
Syracuse University
SURFACE

Electrical Engineering and Computer Science L.C. Smith College of Engineering and Computer
Science

1-1-2005

Polymorphic Self-* Agents for Stigmergic Fault
Mitigation in Large-Scale Real-Time Embedded
Systems
Derek Messie
Syracuse University

Jae C. Oh
Syracuse University, jcoh@syr.edu

Follow this and additional works at: http://surface.syr.edu/eecs
Part of the Computer Sciences Commons

This Conference Document is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE.
It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Messie, Derek and Oh, Jae C., "Polymorphic Self-* Agents for Stigmergic Fault Mitigation in Large-Scale Real-Time Embedded
Systems" (2005). Electrical Engineering and Computer Science. Paper 46.
http://surface.syr.edu/eecs/46

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs/46?utm_source=surface.syr.edu%2Feecs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ar
X

iv
:c

s/
05

08
03

2v
1

 [c
s.

A
I]

 4
 A

ug
 2

00
5

Polymorphic Self-* Agents for Stigmergic Fault Mitigation
in Large-Scale Real-Time Embedded Systems

Derek Messie
Jae C. Oh

Department of Electrical Engineering and Computer Science
Syracuse University

Syracuse, NY 13244 USA

dsmessie@syr.edu, jcoh@ecs.syr.edu

ABSTRACT
Organization and coordination of agents within large-scale,
complex, distributed environments is one of the primary
challenges in the field of multi-agent systems. A lot of in-
terest has surfaced recently around self-* (self-organizing,
self-managing, self-optimizing, self-protecting) agents. This
paper presents polymorphic self-* agents that evolve a core
set of roles and behavior based on environmental cues. The
agents adapt these roles based on the changing demands of
the environment, and are directly implementable in com-
puter systems applications. The design combines strate-
gies from game theory, stigmergy, and other biologically
inspired models to address fault mitigation in large-scale,
real-time, distributed systems. The agents are embedded
within the individual digital signal processors of BTeV, a
High Energy Physics experiment consisting of 2500 such pro-
cessors. Results obtained using a SWARM simulation of the
BTeV environment demonstrate the polymorphic character
of the agents, and show how this design exceeds performance
and reliability metrics obtained from comparable central-
ized, and even traditional decentralized approaches.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, intelligent agents, coherence

and coordination

General Terms
design, experimentation

Keywords
multi-agent systems, self-* agents, polymorphism, stigmergy,
game theory, SWARM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
In the field of multi-agent systems, a lot of attention has

been focused lately on investigating various architectures
and methodologies that promote effective organization and
coordination within large-scale, complex, distributed sys-
tems [9][2]. Specifically, the interest is in developing ap-
proaches that can be implemented within multi-agent sys-
tems to produce some desirable emergent behavior that co-
ordinates individual actors in a system competing for re-
sources such as bandwidth, computing power, and data.

Agent methodologies that exhibit self-* (self-organizing,
self-managing, self-optimizing, self-protecting) attributes are
of particular value [8][16]. This paper introduces polymor-

phic self-* agents that are capable of multiple roles as di-
rected by the environment. These agents evolve an optimum
core set of roles for which they are responsible, while still
possessing the ability to take on alternate roles as environ-
mental demands change. They are directly implementable
in computer systems applications.

The approach is based on stigmergy, a concept that ex-
plains organization and coordination within social insect so-
cieties that rely strictly on environmental cues for indirect
communication between individuals. It is implemented on
BTeV, a particle accelerator-based High Energy Physics ex-
periment currently under development at Fermi National
Accelerator Laboratory. Multiple layers of polymorphic,
very lightweight agents (VLAs) are embedded within 2500
Digital Signal Processors (DSPs) to handle fault mitigation
across the system. The primary challenge is to determine the
frequency at which VLAs should perform specific monitoring
tasks. Results show how polymorphic self-* VLAs evolve in-
dependently to find the optimum rate at which monitoring
and fault mitigation tasks should occur. SWARM multi-
agent simulation software is used to model RTES/BTeV.

