
Characterization of a class of sigmoid functionswith applications to neural networksAnil Menon Kishan Mehrotraarmenon@top.cis.syr.edu kishan@top.cis.syr.eduChilukuri K. Mohan Sanjay Rankamohan@top.cis.syr.edu ranka@top.cis.syr.eduSyracuse UniversityNeural Network GroupSchool of Computer & Information Science, 4-116 CSTSyracuse, NY 13244-4100Phone: (315) 443-2368Fax: (315) 443-11221 IntroductionSigmoid functions, whose graphs are \S-shaped" curves, appear in a great variety of contexts, suchas the transfer functions in many neural networks.1 Their ubiquity is no accident; these curves arethe among the simplest non-linear curves, striking a graceful balance between linear and non-linearbehavior.Figure 1 shows three sigmoidal functions, and their inverses; the hyperbolic tangent tanh(�) (graph`A'), the \logistic" sigmoid 1=(1 + exp(�x)) (graph `B'), and the \algebraic" sigmoid, x=p(1 + x2)(graph `C'), with inverses, tanh�1(y), ln y=(1 � y), and y=p1 � y2, respectively. In a few cases,sigmoid curves can be described by formulae; this rubric includes power series expansions (e.g.,hyperbolic tangent), integral expressions (e.g., error function), composition of simpler functions (e.g.,the Gudermannian function), inverses of functions de�nable by formulae (e.g., the \complexi�ed"Langevin function, a sigmoid de�ned as the inverse of the function, 1=x � cot(x)), di�erentialequations et cetera.Although the level of abstraction in many problems is such that one does not need to work withexplicit formulae2, it is useful to study networks with speci�c transfer functions for the followingreasons:1Other examples of the use of sigmoid functions are the logistic function in population models, the hyperbolictangent in spin models, the Langevin function in magnetic dipole models, the Gudermannian function in specialfunctions theory, the (cumulative) distribution functions in mathematical statistics, the piecewise approximators innonlinear approximation theory, the hysteresis curves in certain nonlinear systems etc.2For example, in neural net approximation theory, signi�cant results can be obtained about the existence of real-izations within preassigned tolerances, with very few constraints on the nature of the node transfer function; classicresults along these lines are found in [5, 7, 11, 20] 1



-0.6-0.20.20.61-3 -2 -1 0 1 2 3ABC -2-1.2-0.40.41.22-1 -0.6 -0.2 0.2 0.6 1B CAFigure 1: Some sigmoids and their inverses1. In determining whether a single layered feedforward net is uniquely determined by its cor-responding input-output map, Sussmann's elegant proof of uniqueness speci�cally used theproperties of the tanh(�) function [35]. A later analysis by Sontag obtained the same resultswith fewer assumptions on the node transfer function, but still requires such functions to beodd, and satisfy certain \independence" properties [1]. With respect to the uniqueness problem,all node transfer functions are not equivalent3 .2. Without tractable analytical forms to work with, many problems relating to sigmoids areresistant to theory. Neural net theory o�ers many examples. For example, there have beenclaims in the literature about the advantage (with respect to computability, training timesetc.) of certain sigmoidal transfer functions over others in backpropagation networks [8, 17, 33].Some theoretical support comes from considering the �rst derivatives (if de�ned) of the varioustransfer functions proposed; the �rst derivatives are partially responsible for controlling the stepsize in the weight adjustment phase of the back propagation algorithms, which in turn inuencesthe rate of convergence. Explicit expressions for sigmoids are useful in such considerations.3. The dynamical system describing the continuous Hop�eld model raises an intriguing query.If one assumes a tanh(�) node transfer function, one can show that the Hop�eld model istransformable to the Legendre di�erential equation (see section 6.1); An important question iswhether this relationship is robust with respect to the choice of the transfer function.4. The recent study of sigmoidal derivatives by Minai and Williams [26] is another case in point;they derived a connection with Eulerian numbers [15, pp. 252-257] but restricted their inquiryto the very speci�c logistic sigmoid. Any generalization of their results requires a careful lookat sigmoids representable by formulae.3Another example of the non-equivalence of \sigmoids" is o�ered by Macintyre and Sontag's work on the Vapnik-Chervonenkis (VC) dimension of feedforward networks, which showed that it is �nite only for a class of sigmoidalfunctions they call the exp-RA functions. They showed that analyticity of the transfer function is crucial, and cannotbe relaxed by say, making the function C1 [23]. 2



5. There are other related issues. For instance, the hyperbolic tangent and logistic sigmoid areessentially equivalent in that, one can be obtained from the other, by simple translation andscaling transformations: 11 + exp(�x) � 12 = 12 tanh(x=2) (1.1)Many sigmoids have power series expansions which alternate in sign. Many have inverses withhypergeometric series expansions. On the other hand, many sigmoids have no such simpleforms, or obvious connections with well known sigmoids. It is natural to ask whether thesevaried analytical expressions for sigmoids have anything in common. It is di�cult to answersuch questions without a thorough understanding of the analytical expressions for sigmoidfunctions.In view of these considerations, this paper undertakes a study of two classes of sigmoids: thesimple sigmoids , de�ned to be odd, asymptotically bounded, completely monotone functions in onevariable, and the Hyperbolic sigmoids , a proper subset of simple sigmoids and a natural generalizationof the hyperbolic tangent. The class of hyperbolic sigmoids includes a surprising number of wellknown sigmoids. The regular structure of the simple sigmoids often makes a theory tractable, pavingthe way for more general analysis.The main contributions of the paper are as follows� Simple and Hyperbolic sigmoids and their inverses are completely characterized in Sections 4and 5.� Using series inversion techniques, in Section 5, we obtain the series expansions of hyperbolicsigmoids from those of their inverses. These results extend results of Minai and Williams [26]for the logistic function.� In section 4, we study the composition of simple sigmoids via di�erentiation, addition, multi-plication, and functional composition. These results also completely specify the relationshipbetween Euler's incomplete Beta function and the parameterized sigmoids.� In Section 6.1 we show that the continuous Hop�eld equations belong to the class of non-homogeneous Legendre di�erential equations if the neural transfer function is a simple sigmoid.� In Section 6.2 we establish a connection between Fourier transforms and feedforward netswith one summing output and one hidden layer whose nodes contain simple sigmoidal transferfunctions.We do not purport to have discovered a general framework to describe all sigmoids; indeed, sucha quest is largely meaningless; nor are we arguing for limiting the notion of sigmoids to the classesconsidered in this paper. Simple sigmoids are rather special sigmoids, but their regular structureoften makes a theory tractable, paving the way for more general analysis.2 PreliminariesNotation: < and <+ denote real space, and the set of positive real numbers, respectively. (a; b) and[a; b] denote the open and closed intervals from a to b. If A is a set, then jAj is the cardinality of3



