports
(with their names) would have been specified in an instantieeo€C in the CC window;
e.g., the ports of CoC were specified in the instance ccl irCfieRoot. Note that the
components in CoC are in the model tree in Figure 1.

_.i "CoC:cc3" Parameter List | - iJ
File  Show
Type [ Def. Walue Walue get from EF
- v
float CoC:cc3:mean 10.3 seedl [w!
String CoC:ccdid |
counter

Figure 4: Parameter Window

The purpose of the Port and MultiPort tools is to specify portg multiports when
specifying model elements bottom up instead of top down Mbwee, Edit, and Delete tools
provide the common editing capabilities. The Parameter abows for the specification
of parameter values for ACs and CCs. Clicking inside therddstomponent opens the
Parameter window which is shown in Figure 4. A modeler cartigpan absolute value
(such as a number or string) for a parameter, assign the wdlaa accessible variable,
and/or mark theget from EF box to indicate that this parameter can be overridden in the
EF (see Figure 8).



4.2 HCFG Specification

The MCSs in HCFGs are specified in HIMASS-j by using a MCS GlHdaiw. To specify
an HCFG top down, the modeler first opens a MCS GUI window ferttp MCS of that
AC. This is accomplished by either (i) using the Model Natigdo select the appropriate
AC and then clicking on the Type button, or (ii) using the Op&ol on the appropriate AC
in a CC GUI window. Figure 5 shows the MCS GUI window contagthe top MCS of
AC AtC.
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Figure 5: MCS Graphical User Interface Window

One can readily see that there are a set of tool buttons orngheside of the MCS
window. The Control State and MCS tools are used to specifyt@bStates (CSs) and
MCSs. In Figure 5 there are 3 CSs (S1, S2, and S3) and two MC&sl(and mcs2).
These tools operate similar to the Component tool in the Cadow. New MCSs are
automatically put into the model tree as they are specifiede fhe MCSs mcs1 and mcs2
in the model tree in Figure 1. (The MSC At@ not shown in Figure 1 since this is the top
MCS of the AC AtC and thus the internal view of this AC.)
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Figure 6: Edge Dialog Box

The Edge tool operates similar to the Channel tool. If thevjredge being specified
starts at a MCS, a Pin dialog box opens when the MCS is clickad@for the name of the
(new) pin that the (new) edge will originate at. A pin conrseetiges at a MCS boundary
in the same way a port connects channels at a CC boundarys kdige terminates on a
CS, then the edge appears when that CS is clicked, and if eetedminates on a MCS,
then a Pin dialog box opens when that MCS is clicked to spekipin name prior to the
edge appearing. (See the edges leaving MCS mcs1 and the agthepins of MCS mcsl
in Figure 5.) If the edge specified starts at a CS, then an Eddmgdbox opens. The Edge
dialog box, shown in Figure 6, provides for several entried selections. A modeler first
selects the edge condition for the type of edge being spécifia TimeEdge or a BoolEdge
is selected, then the name of the time delay function or lamofenction is entered into the
Condition portion of the dialog box. If a PortEdge is selectbe@n the associated port is
selected from the list of input ports given in the Conditiartpn of the dialog box (or
added if building from bottom up). The name of the event moaits specified in the Event
portion of the dialog box and the edge priority is specifiedhia Priority portion of the
dialog box. (A TrueEdge is a BoolEdge that is always true andleEvent is an event that
does nothing and these can be specified by clicking on theopppte buttons.) See the
edges leaving the CSs in Figure 5. Note that the edge attslawe given in an attribute box
located near each edge. The top entry in each edge attribuigives the edge priority, the
second entry gives either the time delay function, the taofenction, or the input port
name depending on the kind of edge, and the last entry gieasaime of the event routine.
In Figure 5, the two edges leaving CS S1 are TimeEdges, the gdigg from CS S2 to
MCS mcsl is a BoolEdge, and the edge going from CS S2 to CS SBastBdge. Note
the symbols used to denote the diffenent edge types.
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Figure 7: Event Editor window

To specify a time delay function, a boolean function, or arneéwoutine, one first
selects the Edit tool and then selects the desired entry adge attribute box. An editor
window for that entity will then open. See Figure 7 for the BEv&ditor window, which
contains a sample event for event evl of MCS AgEigure 5). The event evl, which is for
a PortEdge, receives the message waiting at input port infessthe message timestamp
in the trace file, and sends the message to output port outhtEoutines are specified
using Java syntax. Helper functions are provided to assitid specification of events and
these are the buttons on the right side of the dialog box. Time Delay Function and the
Boolean Function Editors are similar to the Event Editom&idelay and boolean functions
are also specified using Java syntax.