This paper is divided into four sections. First, some back-
ground on polymorphism and stigmergy, along with the BTeV
experiment itself is provided. A description of VLAs embed-
ded within Level 1 of the RTES/BTeV environment is pro-
vided, followed by an explanation of current challenges and
other motivating factors. Section 3 then introduces poly-
morphic self-* agents and describes the design in detail. Re-
sults of a SWARM simulation of the RTES/BTeV environ-
ment that implements the polymorphic self-* approach are
then evaluated in Section 4. Finally, next steps and a con-

http://arXiv.org/abs/cs/0508032v1

clusion are provided.

2. BACKGROUND AND MOTIVATION

2.1 Polymorphism and Stigmergy
Concepts of polymorphism and stigmergy are founded in

biology and the study of self-organization within social in-
sects. The term polymorphism is used in describing ants
and other social biological systems, and is defined as the
occurrence of different forms, stages, or types in individual
organisms or in organisms of the same species, independent
of sexual variations [23][15]. Within an individual colony
consisting of ants with the same basic genetic wiring, two
or more castes belonging to the same sex can be found. A
caste here is defined as a differentiated morphological form
with a specialized function, or at least the infrequent relict
of such a form. The function or role that any individual ant
takes on is dictated by cues from the environment [22].

The agents described in detail in section 3 of this paper
adhere to this definition of polymorphism in that they are
genetically identical, yet each evolve distinct roles that they
play as demanded of them through changes in the environ-
ment.

The concept of polymorphic agents presented in this paper
is different from other definitions of polymorphism that have
surfaced in computer science. In object-oriented program-
ming, polymorphism is usually associated with the ability of
objects to override inherited class method implementations
[12]. The term has also arisen in other subareas of computer
science, including some agent designs [1], but generally de-
scribes a templating based system or similar variation of the
object-oriented model. On the other hand, techniques that
attempt to evolve specialized agents are one of the central
themes under investigation in the field of large-scale multi-
agent systems [21].

Stigmergy was introduced by biologist Pierre-Paul Grasse
to describe indirect communication that takes place between
individuals in social insect societies [10]. The theory ex-
plains how organization and coordination of the building of
termite nests is mainly controlled by the nest itself, and not
the individual termite workers involved. It views the process
of emergent cooperation as a result of participants altering
the environment and reacting to the environment as they
pass through it. The canonical example of stigmergy is ants
leaving pheromones in ways that help them find the short-
est, safest distance to food or to build nests. Ant colony
optimization methods alone have had a wide impact on co-
ordination within multi-agent systems, addressing various
adaptive network routing and load balancing problems [4][7].

A stigmergic approach to fault mitigation is introduced
in this paper. Individual agents communicate indirectly
through errors that they find (or do not find) in the environ-
ment. This indirect communication is manifested through
actions that each agent takes as cued by the environment.
Results show how the local actions of agents allow self-*
global behavior to emerge.

2.2 RTES/BTeV
BTeV is a proposed particle accelerator-based HEP exper-

iment currently under development at Fermi National Ac-
celerator Laboratory. The goal is to study charge-parity vio-
lation, mixing, and rare decays of particles known as beauty

and charm hadrons, in order to learn more about matter-
antimatter asymmetries that exist in the universe today [14].

The experiment uses approximately 30 planar silicon pixel
detectors that are connected to specialized field-programmable
gate arrays (FPGAs). The FPGAs are connected to ap-
proximately 2500 digital signal processors (DSPs) that filter
incoming data at the extremely high rate of approximately
1.5 Terabytes per second from a total of 20x106 data chan-
nels. A three tier hierarchical trigger architecture will be
used to handle this high rate [14]. An overview of the BTeV
triggering and data acquisition system is shown in Figure 1,
including a magnified view of the L1 Vertex Trigger respon-
sible for Level 1 filtering consisting of 2500 Worker nodes
(2000 Track Farms and 500 Vertex Farms).

There are many Worker level tasks that the Farmlet VLA
(FVLA) is responsible for monitoring. A traditional hierar-
chical approach would assign one (or more) distinct DSPs
the role of the FVLA, with the responsibility of monitoring
the state of other Worker DSPs on the node [5]. However,
this leaves the system with only very few possible points of
failure before critical tasks are left unattended.