A. Given a function f , its domain and range are denoted by Dom(f) and Ran(f), respectively. f (k)refers to the k-th derivative of f (if it exists). Occasionally, we shall use f 0(x) in place of f (1)(x). Ifa function f(�) is k times continuously di�erentiable on a given interval I , then we write f 2 Ck(I).C1 functions are called smooth functions. The term \Propositions" refers to results cited from ex-ternal sources.The concepts of real analytic functions [21, pp. 1-3], absolute monotonic and completely monotonicfunctions [38, pp. 144-145] and hypergeometric functions [9, pp. 202], are central to what follows;for convenience they are reviewed below.De�nition 2.1 (Real Analyticity) Let U � < be an open set. A function f : U ! < is saidto be real analytic4 at x0 2 U , if the function may be represented by a convergent power series onsome interval of positive radius centered at x0, i.e. , f(x) = P1j=0 aj(x � x0)j. The function is saidto be real analytic on V � U , if it real analytic at each x0 2 V .De�nition 2.2 (Monotonicity) A function f : < ! < is absolutely monotonic in (a; b) if it hasnon-negative derivatives of all orders there, i.e. , f 2 C1((a; b)) and,f (k)(x) � 0 a < x < b; k = 0; 1; 2 : : : (2.1)A function f : < ! < is completely monotonic in (a; b), i� f(�x) is absolutely monotonic in(�b;�a). Equivalently, f is completely monotonic in (a; b) i� f 2 C1((a; b)) and,(�1)kf (k)(x) � 0 a < x < b; k = 0; 1; 2 : : : (2.2)A function f : < ! < is completely convex in (a; b), i� f 2 C1((a; b)), and for all non-negative kand x 2 (a; b), (�1)kf (k)(x) � 0.A fundamental property of absolutely monotone and completely monotone functions is that they arenecessarily real analytic on their domains (S. Bernstein's theorem5 [12, pp. 184]). Additionally, if fis absolutely monotone on an interval I � <, then it is non-negative, non-decreasing, convex, andcontinuous on I .De�nition 2.3 The generalized Gauss hypergeometric (GH) series pFq(�1; : : : ; �p; 1; : : : ; q; z) isde�ned by,pFq(�1; : : : ; �p; 1; : : : ; q; z) = 1Xk=0 (�1)k(�2)k � � � (�p)k(1)k(2)k � � � (p)k zkk! 8 i : i 6= 0; �1; �2; � � � (2.3)where (a)n = (a)(a + 1) � � �(a + n � 1) is the rising factorial or Pochhammer's polynomial in a.By de�nition, (a)0 = 1. The �i's are the numeratorial parameters, and the i's are referred to asthe denominatorial parameters of the GH series.4Real analytic functions are also referred to as regular, holomorphic, and monogesic functions.5In full, Bernstein's theorem asserts that given a function f(x), if in�nitely many of its derivatives f (n1), f (n2), � � �are of constant sign in the open interval I (f (nk) is the nkth derivative of f), and if the sequence n1; n2; � � � does notincrease more rapidly than a geometric progression, (i.e. there is a �xed quantity C, such that 8k nk+ 1=nk < C),then f(x) is analytic on the interval I [12, pp. 184]. 4



In particular, the classical GH series6 in z, 2F1(�; �; ; z) is de�ned by,2F1(�; �; ; z) � F (�; �; ; z) = 1Xk=0 (�)k(�)k()k zkk! (2.4)Remark 2.1 The pFq representation of a hypergeometric series, though a standard one, can beconfusing. For example, the series P1k=0 zkk! could be viewed as 0F0(; ; z), or as 1F1(1; 1; z), or as3F3(1; 1; 1; 1; 1; 1; z), etc. We shall henceforth use the \minimum" representation, in this case 0F0(; ; z).In the case ofP1k=0 zkk! it is not necessary to have a non-empty list of numeratorial and denominatorialparameters.Remark 2.2 In general, the parameters �i's and i's, as well as the variable z, are allowed tobe complex; however, we follow common practice and restrict our attention to real values i.e. 8i :�i; i; z 2 <. Even with this restriction, the hypergeometric function is amazingly versatile. Spanierand Oldham list over 170 functions that are representable in terms of the hypergeometric function[32, pp. 149-165]. The hypergeometric function is a periodic table a la Mendeleev for mathematicalfunctions; di�erent functions get neatly pegged into various groups7 by the values of the parametersand the form of the dependent variable.3 Simple & Hyperbolic SigmoidsDe�nition 3.1 (Simple sigmoids) A function � : < ! (�1; 1) is said to be a simple sigmoid ifit satis�es the following conditions:1. �(�) is a smooth function, i.e., �(x) is C1.2. �(�) is an odd function, i.e., �(�x) = ��(x).3. �(�) has y = �1 as horizontal asymptotes, i.e., limx!1 �(x) = 1.4. �(x)=x is a completely convex function in (0; 1).Simple sigmoids are required to be odd smooth functions bound by horizontal aymptotes; constraintsimpose a degree of standardization on the kinds of sigmoids being considered. The following resultsclarify the implications of the fourth constraint.Proposition 3.1 : [10, Theorem 3, pp. 222] A function f : (0; 1) ! < is absolutely monotone on(0; 1) i� it possesses a power series expansion with non-negative coe�cients, converging for 0 < x <1.Lemma 3.1 : A function f : (0; 1) ! < is completely monotone on (0; 1) i� it possesses analternating power series expansion, converging for 0 < x < 1.6The classical GH series is referred to as the Gauss function in the literature [32, pp. 599].7\There must be many universities to-day where 95 per cent, if not 100 per cent, of the functions studied by physics,engineering, and even mathematics students, are covered by this single symbol F(a, b; c; x)." | W. W. Sawyer, citedby Graham et. al. [15, pp. 207] 5



Proof8: If f is completely monotone in (0; 1), then the power series expansion of f in (0; 1) has tobe alternating (because, (�1)kf (k) � 0). On the other hand, consider an alternating power seriesf(x) converging for all 0 < x < 1 and its derivatives:f(x) = a0 � a1x + a2x2 � a3x3 + � � � ai � 0 (0 < x < 1) (3.1)(�1)f (1)(x) = + a1 � 2a2x + 3a3x2 + � � �f (2)(x) = 2a2 � 6a3x + � � �� � � � � �From real analysis we know that each of (�1)nf (n)(x) has the same convergence properties as Equa-tion (3.1). Also, the sum of a convergent in�nite alternating series is always less than or equal tothe �rst term. This fact, along with the above equations implies that (�1)kf (k)(x) � 0 i.e., f(x) iscompletely monotone on (0, 1).Corollary 3.1 �(x)=x is a completely convex function in (0; 1) i� �(px)=px is a completely mono-tone function in (0; 1).Proof: If �(x)=x is completely convex in (0; 1), then it has to be analytic in (0; 1) [38, 177-179].Also, �(x)=x is an even function, implying that its power series expansion will consist only of evenpowers in x, which alternate in sign. From Lemma 3.1, �(px)=px), will hence be completely mono-tone in (0; 1). The same argument su�ces for the converse.If a simple sigmoid is also strictly increasing, then a much stronger statement can be made, asdemonstrated by the following proposition.Proposition 3.2 : [21, pp. 9] Let y = �(x) be a strictly increasing simple sigmoid (i.e. 8 x 2 <,�0(x) > 0). Then:1. � � ��1 : (�1; 1) ! < exists.2. �(y) is a strictly increasing function, analytic in the interval (�1; 1).3. �0(y) = 1=�0(�(y)), where �0 and �0 are the �rst derivatives of � and � respectively.4. �(y)=y is absolutely monotone in (0; 1).Remark 3.1 If �(x)=x is completely monotone on (0; 1) and � is invertible then �(y)=y is absolutelymonotone on (0; 1), where � denotes the inverse of �. The converse is also true, and is an immediateconsequence of Lemma 3.1.Remark 3.2 Since a simple sigmoid has two horizontal asymptotes, it implies that its inverse (if itexists) will have two vertical asymptotes (i.e. limy!�1 �(y) ! �1). It will be seen that as theyhave been de�ned, sigmoids and their inverses are quite similar; both are odd, increasing, univalent,analytical functions. However, the two di�er fundamentally in that sigmoids are aymptoticallybounded , while their inverses are not.8Lemma 3.1 appears to be \folklore"; we have been unable to �nd a reference.6