HiIMASS-j provides scaling for edges, MCSs, and Pins. A mdbis an indexed array
of edges. There are two multiedges in Figure 5. One connet¥gglen multipins on MCS
mcs2 and MCS mcs1, and is size 2. The other multiedge is frol8B&I®ack to itself, and
is also size 2. Note that the size of multiedges leaving C&giaen in square brackets in
the attribute box. (The edge attributes of multiedges lep@Ss are also indexed.) A MCS
array is a homogeneous array of MSCs similar to a compongemt. &onnection boxes are
also available for connecting multiedges.

The purpose of the Pin and MultiPin tools is to specify pins andtipins when speci-
fying MCSs bottom up instead of top down. The Initial CS tdtdws a modeler to specify
the initial control state of an HCFG. The Move, Edit, and Dekeols provide the common
editing capabilities. The Open tool opens up a GUI window BI@S. The Parameter tool
allows for the specification of parameter values for MCSggetidelay functions, boolean
functions, and event routines. It operates similar to tharmater tool in the CC GUI win-
dow.

4.3 Experimental Frame

HIMASS-j provides EF support for specifying or overridingetdefault settings of model

element attributes. These attributes include (i) theahi@iSs of ACs, (ii) the values of

instance parameters and type variables, (iii) the priggitf components, (iv) the sizes of
model element arrays that use variable scaling, and (v)ytpestof model elements at
runtime, which allows the model structure to be changeds@&lspecifications are aided by
dialog boxes and require no programming.
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When specifying model element attributes, a modeler caokctiee get from EF box
in the dialog box being used. This will generate an entry e file of the model. An
EF entry includes the unique identifier of the attributefyise, and may include a default
value.

An EF file can be manipulated in the EF window, which can be egdezither from
within HIMASS-j or independent of HIMASS-j. In the EF windoavmodeler can specify
a value for an attribute by (i) typing an absolute value (sagl number or a string) in the
Valuefield of the corresponding EF entry or (ii) by assigning thkrezof a variable of the
same type. Figure 8 shows the Parameter section of the EFowitttht contains entries
for the two parameterseed andmean of the CC instance cc3 that is contained within type
CoC. The entry fomean is highlighted and the list of variables that have the sampe Bs
mean is displayed. The modeler can change the default value Briagta number in the
Valuefield or by selecting one of the variablegh or low. A modeler must specify a value
for each entry in the experimental frame if no default valas been specified. This is the
case for theseed parameter in Figure 8.
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Figure 9: The Intersection of Suidring and Halberstadteals



5 Traffic Intersection Example

HiIMASS-j was used to create a simulation model of the int#rsr of Halberstadter Stral3e
und Sudring, two major streets in the city of Magdeburg, r@amy (shown in Figure 9).

The streets have four to six vehicle lanes and streetcatdrdcaffic consists of vehicles,
streetcars, and pedestrians, and is regulated by traffitslig’he purpose of this model
is to study the relationships between traffic light timingtpens and the waiting times of
vehicles in the intersection. (A more comprehensive dpton of this model can be found
in Daum 1997).

The HIG of the intersection model has five levels. It containsr 400 AC instances
and over 60 CC instances that were specified using 14 AC typE2@CC types. Theom-
plexity of the intersection is modeled in the HIG; the ACs have sinpB+Gs. Figure 10
shows part of the model tree in the Model Navigator window.
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Figure 10: The Model Tree

The intersection model was specified from top down. The tegl IEC, which is called
Sidring and is shown in Figure 11, consists of four CCs:m@auth, east, and west. These
CCs are connected by several multichannels to handle taeutions between them. Each
of these CCs contains three CCs: one CC for pedestrian teafidwo CCs for inbound
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Figure 11: The Top Level CC

and outbound traffic, respectively. (See Figure 10.) An umitbCC, e.g., contains a CC
for each vehicle lane, one CC for streetcars, and one AC foaffict light. An inbound
vehicle lane CC contains at least the following: a Source Afictvgenerates messages
representing vehicles, a LightControl AC which can blockiekes based upon the state
of the corresponding traffic light, and a Path CC. A Path CGeduo specify sections of
the intersection where traffic can flow unrestricted: a awmus stretch of road, streetcar
track, or sidewalk. A Path CC (shown in Figure 12) contains #Cs that model basic
properties of a path such as its capacity and the minimal @aimentity (a vehicle, streetcar,
or pedestrian) needs to travel the entire length of the path.
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Figure 12: The Path CC



The ACs employed in the model have simple HCFGs. For exanipdeTrafficLight
AC shown in Figure 13 has three CSs (R(ed), Y(ellow), and &(yeand three TimeEdges,
which connect Rto G, Gto Y, and Y to R. The time delay functits yellow, and green
return the times the light is in a particular state. The eveatiToGreen and yellowToRed
send messages that cause the connected LightCtrl AC to elitzrgjate accordingly.
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Figure 13: The TrafficLight HCFG

The intersection model makes extensive use model elemearhpters and the EF. For
example, the means of the interarrival times for instané#iseoSource ACs and the values
to be returned by the time delay functions of instances offtiafficLight AC are specified
in the EF. This makes changing the average arrival rate dieto the intersection (e.g.,
for a different time of day) and the traffic light cycle easy.