Another approach would be to assign a single redundant
DSP (or more) to each and every Worker DSP, to act as
the FVLA [11]. However, since 2500 Worker DSPs are pro-
jected, this would prove expensive and may still not fully
protect all DSPs given even a low number of system failures.
The events that pass the full set of physics algorithm filters
occur infrequently, and the cost of operating this environ-
ment is high. The extremely large streams of data resulting
from the BTeV environment must be processed real-time
with highly resilient adaptive fault tolerant systems.

2.3 Very Lightweight Agents (VLAs)
Multiple levels of very lightweight agents (VLAs) [19] are

one of the primary components responsible for fault mitiga-
tion across BTeV.

The primary objective of the VLA is to provide the BTeV
environment with a lightweight, adaptive layer of fault mit-
igation. One of the latest phases of work at Syracuse Uni-
versity has involved implementing embedded proactive and
reactive rules to handle specific system failure scenarios.

A scaled prototype of the Level 1 RTES/BTeV environ-
ment was presented at the SuperComputing 2003 (SC2003)
conference [18]. Reactive and proactive VLA rules were in-
tegrated within this Level 1 prototype and served a primary
role in demonstrating the embedded fault tolerant capabili-
ties of the system.

2.4 Challenges
While the SC2003 prototype was effective for demonstrat-

ing the real-time fault mitigation capabilities of VLAs on
limited hardware utilizing 16 DSPs, one of the major chal-
lenges is to find out how the behavior of the various lev-
els of VLAs will scale when implemented across the 2500
DSPs projected for BTeV [13]. In particular, how frequently
should these monitoring tasks be performed to optimize pro-
cessing time, and what affect does this have on other com-
ponents and the overall behavior of a large-scale real-time
embedded system such as BTeV.

Given the number of components and countless fault sce-
narios involved, it is infeasible to design an ‘expert system’
that applies mitigative actions triggered from a central pro-
cessing unit acting on rules capturing every possible system

Figure 1: The BTeV triggering and data acquisition system showing (left side) detector, buffer memories,
L1, L2, L3 clusters and their interconnects and (right side) a magnified figure of the L1 Vertex trigger.

state. Instead, a distributed approach using self-organizing
VLAs accomplishes fault mitigation within the large-scale
real-time RTES/BTeV environment.

2.5 SWARM
SWARM (http://www.swarm.org), distributed under the

GNU General Public License, is software available as a Java
or Objective-C development kit that allows for the multi-
agent simulation of complex systems [3][6]. It consists of a
set of libraries that facilitate implementation of agent-based
models. SWARM has previously been used by the RTES
team in simulations that model the RTES/BTeV environ-
ment [17].

3. POLYMORPHIC SELF-* AGENTS

3.1 Overview
This paper introduces a stigmergic multi-agent systems

approach that uses polymorphic self-* agents to address the
weaknesses inherent in traditional hierarchical fault mitiga-
tion designs. Rather than hard-wiring the assignment of
FVLA roles to specific VLAs embedded within individual
DSPs, VLAs are made polymorphic so that every VLA is
equipped to play the role of FVLA for any DSP on the
same node.

Since the FVLA is responsible for a wide range of moni-
toring tasks, this means that we must build the capability
of performing each task into every Worker Level VLA. The
classic problem this presents in traditional hierarchical ap-
proaches is how to process all of the data necessary for all
of these tasks in time for a useful response [24]. However,
since these agents are polymorphic and evolve roles gradu-
ally over time, there is only a small set of tasks for which
each agent is responsible for at any given point in time.

Stigmergy is used to determine which set of tasks any

given VLA performs. Errors found (or not found) in the en-
vironment by an individual VLA increase (decrease) the sen-
sitivity of that VLA to that particular type of error. Agents
start out by monitoring each type of error at a fixed rate.
Then, based entirely on what is encountered in the environ-
ment, each develops a core set of roles for which it takes
responsibility. For example, a single VLA embedded within
a DSP monitors each particular error at some unique rate.
When an individual VLA performs a monitoring task on
some DSP, it either finds an error and performs mitigative
action, or does not find an error and does nothing. If it
finds an error, it increases its own sensitivity to that type
of error on the corresponding DSP. If it does not find an
error, its sensitivity to the error decreases slightly. Results
show how, over time, this produces an optimal distribution
of monitoring tasks across all VLAs, with each VLA evolving
responsibility for a unique core set of monitoring tasks.