Simple sigmoids encompass many of the often used sigmoids described by formulae. The hyperbolictangent and its close relative, the \exponential" or logistic sigmoid, are often used in many neuralnetwork theoretical studies and applications. For example, most of the spin-glass models of theHop�eld net use the hyperbolic tangent.9 The hyperbolic tangent has, among others, the followingproperties:1. It is an odd, strictly increasing analytical function, asymptotically bounded by the lines y =�1.2. Its inverse tanh�1(y) has a GH expansion given by yF (1; 1=2; 3=2; y2).3. The �rst derivative of tanh�1(y) is given by 1=(1 � y2) = 1F0(1; ; y2), i.e. , the GH expansionof the �rst derivative of tanh�1(y) is dependent on only one numeratorial parameter.It can be shown that many other simple sigmoids, such as Elliot's sigmoid [8], the Gudermannian (sec-tion 4.2) etc. , also have inverses with classical GH series representations.10 The function tanh�1(y)=ysatis�es a second order linear homogeneous di�erential equation, with three regular singular points,located at 0; 1 and 1. A sigmoid with a similar analytical behavior could be expected to have aninverse that is a solution to some second order Fuchsian equations11. Since any second order Fuch-sian equation with three singularities can be transformed into the Gauss hypergeometric di�erentialequation, one solution of which is the classical GH series (Klein-Bôcher theorem) [37, pp. 203], itfollows that the inverses would have classical series expansions. These considerations motivate thefollowing de�nition.De�nition 3.2 (Hyperbolic sigmoids) A function � : < ! (�1; 1) is said to be a hyperbolicsigmoid function if it satis�es the following conditions:1. � is a real analytic, odd, strictly increasing sigmoid, such that limx!1 �(x) = 1.2. Let � : (�1; 1) ! < denote the inverse of �, and �0 its �rst derivative. Then,(a) �(y)=y has a Gauss hypergeometric series expansion in y2 with at most three parameters.(b) �0(y) has a Gauss hypergeometric series expansion in y2 with at most one parameter.4 Characterization: Inverse hyperbolic sigmoidsThe following result is a complete characterization for the inverses of hyperbolic sigmoids. Proofsare presented in the appendix.9Stochastic versions of neural nets often start by replacing a set of deterministic state assignment rules, by proba-bilistic ones, obtained from some distribution | usually the Gibbsian distribution (e.g. Boltzman machines, StochasticHop�eld models etc.). Computing expected values for the states of the system then leads to the hyperbolic tangentfunction. See Hertz et. al. for a typical example [18, pp. 28].10The phenomenon is not unduly surprising. A heuristic argument may be given as follows: If the graphs of twofunctions \look" the same, their respective di�erential equations are usually members of the same family.11Fuchsian equations are linear di�erential equations each of whose singular points are regular [31, pp. 143-168].tanh�1(x)=x satis�es such an equation. 7



Theorem 4.1 (Inverses) Let y = �(x) be a hyperbolic sigmoid, and let � : (�1; 1) ! < be itsinverse. Then, either �(y) = yF (�; 12; 32; y2) = y 1Xk=0 (�)k(2k + 1) y2kk! � � 1 (4.1)or �(y) = yF (�;�;�; y2) = y(1 � y2)� � > 0 (4.2)where, by F (�;�;�; y2), we mean F (�; �; �; y2) (� 2 <).Notation: Each inverse hyperbolic sigmoid is denoted by �� and is characterized by a single pa-rameter �.Corollary 4.1 The set of hyperbolic sigmoids is a proper subset of the set of simple sigmoids.A proof for Corollary 4.1 may be given along the following lines. If � is a hyperbolic sigmoid, thenit is simple on the interval (�1; 1): For, from Theorem 4.1, the series representation for its inversein (�1; 1) has non-negative coe�cients, and this implies �(y)=y) is absolutely monotone (Proposi-tion 3.1). Hence �(x)=x is completely monotone, and therfore simple. (Lemma 3.1 and Remark 3.1).The converse is not true. Simple sigmoids need not be hyperbolic. The error function erf(�) is simple,but one can use Carlitz's study of the function to show that it does not have an inverse representableby a classical hypergeometric series [4]. It follows that erf(�) is not a hyperbolic sigmoid, and hencethe set of hyperbolic sigmoids is a proper subset of the set of simple sigmoids.For speci�c values of its parameters, the hypergeometric function often reduces to other well knownspecial functions. When inverse hyperbolic sigmoids are characterized by Equation (4.1), there is anintimate connection with Euler's incomplete Beta function.Proposition 4.1 : [32, pp. 573] Let �; � and  be such that, � =  � 1. Then,F (�;  � 1; ; z) = ( � 1)B( � 1; 1 � �; z)z � 1 (4.3)where B(v; u; z) is the incomplete beta function, de�ned by R z0 tv�1(1 � t)u� 1dt, where 0 � z < 1.In particular, 12 B(1=2; 1 � a; z2) = R tanh�1(z)0 cosh2(a� 1)(t) dt.Spanier and Oldham give a detailed description of the many properties of this important specialfunction [32, pp. 573-580]. The following corollary is an immediate consequence of Theorem 4.1 andProposition 4.1. It gives the connection between inverse hyperbolic sigmoids, and Euler's incompleteBeta function.Corollary 4.2 If ��(y) = yF (�; 1=2; 3=2; y2), then ��(y) = 12B(1=2; 1 � �; y2).8



The relationship between hyperbolic sigmoids and the incomplete Beta function, also makes explicitthe relationship between tanh�1(�), and inverse hyperbolic sigmoids of form yF (�; 1=2; 3=2; y2). Otherconsequences include:1. The availability of good approximations for small values of y and (1 � y).2. Rapidly converging series expansions for y close to 1.3. Connections with other inde�nite integrals of powers of trigonometric or hyperbolic functions.4. Connections with statistics via the function Iy(p; q) [32, pp. 573-580].When inverse hyperbolic sigmoids are characterized by Equation (4.2), we can use the identity,cosh( tanh�1(y)) = 1p1 � y2 (4.4)to show that, y cosh2a( tanh�1(y)) = y(1 � y2)a (4.5)The fundamental role played by the hyperbolic tangent is once again evident. Here, it relates thetwo types of hyperbolic sigmoids de�ned by Equations 4.1 and 4.2.4.1 New Inverses from OldTheorem 4.1 makes it possible to generate new inverse hyperbolic sigmoids from others. The keyidea is that if yF (�; 1=2; 3=2; y2) is an inverse hyperbolic sigmoid, then so is yF (� + 1; 1=2; 3=2; y2).A similar statement may be made for inverse hyperbolic sigmoids of the form yF (�;�;�; z2). GHfunctions such as F (�; �; ; z), and F (� + 1; �; ; z) are said to be contiguous , and there exist severaldi�erential identities between them [9, pp. 102-104]. Lemma 4.1 is a straightforward consequence ofthree such identities.Lemma 4.1 If �� : (�1; 1) ! < is an inverse hyperbolic sigmoid, then the functions ��+1 and���1 de�ned by:��+1(y) � y2(1��)2� ddy (y2�� 1�(y)) � � 1 (4.6)���1(y) � �y2�� 1(2� � 3)(1 � y2)�� 2 ddy �(1 � y2)��1y2(�� 1) �(y)� � � 2 (4.7)are also inverse hyperbolic sigmoids. Also, there exist functions K1(�; z), K2(�; z) and K3(�; z) suchthat, following relation holds:K1(�; z) ���1(y) + K2(�; z) ��(y) + K3(�; z) ��+ 1(y) = 0 (4.8)Proof: Equation (4.6) that de�nes ��+1(y) results from the following identity:(�)n z��1 F (� + n; �; ; z) = dndzn [z�+n� 1 F (�; �; ; z)] (4.9)9