The simulation model produces a trace file for each simutatim that is used for an
animation of the model using Proof Animation (Wolverine 3@fte 1995).

6 HIMASS-j Software

HIMASS-j is an object oriented simulation system writtertiegly in Java (Arnold and
Gosling 1996). It includes over 800 kilobytes of sourcesvardl60 Java classes in three
packages. HIMASS-j has been developed and tested on bothv@idkétations running
Solaris and Pentium based personal computers running Limdix\dndows 95. Due to the
platform independent nature of Java, HIMASS-j can run witttbe need to recompile on a
wide variety of machines, including several Unix architees and Apple Macintosh com-
puters. HIMASS-j makes extensive use of object-orientedramming features supported
by Java such as encapsulation, inheritance, polymorplasthpverloading, and specific
Java features such as serialization and platform indepeede

A compiled HIMASS-j model is independent of the VIM part of MIASS and can be
executed by any software that implements a simulator for @Gfodels and that accepts
time delay and boolean functions and event routines spedifi@ava syntax.

HiIMASS-j was implemented using the SUN Java DevelopmentIiK) version 1.1.x,
available fromhttp://java.sun.com , and the Java Generic Library (JGL). JGL is
currently free and available &ttp://www.objectspace.com/jgl



A user of HIMASS-j needs to be familiar with modeling usingethlCFG Model
paradigm and a basic understanding of the Java syntax. HBAjc&n be downloaded from
http://www.cat.syr.edu/"srg/ and run with any JDK 1.1.5 (or newer) compat-
ible Java development system that includes a Java comgilehn, as the SUN JDK.

7 Summary

The set of properties that we believe a modern simulatiotesyshould have was given.
A subset of these were illustrated in our description of tbetipn of HIMASS-j that is
used for specifying HCFG Models via VIM. A number of featudHiMASS-j were not
discussed and many of these would also illustrate some girtiperties that we believe are
desirable in a modern simulation system. Some of the feanfreliMASS-j not discussed
are specifying messages, model initial conditions, dallecoon, and HCFG Models bot-
tom up (instead of top down); specifics on specifying eveatines, time delay and boolean
functions, and variables and their values; and specifick®nse of scaling, EF, and model
element reuse. (See Daum and Sargent (1997) for additisraigsion of HIMASS-j.)

A brief description of a traffic intersection simulation ngiHIMASS-j was presented.
The hierarchical nature of the HCFG Model paradigm allonattlie representation of a
complex system in a way that was intuitive and compreheesilile capabilities for reuse
in HIMASS-j simplified the building of the model. For examplenly 14 AC types had
to be specified in order to use over 400 AC instances. Thetyhiliparameterize model
element instances was crucial for effective reuse. Theatisodeling aspect of HIMASS-j
provided a natural way of modeling, thus a verified model vedgaved faster than with text
based tools for model specification. VIM worked extremelyllvigr the animation of this
simulation model because the visual structure of the HlGcdtbe specified to resemble the
animation layout. Further details of the intersection mada be found in Daum (1997).
(Some other papers on modeling using the HCFG Model paradignfrarr et al. (1995)
and Sargent (1997).)

A few comments were made on the HIMASS-j software. (See DauthEargent (1997)
for additional information.) HIMASS-j was designed and ienpented using modern soft-
ware approaches and techniques. HIMASS-j differs signiflggfrom HI-MASS (Fritz,
Sargent, and Daum 1995), an earlier prototype for spedfgimd simulating HCFG Mod-
els that is C++ based. Some of the differences are that in FBBAboth the HIG and the
HCFGs are specified via VIM, there is a clear distinction e types and instances of
model elements, the model tree is displayed, there is a rmadgdjator, the use of param-
eters is permitted in all of the model elements, reuse of ingldenents is easy, the EF has
extensive capability and is VI, and the Java language is whéch allows HIMASS-j to be
used on the web.

Much has been said about the substantial speed sacrificerthaometimes has to ac-
cept when executing programs in Java instead of C++. Howéaea's disadvantage in this
regard has already begun to diminish. Next generationijutithe compilers significantly
increase the speed of Java applications. In addition,teffoe under way to build a Java
front end to the GNU compiler (Bothner 1997) that would allead-of-time compilation
of Java applications into native code providing for perfanoe equal to C++ applications.
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