The overall emergent behavior of this design results in
self-organization of FVLA responsibilities based on the state
and workload of all DSPs within the node. A certain set of
VLAs may perform specific FVLA tasks at one moment, and
another set (which may or may not include VLAs from the
original set) can be found performing these same tasks later
in time. The organization occurs automatically within the
system as environmental cues fluctuate. This eliminates the
financial and efficiency costs associated with having special-
ized FVLAs that at times sit idle as Worker DSPs operate
at full capacity and fall behind on event processing. It also
increases the efficiency of Worker DSPs that may be wasting
idle time when crossing processing rates are low. In effect, a
fully connected network of FVLAs is created that continue
to provide effective fault mitigation when exposed to a high
volume of system failures.

There are two key characteristics of this model. The first
is that it requires no central management or global process-

ing. Second, it is optimally reliable since FVLA monitoring
tasks are distributed across all DSPs, and can be adapted
based on changes in the environment. The next section ex-
plains implementation details on how each individual agent
uses only cues from the environment to determine necessary
actions.

3.2 Implementation
As described above, distributed VLAs within Worker level

DSPs are used to accomplish the fault monitoring tasks that
the FVLA is responsible for. However, these are the same
DSPs that are responsible for the critical overall objective
of Level 1 physics application (PA) data filtering [14]. It
is therefore extremely important that DSP usage by each
Worker VLA is minimal, and only occurs either when the
PA is not fully utilizing the DSP, or when critical fault mit-
igative action is required.

Game theory has been applied to a wide range of prob-
lems, and is used here to coordinate the amount of DSP
clock cycle that is allocated between the PA and the VLA.
Both the PA and VLA wish to maximize the number of
clock cycles during which they have control. If the VLA
takes too many DSP cycles, then the PA will be unable to
process the incoming data at a high enough rate to prevent
the buffers from overflowing, resulting in a loss of data con-
tinuity. This is often fatal for the experiment since this lost
data could very well contain portions of vital characteristics
of the physics properties being evaluated. If on the other
hand, the PA takes too many DSP cycles, then it runs the
risk that system faults will go undetected, resulting in accep-
tance of corrupt data, and/or incremental bottlenecks that
again cause buffer overflows.

An efficient adaptive scheduling algorithm is required that
will effectively establish scheduling priorities between the
PA and VLA. Mandatory costs associated with the Ker-
nel/Command Processor, including clock cycle costs for con-
text switching must be factored in. An analysis of the worst-
case behavior of tasks (both VLA and PA) can be done to
determine the amount of time that must be allotted to each
process. However, there must be a way for the system to
adaptively modify these values when environmental condi-
tions change. That is, if during every interval T, the HEP
applications and the operating system use TPA and TOS

time units, respectively, then the VLA will be allowed to
use T – TPA – TOS every T time units [19].

An analysis of best-case behavior of tasks (VLA and PA)
requires the use of a utility value in order for each DSP
to determine locally precisely when the PA or VLA should
relinquish control [20]. A reward system based on a com-
bination of the amount of data processed, along with the
frequency of VLA maintenance checks, is used by each DSP
for each error in calculating the following local utility value :

DSP Utility Value = Dw−1 + cF−1 , where

D = Expected amount of data that DSP could process
during a given time interval (T).

w = Current data buffer watermark.
F = Total number of clock cycles elapsed since last

FVLA check on neighboring DSPs.
c = Adaptive constant representing weight to place on

FVLA checks.

Since the amount of data that any single DSP can process
(D) over a given time interval is mostly fixed, the utility
value essentially involves summing the inverse of the current
data buffer watermark (w−1) with a weighted value for the
inverse of the time elapsed since individual FVLA tasks were
last performed (F−1).