In the following we will use F (�) as an abbreviation for F (�; �; ; z). Equation (4.7) follows from theidentity:( � �)n z ��� 1(1 � z)�+ ��  �n F (� � n) = dndzn [z��+n�1(1 � z)�+ �� F (�)] (4.10)Equation (4.8), relating ��� 1(y), ��(y) and ��� 1(y) is a consequence of the identity:( � �)F (� � 1) + (2� �  � �z + �z)F (�) + �(z � 1)F (� + 1) = 0 (4.11)Inverse hyperbolic sigmoids come in two avors; one form has three parameters (Equation (4.1)),while the other has two \missing" parameters (Equation (4.2)). Subject to a minor condition, thelatter form is always obtainable from the former:Lemma 4.2 Let �� = yF (�; 1=2; 3=2; y2), where � > 1. Then the function ��� 1 de�ned by:���1(y) � y(1 � y2) ddy ��(y) = yF (� � 1;�;�; y2) (4.12)is an inverse hyperbolic sigmoid, with parameter � � 1.For inverse hyperbolic sigmoids with \missing" parameters, there is a very simple composition rule;Lemma 4.3 If ��(y) = y=(1 � y2)� and ��0(y) = y=(1 � y2)�0 are two inverse hyperbolic sig-moids with �; �0 > 0, then the function (��(y)��0(y))=y is also an inverse hyperbolic sigmoid withparameter (� + �0).In general, the set of inverse hyperbolic sigmoids is not closed under multiplication or addition.But if �� and ��0 are inverses of two hyperbolic sigmoids then their sum would also be an inversehyperbolic sigmoid �� for some � 2 <, i.e., �� + ��0 = K��, for some K, if and only if�� + ��0 = K�� ) (�)n + (�0)n = K(�)n 8n � 1 (4.13)which in turn, is possible12 if and only if � = �0, or � = 0, or �0 = 0.The de�nition of hyperbolic sigmoids implies that their inverses have GH expansions in y2.Theorem 4.2 relaxes this requirement by only requiring GH expansions in some odd, injective C1function g(y). A proof is provided in Appendix I.Theorem 4.2 Let � : < ! (�1; 1) be a real analytic, odd, strictly increasing sigmoid, such thatits inverse � : (�1; 1) ! < has a GH series expansion in some injective, odd, increasing C1 functiong(�), with at most three parameters, convergent in (�1; 1). Also let �0 have a GH series expansionin g(�), with at most one parameter. Then, either�(y) = g(y)F (�; 12; 32; (g(y))2) = g(y) 1Xk=0 (�)k2k + 1 (g(y))2kk! ; for � � 1; (4.14)or �(y) = g(y)F (�;�;�; (g(y))2) = g(y)(1 � (g(y))2)� ; for � > 0 (4.15)provided limy!1 g0(y)(1 � y2)� ! 1, where g0(�) is the �rst derivative of g(�).12Equation (4.13), with K = 1, provides an amusing application for Fermat's last theorem; if we accept that for alln > 2, there cannot exist positive integers a; b and c satisfying the identity an + bn = cn, then we may conclude thatthe sum of inverse hyperbolic sigmoids with di�erent integral parameters cannot be an inverse hyperbolic sigmoid withan integral parameter. 10



In the case g(y) = y, we obtain the characterization for inverse hyperbolic sigmoids. Anotherinteresting special case is when g(y) = �(y), where �(y) is an inverse hyperbolic sigmoid (since �(y)is an injective, smooth, odd, increasing function the conditions of the theorem are satis�ed). Theelementary composition rules presented here allows the generation of an in�nite variety of inversehyperbolic sigmoids13. The next section presents some examples.4.2 ExamplesAny function of the form y=(1 � y2)�, where � > 0, is the inverse of a hyperbolic sigmoid. Forexample, for � = 2, the function y=p1 � y2 is the inverse of the hyperbolic sigmoid x=p1 + x2.Of all inverse hyperbolic sigmoids of the form yF (�; 1=2; 3=2; y2), the function tanh(�) is notewor-thy; �rstly, it corresponds to the case � = 1, secondly, all inverse hyperbolic sigmoids with integralvalues of � may be generated from tanh(x) by a process of di�erentiation (Lemma 4.1), and thirdly,it is a function often encountered in neural nets [19]. As was mentioned in the Introduction, thelogistic function may be thought of as a translated and scaled version of the hyperbolic tangent.There is a good example of the hypergeometric composition described in Theorem 4.2. Sincetan(�y) is an odd, injective, smooth, increasing function of y (for some constant � > 0), fromTheorem 4.2, one may conclude that for positive � the function, tan(�y)F (�; 1=2; 3=2; tan2(�y)) isthe inverse of some real analytic, odd, strictly increasing sigmoid. It turns out that the inverseGudermannian function14, may be obtained from this function, by choosing � = 1 as follows:gd�1(y) = ln(sec (y) + tan(y)) for � �2 < y < �2= 2 tan(y=2)F (1; 1=2; 3=2; tan2(y=2))Many such examples could be generated.155 Characterization: Hyperbolic SigmoidsIt is often desirable and necessary to work with sigmoids themselves, rather than their inverses. Inthis section, we obtain power series expansions of sigmoids.If x = �(y) is an inverse hyperbolic sigmoid, then � � ��1 must have a Maclaurin seriesexpansion of the following form: y = �(x) = xP1k=0 b2k+1(2k + 1)! x2k. We are interested in deter-mining the coe�cients fb2l+1g1l=0 associated with the inverse hyperbolic sigmoids: y(1� y2)� andyF (�; 1=2; 3=2; y2).5.1 Hyperbolic Sigmoids of the First KindWhen an inverse hyperbolic sigmoid is of the form y=(1 � y2)�, a remarkably explicit form for thecoe�cients fb2l+1g10 may be given:13An intriguing case is Elliot's piecewise rational sigmoid [8], de�ned as �(x) = y=(1 + jxj). Although its inverse�(y) = y=(1 � jyj) does not �t in an obvious way into the framework developed in the last few sections, it is fairlysimple to relax the conditions placed on g(y), in Theorem 4.2, so as to include this sigmoid as well.14The inverse Gudermannian function �nds use in relating circular and hyperbolic functions, without the use ofcomplex functions.15In particular, [32, pp. 149-165], [16, pp. 196-198] are minelodes of such functions and expansions.11



Theorem 5.1 (Hyperbolic sigmoids - I) If the inverse sigmoid is given by y=(1 � y2)�, � > 0,then in some neighborhood of the origin, we have the valid expansion �(x) = xP1k= 0 b2k+1(2k + 1)! x2kwhere, b2k+1 = (�1)k(2k + 1)! (2k + 1)�k ! (5.1)Proof : (see Appendix I)5.2 Hyperbolic Sigmoids of the Second KindWhen an inverse hyperbolic sigmoid is of the form x = yF (�; 1=2; 3=2; y2), the problem is muchharder. The Lagrange inversion formula leads to an intractable expression. Kamber's formulae, aspresented by Goodman, can be used to give explicit expressions for the coe�cients [14, Theorem 7, pp.56-57]. Unfortunately, the resulting expressions involve determinants, and are of little computationalvalue. The method of repeated di�erentiation is more successful. The starting point for this line ofattack is the observation that if x = �(y) is an inverse hyperbolic sigmoid, then:dxdy = ddy �(y) = �0(y) = 1(1 � y2)� (5.2)From Theorem 3.2, we see that for y = �(x),dydx = ddx�(x) = 1�0(y) = (1 � y2)� (5.3)By virtue of Equation (5.3), we can compute the higher derivatives of �(�) and hence computeb2k+1 = d2k+1�(x)dx2k+1 �����x=0. Note that dydx is expressed in terms of y; this necessitates the use of thechain rule. For example, to calculate the second derivative:d2ydx2 = � ddy (1 � y2)�� dydx = (1 � y2)� ddy (1 � y2)�� (5.4)The following theorem presents an e�cient way to implement this procedure.Theorem 5.2 (Hyperbolic sigmoids | II A) Let the inverse hyperbolic sigmoid be �� =yF (�; 1=2; 3=2; y2), and � � ��1� . Let D � ddx . Then,Dn(y) = Dn(�(x)) = Gn� 1(y)(1 � y2)n� (5.5)where Gn : (�1; 1) ! < is a function satisfying the recursionG0(y) = 1;Gn(y) = ddyGn� 1(y) � 2yn�1 � y2 Gn� 1(y) n � 1 (5.6)In particular, b2k = 0, and b2k+ 1 = D2k+ 1(�(x)) = G2k(0).12