The task currently active (PA or VLA) calculates the op-
timum expected utility value for the DSP at a time interval
based on the criticality of each error. If the active process
determines that a higher DSP utility value is received by re-
maining active, then the active task will continue. However,
if a higher utility value can be gained by passing control
to the currently inactive process, then that is what does.
For example, if the PA is currently active, the input data
buffer for a given DSP is low, and FVLA monitoring respon-
sibilities for a specific error have not been performed on a
particular DSP in a long time, then the VLA task will be
made active. If however, the VLA was currently active under
these conditions, then the VLA would simply maintain con-
trol for another T time steps, at which time corresponding
utility values would again be calculated. This is equivalent
to determining :

max(w, 2 × ((1 / (1 + e−dF)) - .5)

the maximum value of either w or 2 × ((sigmoid function
value for F) - .5). Here, 2 × ((1 / (1 +e−dF)) - .5) is
an adjusted sigmoid function for F which represent F as a
weighted value between 0 and 1.

It is important to note here that the value assigned to d

determines the steepness of the sigmoid function, and hence
the sensitivity of the agent to a given error. In other words,
the higher the value of d, the higher the adjusted sigmoid
value of F, and the higher the sensitivity (the frequency of
checks) of the VLA to a particular error.

This is where the polymorphic behavior of the VLA is in-
troduced. Any time that an individual VLA finds a specific
error while performing FVLA monitoring tasks, the d value
for that error on that particular node is increased. Any time
that an individual VLA performs a monitoring task and does
not find an error, the d value is slightly decreased.

A high value for F means that FVLA tasks are performed
more frequently (high sensitivity), whereas a low value for F
means they are performed less often (low sensitivity). The
PA is passed (or maintains) control if w is higher than this
adjusted sigmoid function value for F, otherwise the VLA is
passed (maintains) control. For example, if the PA is cur-
rently active, the input data buffer watermark for a given
DSP is about half full (w=.5), and FVLA functions have re-
cently been performed (the adjusted sigmoid function value
for F is, say, .15) then the PA will remain active.

4. RESULTS
SWARM simulates Farmlet data buffer queues that are

populated at a rate consistent with the behavior of the in-
coming physics crossing data. Each DSP within a given
Farmlet processes a fixed amount of data at each discrete
time step. Three distinct types of errors are introduced ran-
domly within each Worker DSP at a variable rate using a
Multiply With Carry (RWC8gen) random number genera-
tor with a fixed seed. Any time a software or hardware
error is encountered within the simulation, the processing
rate for that DSP decreases a set amount depending on the

Figure 2: The VLA d-value (sensitivity) for 3 distinct error types (e1, e2, e3) being monitored on DSP1.
Each of the 5 graphs represent the d-value adapted over time by each of the remaining 5 DSPs (DSP2 -
DSP6) on the same Farmlet. The simulation fluctuated the error rate between a moderate rate (5 x 10−4)
for the first 35000 time steps, a low rate (5 x 10−6) for the next 35000 time steps (35001 - 70000), and a high
rate (5 x 10−3) for the last 30000 time steps (70000 - 100000).

type of error. The error is cleared when any DSP within
the same Farmlet performs FVLA checks against the DSP
for the error type present. However, there is a time cost
associated with performing these checks. As detailed in the
section above describing the self-organizing model, the DSP
must decide whether or not it is worth taking time to per-
form FVLA monitoring tasks against neighboring DSPs. If
checks are performed too frequently, then the time available
for data crossing processing is limited. On the other hand, if
they are not performed frequently enough, then the chance
that other DSPs within the same Farmlet are experiencing
errors is high. As described, a high error rate will also lead
to slow processing rates.

The formula designed for these experiments calculates the
frequency of performing FVLA tasks for neighboring DSPs
as a sigmoid function adjusted to a value between 0.0 and
1.0. The fullness of the crossing data buffer queue is also
a value between 0.0 and 1.0 representing the data water-
mark percentage. These two values are weighed against each
other, and the DSP makes a decision on where to devote its
energy as described in detail in the last section.