Proof: Theorem 5.2 is easily proved by an induction argument on n.While the procedure implicit in Theorem 5.2 is e�cient, it does involve the computation of the deriva-tive of Gn(y). Equation (5.6) is a partial di�erence equation with variable coe�cients. Thereforethere is little hope of solving it in any generality and obtaining a closed form expression. Even moresophisticated methods such as Truesdell's generating function technique and Weisner's group theo-retic approach (see [25]), do not give any special insight into the nature of the polynomials Gn(y).16The next theorem o�ers a somewhat di�erent approach to the method of repeated derivatives.Theorem 5.3 (Hyperbolic sigmoids - II B) Let �(x) = P1k=0 b2k+1(2k + 1)! x2k be an expansionfor a hyperbolic sigmoid, whose inverse is of the form yF (�; 1=2; 3=2; y2), valid in some neighborhoodof the origin. Then b2k = 0, and b2k+1 = C(2k + 1; k), where the sequence C(n; k) satis�es:C(1; 0) = 1C(n; k) = 0 8 k � n; k < 0C(n + 1; k) = (2k � n + 1)C(n; k) � 2(n� � k + 1)C(n; k � 1) n � 1 (5.7)n and k are natural numbers, Dn(�(x)), the nth derivative of �, is given by:Dn(y) = Dn(�(x)) = n�1Xk=0 C(n; k)y2k�n+1(1 � y2)n��k; forn � 1 (5.8)Proof: See Appendix I.The recursive system described by Equation (5.7) does not involve any di�erentiation. The desiredvalue b2k+1 may be obtained by computing the value of C(2k+1; k). Equation (5.8) gives informationabout the shapes of the derivatives of the hyperbolic sigmoid. From Equation (5.7),b1 = 1 b3 = �2�; (5.9)b5 = 4�(7� � 3) b7 = �8�(127�2 � 123� + 30) (5.10)Theorem 5.3 may be viewed as a generalization of the work of Minai and Williams on the derivativesof the logistic sigmoid [26]. They obtained relations similar to Equation (5.7)17. In general, Equa-tion (5.7) is a partial di�erence equation with variable coe�cients, and the system does not appearto be related to any well known sets of numbers. A closed form solution for the numbers C(n; k)appears to be intractable.6 ApplicationsIn this section, we present two applications. The �rst shows that if the neural network transferfunction is a hyperbolic sigmoid, then the dynamical equations describing the Hop�eld neural network16Equation (5.6) is a di�erential-di�erence system of the ascending type; it can then be shown that the polyno-mials fGn(y)g1n=1 satisfy Truesdell's F -equation. Unfortunately, the resulting generating function for Gn(y) is toocomplicated for any practical use.17Interestingly, in the case of the logistic sigmoid, these relations happened to be the recursions corresponding tothe Eulerian numbers [15, pp. 253-257]; in other words, the coe�cients arising in the computation of higher orderderivatives of the logistic sigmoid turn out to be the Eulerian numbers.13



[19] can be transformed into a set of non-homogeneous associated Legendre di�erential equations.Some conclusions regarding the behavior of the Hop�eld model, as the outputs saturate (i.e. output!�1) can then be drawn.The second application derives an interesting connection between Fourier transforms and 1-hiddenlayer feedforward nets (1-HL nets). Subject to an additional minor constraint, we show that the useof 1-HL nets with simple sigmoidal transfer functions for function approximation is tantamount toassuming that the function being approximated is the product of two functions; one the derivativeof a bounded non-negative function, and the other satisfying some linear n-th order di�erentialequation, where n is the number of nodes in the hidden layer.6.1 Continuous Hop�eld nets & Legendre Di�erential EquationsThe continuous Hop�eld network model [19] with N neurons is described by the following dynamics:duidt + giui = Xj Tijvj + Ii = Ei = �@E@vi 8 i 2 f1; : : : ; Ng (6.1)where ui and vi are the net input and net output of the ith neuron, respectively, Ii is a constantexternal excitation, and E is the so called \energy" of the network, given by:E = �12Xi; j Tijvivj = Xi vi@E@vi = �Xi viEi (6.2)Assume �1 < vi < 1. Let vi = �(ui), where �(�) is a hyperbolic sigmoid. Let � � ��1, or,ui = �(vi). There are two cases to consider.Case I: �(vi) = viF (�; 1=2; 3=2; v2i ). In this case,d�dvi = 1(1 � v2i )� (6.3)and substituting Equation (6.3) in Equation (6.1), we get:11 � v2i dvidt + giui = Ei (6.4)The following sequence of operations are applied to Equation (6.4):1. Substitute yi = dvidt , and di�erentiate with respect to vi,2. multiply throughout by (1 � v2i )�+ 1, and3. di�erentiate once more with respect to vi.Equation (6.4) is then transformed into:(1 � v2i )d2yidv2i � 2(1 � �)vidyidvi + 2�yi = Qi (6.5)14



where Qi = ddvi [(1 � v2i )�+1dEidvi ] + 2givi. Finally, put yi = zi(1 � 1 v2i )�=2 in Equation (6.5)yielding, (1 � v2i )d2zidv2i � 2vidzidvi + [�(� + 1) � �21 � v2i ]zi = Ri (6.6)where Ri = (1 � v2i )��=2Qi. Recall that the associated Legendre di�erential equation is of the form[32, pp. 594-597], (1 � x2)d2fdx2 � 2x dfdx + ��(� + 1) � �21 � x2 � f = 0 (6.7)It is clear that the left hand side in equation(6.6), is the associated Legendre di�erential equationwith parameters n = �� (Equation (6.5) requires us to choose � = ��, rather than +�), and� = �. In other words, the continuous Hop�eld model with a neural transfer function given by�(vi) = viF (�; 1=2; 3=2; v2i ), is reducible to the non-homogeneous associated Legendre di�erentialequation with parameters � = �� and � = �.Case II: �(vi) = viF (�;�;�; v2i ). An analogous approach leads to the very same conclusion, asin Case I, i.e., it is possible to transform the continuous Hop�eld equation with the above transferfunction to a non-homogeneous associated Legendre equation. However, the right hand side of thetransformed equation is complicated and we do not consider this case further.We emphasize that the link between the continuous Hop�eld equation and the Legendre di�erentialequation is not accidental, given that it can be established for all hyperbolic sigmoidal transferfunctions. For ui = tanh�1(vi), � = 1, and the above equations have a rather elementary form.An immediate application of the above transformation is in studying the saturation behavior ofthe Hop�eld neural net. By saturation, we mean that the outputs of the neurons tend to �1. Thisusually occurs when the network is heading towards a critical point (local or global) [19]. Saturationimplies that as anode output vi ! �1, the quantity Ri ! 0. In other words, we may study thesaturation behavior of the continuous Hop�eld model by considering the homogeneous version ofEquation (6.6) viz., (1 � v2i )d2zidv2i � 2vidzidvi + [�(� + 1) � �21 � v2i ]zi = 0 (6.8)From the theory of associated Legendre equations, it is seen that Equation (6.8) has a solution interms of the associated Legendre functions, P (�)� (x), and Q(�)� (x) [9, pp. 121-179]. Here, � = ��,� = �, and x � vi, and we have: zi = c1P (��)� (vi) + c2Q(��)� (vi)yi(1 � v2i )�=2 = c1P (��)� (vi) + c2Q(��)� (vi)1(1 � v2i )�=2 dvidt = c1P (��)� (vi) + c2Q(��)� (vi) (6.9)Neglecting the e�ect of gi, as is common practice, we obtain from Equation (6.4):dvidt � (1 � v2i )�Ei (6.10)15