The decision of whether the VLA or PA has control of the
DSP is made by each DSP at each time step in the SWARM
simulation. In this way, the monitoring tasks required by the

environment are always met, but not necessarily by one (or
a few) designated DSPs. Instead, these tasks are performed
by any polymorphic DSP within the Farmlet as dictated by
the changing needs of the environment.

The DSPs themselves self-organize as different DSPs within
the Farmlet take on the necessary monitoring tasks at dif-
ferent points in time as required by the environment. If a
DSP performs FVLA monitoring tasks for a given type of
error on a neighboring DSP, it will either determine that the
error is not present, or it will find the error and perform the
designated mitigative actions. In the case where an error
is found, the d-value for that particular error on the spe-
cific DSP is increased. As described in detail earlier, this
essentially increases the sensitivity of the VLA for this type
of error. On the other hand, if no error is found, then the
d-value (sensitivity) is slightly decreased.

As detailed next, Figure 2 shows how the local action per-
formed by each VLA over a short period of time results in
VLAs evolving responsibility for a core set of fault monitor-
ing tasks. Over the 100000 time steps for which the SWARM
simulation is run, the 5 VLAs (1 per DSP) can be seen tak-
ing on distinct roles that lead to an efficient global fault
mitigation strategy for monitoring errors on DSP1. These
roles are evolved using local information only, and rely on

Figure 3: Average number of crossings pro-
cessed per DSP resulting from the stigmergic ap-
proach using polymorphic agents(adaptive), com-
pared against the same simulation using a fixed mon-
itoring rate (d-value fixed at .01).

stigmergy within the environment for indirect coordination
with other VLAs.

The simulation fluctuates the error rate at various inter-
vals in order to demonstrate the affect changes in error rate
can have on polymorphic behavior. A moderate error rate (5
x 10−4) is used for the first 35000 time steps, a low error rate
(5 x 10 −6) for the next 35000 time steps (35001-70000), and
the last 30000 time steps (70001-100000) use a high rate (5 x
10 −3). Figure 2 shows how all of the VLAs are able to adjust
sensitivity to errors on DSP1 based on these fluctuating er-
ror rates over time. For example, the d-value (sensitivity) to
individual errors on DSP1 for all 5 VLAs (embedded within
DSP2 - DSP6) can be seen dropping beginning around time
step 35000, and then increasing dramatically again at time
step 70000 in reaction to the significant increase in error
rate.

Polymorphism is demonstrated clearly in Figure 2 which
displays the VLA d-value (sensitivity) for 3 distinct error
types being monitored on DSP1 within a single Farmlet.
The d-values evolved by each of the VLAs within the 5 DSPs
(DSP2-DSP6) monitoring DSP1 within the same Farmlet
are shown. When the error rate is high (from time steps
70000-100000), the VLAs embedded within DSP3 and DSP6
develop a high sensitivity for error type 1 (e1), while the
sensitivity for e1 of the VLAs in the remaining DSPs remains
low. Similarly, the VLAs on DSP2 and DSP5 have a high
sensitivity for error type 2 (e2), and VLAs for DSP2 and
DSP3 are highly sensitive to e3.

The moderate error rate used for the first 35000 time
steps reveals additional polymorphic characteristics of this
approach. Here, the error rate is not quite high enough for
any single VLA to evolve long term responsibility for an
individual error type on DSP1. Instead, 1 or 2 VLAs can
be seen monitoring a single error type at one moment, and
then a separate VLA (or group of VLAs) can be seen mon-
itoring the same error type a short time later. This is due
to the fact that the error rate is too low to stimulate high
sensitivity in a single VLA. Sensitivity for the error type
drops to a level comparable with other available VLAs on
the Farmlet. For example, the VLAs on DSP 3 and DSP

4 develop a modest level of sensitivity for e1 early on (time
steps 0-15000), but the role is taken over by VLAs on DSP
5 (time steps 15000-28000) and later DSP6 (28000-35000).