Equation (6.9), in conjunction with Equation (6.10), implies:Ei = @E@vi = (1 � v2i )�=2 [c1P (��)� (vi) + c2Q(��)� (vi)] (6.11)Equation (6.11) in conjunction with Equation (6.2) implies that the overall energy at saturation maybe written as follows:E = Xi viEi = Xi vi(1 � v2i )�=2 [c1P (��)� (vi) + c2Q(��)� (vi)] (6.12)Ei does not depend on Ej for i 6= j. Thus, to a crude �rst approximation, the Hop�eld network\dissociates" at saturation, into independent units, and the quadratic energy function may be writtenas a linear sum of non-linear univalent functions, given by Equation (6.11) and Equation (6.12).We wish to stress the possibilities revealed by dealing with the Hop�eld equation in a generalcontext. For example, in Equation (6.6),(1 � v2i )d2zidv2i � 2vidzidvi + [�(� + 1) � �21 � v2i ]zi = Ri (6.13)where Ri = (1 � v2i )��=2Qi, and ddvi [(1 � v2i )�+1dEidvi ] + 2givi, consider the case when Qi = K isa constant. Then the above equation reduces to the non-homogeneous equation,(1 � v2i )d2zidv2i � 2vidzidvi + [�(� + 1) � �21 � v2i ]zi = K(1 � v2i )��=2 (6.14)which may be solved using the special function s���;1, de�ned and described by Babister [2, pp. 256-264]. Recall that Equation (6.14) �rst arose in the context of solving for Poisson's equation inspherical polar co-ordinates [2, pp. 362-363].The fact that the connection between Legendre di�erential equations and the Hop�eld equationholds for such a wide variety of sigmoids, and is not just an accidental consequence of a particularsigmoid, strongly indicates that further exploration is warranted.6.2 Fourier transforms & Feedforward netsThere have been many di�erent attempts to describe the behavior of feedforward networks suchas the group theoretic analysis of the Perceptron, proposed by Minsky and Papert [27], the spacepartition (via hyperplanes) interpretation discussed by Lippman [22] (and many others), the metricsynthesis viewpoint introduced by Pao and Sobajic [29], the statistical interpretation emphasizedby White [36], et cetera. In 1988, Gallant and White showed that a 1-HL feedforward net with\monotone cosine" squashing at the hidden layer, and a summing output node, embeds as a specialcase a \Fourier network" that yields a Fourier series approximation to a given function as its output[13]. We present a related construction in this section; it is shown that a one hidden layer (1-HL)nets with simple sigmoidal convex transfer functions (at the hidden layer), and a single summingoutput, can be thought of as performing trigonometric approximation (regression) [34, Chap. 4].Speci�cally, the inverse Fourier transform of the function (to be learned) is approximated as a linearcombination of weighted sinusoids.The result is a consequence of a connection between a class of simple sigmoids and Fouriertransforms, that facilitates a novel interpretation of 1-HL feedforward nets. Polya's theorem is astarting point [30]. 16



Proposition 6.1 (Polya's theorem) : [12] A real valued and continuous function f(x) de�nedfor all real x and satisfying the following properties:1. f(0) = 1,2. f(x) = f(�x),3. f(x) is convex for x > 0,4. limx!1 f(x) = 0,is always a characteristic function (Fourier transform) of an absolutely continuous distributionfunction18, i.e., f(x) = F(h(t); x) = R1�1 eixth(t)dt. Furthermore, the density h(t) is an evenfunction, and is continuous everywhere except possibly at t = 0.The following result connects simple sigmoids with Fourier transforms.Theorem 6.1 Let �(x) be a simple sigmoid. If �(x)=x is a convex function, then it is the Fouriertransform of an absolutely continuous distribution function i.e.,�(x)x = F(h(t); x) = Z 1�1 eixth(t)dt (6.15)Proof: It su�ces to prove that �(x)=x satisfy the conditions of Polya's theorem. �(x) being simpleis bounded, and hence limx!1 �(x)=x = 0. Also, �(�x)= � x = ��(x)= � x = �(x)=x. Since�(x) is completely monotone in (0; 1), it follows that limx! 0 �(x)=x = K (some positive constant).There is no loss of generality in assuming K = 1, since one can always scale �(�) appropriately.Finally, the convexity of �(x)=x ensures that all of the conditions of Polya's theorem are satis�edand the conclusion follows.Remark 6.1 Polya's theorem is a su�cient but not necessary condition for f(x) to be the Fouriertransform of some function h(t). Hence, Theorem 6.1 is also only a su�cient condition for a simplesigmoid to be a Fourier transform. A case in point is the function tanh(x) which is not convex, butis still a Fourier transform [28, pp. 42, item # 240], i.e.,tanh(x)x = F(log( 1� coth(�t)); x) (6.16)In other words, the conclusions we draw in the next few paragraphs may be valid for some non-convexsimple sigmoids as well.Remark 6.2 In Equation (6.15) h(t) is an even function. Hence the transform is a Fourier cosinetransform. The sine component vanishes during the course of an integration.Consider a 1-HL net, with k input nodes, n hidden layer nodes with convex simple sigmoidal transferfunctions �(�), and one summing output node. Let wij denote the weight of the connection betweenthe ith node in the hidden layer and j th node in the input layer; similarly, let ci denote the weight18Recall that an absolutely continuous function F (x) is a distribution function if it can be written in the formF (x) = R x�1 h(t)dt, where h(t) is called the density of F (x).17



of the connection between the ith hidden layer node and the output node. Then the output O maybe expressed as, O = nXi=1 ci yi = nXi=1 ci �(ui) = nXi=1 ci �( kXj= 1 wijxj + �i) (6.17)where ui and �i are the input and bias for the ith hidden node, respectively. Since �(�) is a convexsimple sigmoid, using Lemma 6.1, Equation (6.17) may be rewritten as,O(t) = nXi=1 ci yi = nXi=1 ci uiF(h(t); ui) (6.18)where F(h(t); ui) denotes the fact that F(h(t); x) is to be evaluated at the point x = ui =Pkj=1 wijxj + �i. Using the well known property of Fourier transforms, that if f(x) = F(h(t); x),then xf(x) = �iF(h0(t); x) = F(�ih0(t); x), where h0(�) is the �rst derivative of h(�), and i = p�1[6, pp. 100], Equation (6.18) may be rewritten19 as,O(t) = nXi=1 ciF(�ih0(t); ui) (6.19)Equation (6.19) can be recognized as being analogous to the Heaviside expansion formula in Laplacetransform theory20, which allows the reconstruction of a time varying function using informationrelating to its spectral components. Equation (6.19) suggests that 1-HL nets with convex simplesigmoidal transfer functions can be thought of as implementing a spectral reconstruction of theoutput using the weighted inputs u0is to evaluate the associated pole coe�cients (residues) of theHeaviside expansion.In particular, it can be demonstrated that the results of Gallant and White [13] are implied byEquation (6.19). In what follows, we shall use Fs(h; x) and Fc(h; x) to indicate the Fourier sine andcosine transforms of h(t).Since h(t), the continuous distribution function corresponding to �(x)=x is an even function(from Polya's theorem), it follows that �(x) = xF(h(t); x) = xFc(h(t); x). Using the property ofFourier transforms that xFc(g(t); x) = Fs(�g0(t); x) [6, pp. 104], we may conclude that �(x) =Fs(�h0(t); x).Let ui = u + ri, where ri are appropriate functions of the xi's (since the ui's are functions ofthe inputs xi's). O(u) = nXi=1 ciFs(�h0(t); u + ri) (6.20)From the frequency shifting property of Fourier transforms [6, pp. 104], viz. ,12Fs(f(t); x + a) = Fs(f(t) cos(at); x) + Fc(f(t) sin(at); x) (6.21)19In Equation (6.19), the i term in F(�ih0(t);ui) converts the Fourier cosine transform representation of �(x)=x (seeremark 6.2) into a Fourier sine transform.20For convenience we restate a simple version of the formula: If the Laplace transform of a function h(t), is givenby f(x), i.e. f(x) = L(h(t);x) = R10 h(t) exp(�xt)dt, and f(x) has only �rst order poles at x1; x2 � � � xn, thenh(t) = Pnk= 1 Fk(xk), where Fk(xk) is the residue or pole-coe�cient of f(x) exp(xt). If the poles of f(x) are of higherorder, then a similar formula is available [3, Equation 2-25, pp. 22]18