Figure 3 shows the average data processing rate per DSP
for the stigmergic approach using polymorphic agents, as
compared to the same simulation using a fixed monitoring
rate (d-value fixed at .01) for each agent. The polymorphic
agents in the stigmergic approach adapt an optimum mon-
itoring rate for each error based strictly on the demands of
the environment at any given time. This results in a higher
number of crossings processed since, as described in detail
earlier, less time is wasted performing needless monitoring
tasks or missing critical errors.

5. NEXT STEPS
The next phase of this project will expand the number of

different types of errors handled, along with the amount of
fluctuation in error rates. It will also focus further on how
sensitivity (d-value) is adapted for each VLA. Currently, a
rudimentary method is used that slightly increases (or de-
creases) sensitivity based on the presence (or absense) of an
error. Other variables could be considered in determining
the amount of change to apply, such as factoring in the sever-
ity level of the error, or looking at the consequences of other
recently taken actions. An enhanced evaluation methodol-
ogy to better demonstrate the performance advantage of this
approach as compared to other traditional methodologies is
also necessary.

Another issue being investigated is how to handle com-
munication between agents when one agent has informa-
tion that may be relevant to other agents, but it does not
know to which other agent the information is relevant. This
is a problem encountered in many large-scale multi-agent
systems [21], and is especially an issue in fault mitigation
where trends in information received across agents can pro-
vide valuable warning signs.

At the same time, another scaled prototype of the actual
projected RTES/BTeV software and hardware environment
based on the SC2003 demonstration system is also being
developed, and will integrate the VLA self-* model. This
prototype will be presented at the 2nd Workshop on High-
Performance Fault-Adaptive Large-Scale Embedded Real-
Time Systems (FALSE-II) in the IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS05).

6. CONCLUSION
This paper has described a fully distributed stigmergic

approach to fault mitigation in large-scale real-time sys-
tems using lightweight, polymorphic, self-* agents embed-
ded within individual DSPs. Stigmergy facilitates indirect
communication and coordination between agents using cues
from the environment, and concepts from game theory and
polymorphism allow individual agents to evolve a core set
of roles for which it is responsible. Agents adapt these roles
as environmental demands change. The approach is imple-
mented on a SWARM simulation of BTeV, a High Energy
Physics experiment consisting of 2500 DSPs.

Results demonstrate the polymorphic nature of the agents,
and display the performance and reliability advantages of
this approach. The next phase of this project will increase
the number of possible error types, and add more fluctuation

to individual error rates.More sophisticated ways of adapt-
ing error sensitivity among agents will also be investigated,
along with more elaborate performance evaluation metrics.

7. ACKNOWLEDGEMENTS
The research conducted was sponsored by the National

Science Foundation in conjunction with Fermi National Lab-
oratories, under the BTeV Project, and in association with
RTES, the Real-time, Embedded Systems Group. This work
has been performed under NSF grant # ACI-0121658.

8. REFERENCES
[1] B. Barbat and C. Zamfirescu. Polymorphic Agents for

Modelling E-Business Users. International NAISO
Congress on Information Science Innovations,
Symposium on E-Business and Beyond (EBB), Dubai,
2000.

[2] F. Brazier, D. Mobach, B. Overeinder, and
N. Wijngaards. Supporting life cycle coordination in
open agent systems, 2002.

[3] R. Burkhart. Schedules of Activity in the SWARM
Simulation System. Position Paper for OOPSLA
Workshop on OO Behavioral Semantics, 1997.

[4] G. D. Caro and M. Dorigo. Ant Colonies for Adaptive
Routing in Packet-Switched Communications
Networks. Lecture Notes in Computer Science,
1498:673–683, 1998.

[5] F. Cristian. Abstractions for fault-tolerance. In
K. Duncan and K. Krueger, editors, Proceedings of the

IFIP 13th World Computer Congress. Volume 3 :

Linkage and Developing Countries, pages 278–286,
Amsterdam, The Netherlands, 1994. Elsevier Science
Publishers.

[6] M. Daniels. An Open Framework for Agent-based
Modeling. Applications of Multi-Agent Systems in
Defense Analysis, a workshop held at Los Alamos
Labs, April 2000.

[7] M. Dorigo and T. Stotzle. Ant Colony Optimization.
Bradford Books (MIT Press), 2004.