it follows that,O(u) = nXi=1 ciFs(�h0(t); u + ri)= nXi=1 2ci fFs(�h0(t) cos(rit); u) + Fc(�h0(t) sin(rit); u)g= Fs(2 nXi= 1 ci (�h0(t) cos(rit); u)) + Fc(2 nXi=1 ci (�h0(t) sin(rit); u))F�1(O(u)) = �h0(t) nXi=1 ci sin(ri + u)t (6.22)But we may choose u arbitrarily, we set u = 0, implying ri = ui = Pkj= 1 wijxj + �i, andEquation (6.22) becomes,F�1(O(u)) = �4h0(t) nXi=1 ci sin((Xj wijxj + �i)t) (6.23)Equation (6.23) may be used as a starting point for an analysis identical to that adopted by Gallantand White in their study of 1-HL nets with \cosine squashing" functions [13]. It is then straight-forward to show that the weights may be so chosen (hardwired) so that the 1-HL nets embeds as aspecial case a Fourier network, which yields a Fourier series approximation to a given function as itsoutput. In this sense, the results of this section extend the study of Gallant and White.More generally, one can draw similar conclusions by considering sigmoids that are the Laplacetransforms of some function; for example tanh(x)=x is the Laplace transform of sgn�sin(�t2 )�, wheresgn(x) is +1, 0 or �1 depending on whether x is greater, equal or lesser than zero [32, pp. 248].An analysis similar to the one described above, would lead to a connection with real exponentialapproximation (rather than trigonometric approximation). E�cient algorithms, such as Prony's,exist for certain restricted forms of the exponential approximation problem [34, pp. 82-101].Also related are the considerations of Marks and Arabshahi on the multidimensional Fouriertransforms of the output of a 1-HL feedforward net; they showed that the transform of the output isthe sum of certain scaled Dirac delta functions [24]. Here, we view the sigmoid itself as the Fouriertransform of some function; the main advantage of our interpretation is the algorithms it suggestsfor training 1-HL nets of the type considered in this section. Extensions to multiple layer nets, whilenot trivial, should not present undue di�culties.Another potential use of Equation (6.23) is its possible use in exploring the \goodness" of theapproximation obtained by a 1-HL net with simple sigmoidal transfer functions. In the last 200years, much has been learned about the errors associated with exponential and trigonometric ap-proximation, and ways to deal with it; however, consideration of these issues is beyond the scope ofthis paper.7 ConclusionWe have analyzed the behavior of important classes of sigmoid functions, called simple and hyperbolicsigmoids, instances of which are extensively used as node transfer functions in arti�cial neural net-work implementations. We have obtained a complete characterization for the inverses of hyperbolic19



sigmoids using Euler's incomplete beta functions, and have described composition rules that illus-trate how such functions may be synthesized from others. We have obtained power series expansionsof hyperbolic sigmoids, and suggested procedures for obtaining coe�cients of the expansions. Fora large class of node functions, we have shown that the continuous Hop�eld net equations can bereduced to Legendre di�erential equations. Finally, we have shown that a large class of feedforwardnetworks represent the output function as a Fourier series sine transform evaluated at the hiddenlayer node inputs, thus extending an earlier result due to Gallant and White.
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Appendix ITheorem 4.1: Let y = �(x) be a hyperbolic sigmoid, and let � : (�1; 1) ! < be its inverse.Then, either �(y) = yF (�; 12; 32; y2) = y 1Xk=0 (�)k(2k + 1) y2kk! � � 1 (7.1)or, �(y) = yF (�;�;�; y2) = y(1 � y2)� � > 0 (7.2)where, by F (�;�;�; y2), we mean F (�; �; �; y2) (� 2 <).Proof: Since �(�) is hyperbolic, by de�nition �(�)=x is described by a GH series with at most threeparameters. There are then four major possibilities:�(x) = x 3F0(�1; �2; �3; ; x2)  Case 1 (7.3)�(x) = x 2F1(�1; �2; 1; x2)  Case 2 (7.4)�(x) = x 1F2(�1; 1; 2; x2)  Case 3 (7.5)�(x) = x 0F3( ; 1; 2; 3; x2)  Case 4 (7.6)(7.7)The following proposition shows why there is no need to consider cases 1, 3 and 4, as possible formsfor hyperbolic sigmoids.Proposition A: [32, pp. 155] Let pFq(�1; : : : ; �p; 1; : : : ; q; z), be a GH series in z, with p +q parameters. If none of the numeratorial parameters are non-positive integers, i.e. 8 i : �i 6=0; �1; �2; � � � ;, then convergence behavior of pFq is as follows:p < q + 1 pFqnecessarily converges for all �nite z.p = q + 1 convergence of pFq is limited to �1 < z < 1,and depends on the parameters �i's and i's.p > q + 1 pFqnecessarily diverges for all nonzero z. (7.8)Since limz!�1 �(z) ! �1, but is �nite in the interval (�1; 1), it follows that if a GH series isto represent �(�), then it has to converge in the interval (�1; 1), but diverge at z = �1.This rules out non-positive integral values for the numeratorial parameters; otherwise, the serieswould converge for all z 2 < (and not just in the interval (�1; 1)). Yet, even if the numeratorialparameters do not have non-positive integral values, in three of the above cases, the number ofnumeratorial parameters to denominatorial ones is such that either series again converges for all z(case 1), or diverges for all z (case 3, 4). That leaves just one case to consider, viz . the classicalseries, 2F1(�1; �2; 1; z) = F (�; �; ; z), i.e. we may take �(x) = xF (�; �; ;x2).21



Since �(�) has to be a GH series with at most three parameters, some of the parameters areallowed to be \missing". In other words, Case 2 spawns in turn, the following possibilities:�(x) = xF (�; �; ;x2)  Case 2(a) (7.9)�(x) = xF (�; �;�; x2)  Case 2(b) (7.10)�(x) = xF (�;�; ; x2)  Case 2(c) (7.11)�(x) = xF (�;�;�; x2)  Case 2(d) (7.12)�(x) = xF (�;�; ; x2)  Case 2(e) (7.13)�(x) = xF (�;�;�; x2)  Case 2(f) (7.14)(7.15)Proposition A can be used once again to weed out all but two of the above set, viz. Cases 2(a)and 2(d). The rest lead to inappropriate divergence or convergence behavior in the interval. Thefollowing property of GH functions will be needed.Proposition B: [32, pp. 606] If y = F (�; �; ; x), then dydx = �� F (� + 1; � + 1;  + 1; x).(i) 3-parameter GH series: �(x) = xF (�; �; ; x2)= x Xk�0 (�)k(�)k()k x2kk! (7.16)Let � : (�1; 1) ! <+, with �(x) = d�(x)dx . Then,�(x) = �(x)dx = ddx �xF (�; �; ; x2)	= F (�; �; ; x2) + 2xdF (�; �; ; x2)dx= F (�; �; ; x2) + 2x2�� F (� + 1; � + 1;  + 1; x2)  Prop. B= 8<:Xk� 0 (�)k(�)k()k x2kk! + 2 Xk�1 (�)k(�)k()k x2k(k � 1)!9=;= 8<:1 + Xn�1 (�)k(�)k(k � 1)! ()k �1k + 2�x2k9=; = 8<:Xk�0 (�)k(�)k()k (2k + 1) x2kk! 9=;= 8<:Xk�0 (�)k(�)k()k (3=2)k(1=2)k x2kk! 9=; (7.17)From the de�nition of hyperbolic sigmoids, �(x), is to representable by a GH function with at mostthree parameters; we must make therefore make the identi�cation, � = 1=2 and  = 3=2. From the22



symmetry properties of the GH function, we need not consider the case when � = 1=2,  = 3=2. Itfollows that, y = xF (�; 1=2; 3=2; x2)� = d�(x)dx = F (�;�;�; x2) = 1(1 � x2)� (7.18)The parameter � cannot take any arbitrary real value. The behavior of �(x) at the endpoints of itsinterval, requires that, limx!�1 �(x) ! �1 ) limx!�1 �(x) ! �1 (7.19)Equation (7.18) and Equation (7.19) taken together imply that � > 0. This is a necessary but notsu�cient condition. The following two propositions allow us to pin down �'s value more precisely.Proposition C : [9, pp. 57-61] If � and � are di�erent from 0;�1; � � � then F (�; �; ; z) convergesabsolutely for z < 1. For z = 1:F (�; �; ; z)converges absolutely if (� + � � ) < 0 (7.20)F (�; �; ; z)converges conditionally if 0 � (� + � � ) < 1 (7.21)F (�; �; ; z)diverges if 1 � (� + � � ) (7.22)Proposition D: [9, pp. 57-61] If ( � � � �) > 0 then F (�; �; ; 1) = �()�( � � � �)�( � �)�( � �), where�(x) = Z 1o exp(�t)tx� 1 is Euler's Gamma function.If � < 1, from Proposition C we see that the series converges absolutely at z = x2 = 1. FromProposition D, this in turn implies that, �(x)=x will have a �nite value at the endpoint of its domaininterval. Therefore, � � 1. The �nal form for the three parameter GH representation for �(x) istherefore, xF (�; 1=2; 3=2; x2) where � � 1.(ii) 1-parameter GH series:In this case, �(x) = xF (�;�;�; x2) = x Pk�0 (�)k x2kk! = x(1 � x2)� . The situation is much simpler,since we have to place bounds on the value of one parameter alone. An argument almost identical tothe one above, allow us to conclude that for �(x)=x to satisfy the properties of a hyperbolic sigmoid,it is both necessary and su�cient that we take � > 0.Theorem 4.2 Let � : < ! (�1; 1) be a real analytic, odd, strictly increasing sigmoid, such thatits inverse � : (�1; 1) ! < has a GH series expansion in some injective, odd, increasing C1 functiong(�), with at most three parameters, convergent in (�1; 1). Also let �0 have a GH series expansion23



in g(�), with at most one parameter. Then, either�(y) = g(y)F (�; 12; 32; (g(y))2) = g(y) 1Xk=0 (�)k2k + 1 (g(y))2kk! ; for � � 1 (7.23)or, �(y) = g(y)F (�;�;�; (g(y))2) = g(y)(1 � (g(y))2)� ; for � > 0 (7.24)provided limy!1 g0(y)(1 � y2)� ! 1, where g0(�) is the �rst derivative of g(�).Proof: The proof for Theorem 4.2 is very similar to that for Theorem 4.1. If we start with�(x) = g(x)F (�; 1=2; 3=2; (g(x))2), then we can show that:�0(x) = d�dx = g0(x)(1 � x2)� (7.25)where g0(x) is the �rst derivative of g(x). Since g0(x) > 0 for all x 2 Dom(g), and � > 0, it followsthat �0(x) > 0 for all x 2 Dom(�), i.e. �(x) is a strictly increasing function. The analyticity, conti-nuity and oddness of �(�) follow from the respective properties of the GH function. We assure thatlimx!1 �(x) ! 1, by forcing its derivative �0(x) to go to in�nity at the endpoints of its interval.Theorem 5.1 If the inverse sigmoid is given by y=(1 � y2)�, � > 0, then in some neighborhood ofthe origin, we have the valid expansion �(x) = xP1k=0 b2k+1(2k + 1)! x2k where,b2k+1 = (�1)k(2k + 1)! (2k + 1)�k ! (7.26)Proof : We will need the Lagrange inversion formula, stated below [39, pp. 138-141].Consider the functional equation: u = t�(u). Suppose f(u) and �(u) are analytic in some neighbor-hood of the origin (u-plane), with �(0) = 1. Then there is a neighborhood of the origin (in the t-plane) in which the equation u = t�(u) has exactly one root for u. LetPk� 0 aktk be the Maclaurinexpansion of f(u(t)) in t, and Pk� 0 cktk be the Maclaurin expansion of the function f 0(u)[�(u)]n.Then: an = 1ncn�1Here, y � u, x � t, and �(u) = (1 � y2)�. Take f(u) = u � y, and the theorem follows from theLagrange inversion formula.Theorem 5.3: Let �(x) = P1k= 0 b2k+1(2k + 1)! x2k be an expansion for a hyperbolic sigmoid, with aninverse of the form yF (�; 1=2; 3=2; y2), valid in some neighborhood of the origin. Then, b2k = 0 and,b2k+1 = C(2k + 1; k). where we de�ne the sequence C(n; k) as follows:C(1; 0) = 1C(n; k) = 0 8 k � n; k < 0C(n + 1; k) = (2k � n + 1)C(n; k) � 2(n� � k + 1)C(n; k � 1) n � 1 (7.27)24



n and k are natural numbers, Dn(�(x)), the nth derivatives of �, are given by:Dn(y) = Dn(�(x)) = n� 1Xk=0 C(n; k)y2k�n+1(1 � y2)n�� k (7.28)Proof: This theorem was obtained by a process almost identical to that described in Minai andWilliams' work on the derivatives of the logistic sigmoid [26]. We therefore restrict ourselves to anoutline.It is given that y = �(x) = xF (�; 1=2; 3=2;x2), and x = �(y). It can be shown that, D(x) =ddy�(y) = 1=�0(x) = (1 � x2)�. Consider the derivatives of the polynomial fk; l(x) = xk(1 � x2)l,D(fk;l(x)) = ddyfk; l(x) = kxk� 1(1 � x2)�+ l + �2lxk+1(1 � x2)�+ l� 1= (k)fk� 1; �+1(x) + (�2l)fk+1; �+ l� 1(x)= L(fk; l(x)) + R(fk; l(x)) (7.29)In Equation (7.29) we have split the e�ect of the operator D � ddy into the sum of the actionsof two operators L and R (Minai and Williams refer to them as �0 and �1). With respect to thepolynomials fk; l, these operators are de�ned by:L(Afk; l(x)) = Akfk� 1; �+ l(x) (7.30)R(Afk; l(x)) = �2lAfk+1; �+ l�1(x) (7.31)where A is a constant. The main advantage of introducing these operators is that they give asystematic way of visualizing the production of Dn+1(x) from Dn(x). L and R may be thought ofas being applied to a binary tree of expressions, where each node is some polynomial fk; l(x), and theroot is the polynomial f0; � = (1 � x2)�. The action of L on each node of this tree is to produce a leftchild, given by Equation (7.30), and that of R is to produce a right child, given by Equation (7.31).L acting upon fk;l(x) does three things: multiplies it by k (= the degree of x), reduce the degree ofx by 1, and increase the degree of (1 � x2) by �. On the other hand, R increases the degree of x by1, that of (1 � x2) by (� � 1), and multiplies the operand by �2l, where l is the degree of (1 � x2).Figure 7 depicts the process for the �rst four levels. By a detailed study of this \derivative" tree thefollowing observations may be proved:1. The nth level of the tree corresponds to the nth derivative of �(y), Dn(x) = Dn� 1(�(y))= L(Dn� 1(x)) + R(Dn� 1(x)), (the root of the tree is designated n = 1, and D0(fk; l(x)) =fk; l(x)).2. At the nth level, the tree has n nodes, and the kth node (k runs from 0 through n �1), is a polynomial in x, given by C(n; k)f2k�n+1; n��k = C(n; k)x2k�n+1(1 � x2)n�� k,where C(n; k) is a constant. It can be seen that the nth derivatives of � satisfy: Dn(k) =Pn�1k= 0 C(n; k)f2k�n+1; n�� k.3. There are two sources contributing to the value of C(n; k). One is the action of R on the(k � 1)th term, and the other is that of L on the kth term on the (n � 1)th level.25



C(1; 0)f0;�(x)C(2; 0)f�1;2�(x) C(2; 1)f1;2�� 1(x)C(3; 0)f�2;3�(x) C(3; 1)f0;3��1(x) C(3; 2)f2;3�� 2(x)C(4; 3)f3;4��3(x)C(4; 2)f1;4�� 2(x)C(4; 1)f�1;4��1(x)C(4; 0)f�3;4�(x)
n = 1n = 2n = 3n = 4Figure 2: Binary \Derivation" tree for Hyperbolic SigmoidsInduction arguments in conjunction with the above arguments then give:C(1; 0) = 1C(n; k) = 0 8 k � n; k < 0C(n + 1; k) = (2k � n + 1)C(n; k) � 2(n� � k + 1)C(n; k � 1) n � 1 (7.32)Now, all terms in Dn(x), with a x term having positive degree will vanish, when evaluated at x = 0.For even n, all the nodes have an x term with an odd degree, and hence Dn(x) vanishes identicallyat x = 0. For odd n, all terms, excepting the term corresponding to k = (n + 1)=2, vanish atx = 0. Since bn = Dn(x) jx= 0 , it follows that b2k = 0 and b2k+1 = C(2k + 1; k).References[1] F. Albertini, E. Sontag, and V. Maillot. Uniqueness of weights for neural networks. In R. Mam-mone, editor, Arti�cial Neural Networks with Applications in Speech and Vision. Chapman andHall, 1993.[2] A. W. Babister. Transcendental Functions Satisfying Nonhomogeneous Linear Di�erential Equa-tions. Macmillan Co., New York, 1967.[3] E. V. Bohn. The Transform Analysis of Linear Systems. Addison-Wesley, U.S.A, 1963.26
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