[8] J. Dowling, R. Cunningham, E. Curran, and
V. Cahill. Component and system-wide self-*
properties in decentralized distributed systems.
Self-Star: International Workshop on Self-* Properties
in Complex Information Systems, University of
Bologna, Italy, May 31 - June 2 2004.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next century challenges: Scalable coordination in
sensor networks. In Mobile Computing and

Networking, pages 263–270, 1999.

[10] P. P. Grassé. La reconstruction du nid et les
coordinations inter-individuelles chez Bellicosi-termes
natalensis et Cubitermes sp. La theorie de la
stigmergie: Essai d’interpretation des termites
constructeurs. Insectes Sociaux, 6:pages 41–83, 1959.

[11] W. Heimerdinger and C. Weinstock. A conceptual
framework for system fault tolerance. Software
engineering institute, carnegie mellon university,
cmu/sei-92-tr-33, esc-tr-92-033, October, 1992.

[12] N. M. Josuttis. Object Oriented Programming in

C++. John Wiley & Sons; 1st edition, 2002.

[13] J. Kowalkowski. Understanding and Coping with
Hardware and Software Failures in a Very Large

Trigger Farm. Conference for Computing in High
Energy and Nuclear Physics (CHEP), March 2003.

[14] S. Kwan. The BTeV Pixel Detector and Trigger
System. FERMILAB-Conf-02/313, December 2002.

[15] J. H. Law, W. O. Wilson, and J. McCloskey.
Biochemical Polymorphism in Ants. Science,
149:pages 544–6, July 1965.

[16] Z. Li, H. Liu, and M. Parashar. Enabling autonomic,
self-managing grid applications.

[17] D. Messie and J. Oh. SWARM Simulation of
Multi-Agent Fault Mitigation in Large-Scale,
Real-Time Embedded Systems. High Performance
Computing and Simulation (HPC&S) Conference,
Magdeburg, Germany, June 2004.

[18] D. Messie et al. Prototype of Fault Adaptive
Embedded Software for Large-Scale Real-Time
Systems. 2nd Workshop on Engineering of Autonomic
Systems (EASe), in the 12th Annual IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS),
Washington, DC USA, April 2005.

[19] J. Oh, D. Mosse, and S. Tamhankar. Design of Very
Lightweight Agents for Reactive Embedded Systems.
IEEE Conference on the Engineering of Computer
Based Systems (ECBS), Huntsville, Alabama, April
2003.

[20] A. Rapoport and R. Zwick. Game Theory. In A.E.
Kazdin, Encyclopedia of Psychology (pp. 424-426).
New York: Oxford University Press, 2000.

[21] P. Scerri, R. Vincent, and R. Mailler. Comparing
Three Approaches to Large Scale Coordination.
Proceedings of the First Workshop on the Challenges
in the Coordination of Large Scale Multi-agent
Systems, in the 3rd International Joint Conference on
Autonmous Agents and Multi-Agent Systems
(AAMAS), New York, NY USA, July 2004.

[22] D. E. Wheeler. Developmental and Physiological
Determinants of Caste in Social Hymenoptera:
Evolutionary Implications. American Naturalist,
128:pages 13–34, 1986.

[23] E. O. Wilson. The Origin and Evolution of
Polymorphism in Ants. Quarterly Review of Biology,
28:pages 136–156, 1953.

[24] M. Wooldridge and
N. R. Jennings. Intelligent agents: Theory and practice.
HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-
html.h (Hypertext version of Knowledge Engineering
Review paper), 1994.

	Syracuse University
	SURFACE
	1-1-2005

	Polymorphic Self-* Agents for Stigmergic Fault Mitigation in Large-Scale Real-Time Embedded Systems
	Derek Messie
	Jae C. Oh
	Recommended Citation

	Introduction
	Background and Motivation
	Polymorphism and Stigmergy
	RTES/BTeV
	Very Lightweight Agents (VLAs)
	Challenges
	SWARM

	Polymorphic Self-* Agents
	Overview
	Implementation

	Results
	Next Steps
	Conclusion
	Acknowledgements
	References

