
NPAC Technical Report SCCS{636, Sept. 1994

Also available as CRPC Technical Report CRPC{TR94483{S

PASSION: Parallel And Scalable Software for Input-Output
�

Alok Choudhary Rajesh Bordawekar Michael Harry Rakesh Krishnaiyer

Ravi Ponnusamy Tarvinder Singh Rajeev Thakur

ECE Dept., NPAC and CASE Center,

Syracuse University, Syracuse, NY 13244

choudhar, rajesh, mharry, rakesh, ravi, tpsingh, thakur @npac.syr.edu

Abstract

We are developing a software system called PASSION: Parallel And Scalable Software for Input-

Output which provides software support for high performance parallel I/O. PASSION provides support
at the language, compiler, runtime as well as �le system level. PASSION provides runtime procedures

for parallel access to �les (read/write), as well as for out-of-core computations. These routines can either

be used together with a compiler to translate out-of-core data parallel programs written in a language

like HPF, or used directly by application programmers. A number of optimizations such as Two-Phase

Access, Data Sieving, Data Prefetching and Data Reuse have been incorporated in the PASSION Runtime

Library for improved performance. PASSION also provides an initial framework for runtime support for
out-of-core irregular problems. The goal of the PASSION compiler is to automatically translate out-

of-core data parallel programs to node programs for distributed memory machines, with calls to the

PASSION Runtime Library. At the language level, PASSION suggests extensions to HPF for out-of-core
programs. At the �le system level, PASSION provides support for bu�ering and prefetching data from

disks. A portable parallel �le system is also being developed as part of this project, which can be used

across homogeneous or heterogeneous networks of workstations. PASSION also provides support for
integrating data and task parallelism using parallel I/O techniques.

We have used PASSION to implement a number of out-of-core applications such as a Laplace's

equation solver, 2D FFT, Matrix Multiplication, LU Decomposition, image processing applications as

well as unstructured mesh kernels in molecular dynamics and computational
uid dynamics. We are

currently in the process of using PASSION in applications in CFD (3D turbulent
ows), molecular

structure calculations, seismic computations, and earth and space science applications such as Four-
Dimensional Data Assimilation. PASSION is currently available on the Intel Paragon, Touchstone Delta

and iPSC/860. E�orts are underway to port it to the IBM SP-1 and SP-2 using the Vesta Parallel File

System.

�This work was supported in part by NSF Young Investigator Award CCR-9357840, grants from Intel SSD and IBM Corp.,

in part by USRA CESDIS Contract # 5555-26 and also in part by ARPA under contract # DABT63-91-C-0028. The content

of the information does not necessarily re
ect the position or the policy of the US Government and no o�cial endorsement

should be inferred. Rajeev Thakur is supported by a Syracuse University Graduate Fellowship. Michael Harry is supported by

an ARPA Assert Fellowship. Rakesh Krishnaiyer is supported by the CASE Center, a NY State Advance Technology Center.

This work was performed in part using the Intel Touchstone Delta and Paragon Systems operated by Caltech on behalf of the

Concurrent Supercomputing Consortium. Access to this facility was provided by CRPC. This work was also performed in part

using the Intel iPSC/860 and IBM SP-1/SP-2 at NPAC, the IBM SP-1 at Argonne National Laboratory and the Intel Paragon

at the Jet Propulsion Laboratory.

Contents

1 Introduction 1

2 PASSION Overview 1

3 Parallel Access to Files 3

3.1 Two-Phase Access Strategy : 3

3.2 PASSION Routines for Accessing Files : 3

4 Out-of-Core Computations 4

4.1 Models : 4

4.1.1 Architectural Model : 4

4.1.2 Data Storage and Access Models : 5

4.2 Runtime Support : 5

4.2.1 Out-of-Core Runtime Library : 7

4.3 Runtime Support for Out-of-Core Structured Problems : 7

4.3.1 Performance Results : 8

4.4 Runtime Support for Out-of-Core Unstructured Problems : 9

4.4.1 Data/Indirection Array Partitioning : 10

4.4.2 Pre-Processing : 11

4.4.3 Computation : 11

4.4.4 Performance Results : 11

4.5 Optimizations : 13

4.5.1 Data Sieving : 13

4.5.2 Data Prefetching : 18

4.5.3 Data Reuse : 19

5 Compiler Support 20

5.1 Language Support : 22

6 File System Support 24

6.1 Performance Results for prefetching : 25

7 VIP-FS: A VIrtual Parallel File System 26

7.1 Functional Description : 26

7.1.1 PFI: The Parallel File Interface : 26

7.1.2 LDI: The Local Device Interface : 26

7.2 I/O Subsystem : 27

8 Parallel I/O for Integrating Task and Data Parallelism 28

8.1 Shared File Model - SFM : 29

8.2 Multiple File Model (MFM) : 30

9 Related Work 30

10 Conclusions 30

11 PASSION Related Papers 31

Acknowledgments 31

References 32

1 Introduction

I/O for parallel systems has drawn increasing attention in the last few years as it has become apparent that

I/O performance rather than CPU or communication performance may be the limiting factor in future com-

puting systems. A large number of applications in diverse areas such as large scale scienti�c computations,

database and information processing, hypertext and multimedia systems, information retrieval etc. require

processing very large quantities of data. For example, a typical Grand Challenge Application at present

could require 1Gbyte to 4Tbytes of data per run [dRC94]. These �gures are expected to increase by orders

of magnitude as tera
op machines make their appearance. Although supercomputers have very large main

memories, the memory is not large enough to hold this much amount of data. Hence, data needs to be stored

on disk and the performance of the program depends on how fast the processors can access data from disks.

Unfortunately, the performance of the I/O subsystems of MPPs has not kept pace with their processing

and communications capabilities. A poor I/O capability can severely degrade the performance of the entire

program. The need for high performance I/O is so signi�cant that almost all the present generation parallel

computers such as the Paragon, iPSC/860, Touchstone Delta, CM-5, SP-2, nCUBE2 etc. provide some kind

of hardware and software support for parallel I/O [CFPB93, Pie89, DdR92].

At Syracuse University, we are investigating the I/O problem from a software perspective, including

languages, compilers, runtime support and �le system optimizations. The overall project is called PASSION

which stands forParallelAnd Scalable Software for Input-Output. PASSION provides support for compiling

out-of-core data parallel programs [TBC94a, BCT94], parallel input-output of data and parallel access to

�les [BdRC93], communication of out-of-core data, redistribution of data stored on disks, many optimizations

including Data Prefetching from disks, Data Sieving, Data Reuse etc., as well as support at the �le system

level. We have also developed an initial framework for runtime support for out-of-core irregular problems.

This report gives an overview of the design and implementation of the various components of PASSION.

2 PASSION Overview

PASSION provides software support for I/O intensive loosely synchronous problems [FWM94]. It has a

layered approach and provides support at the compiler, runtime support and �le system levels as shown in

Figure 1. The various components of PASSION are brie
y explained below and described in more detail in

later sections. Further details may be obtained from papers and reports listed in Section 11.

1. Parallel Access to Files: PASSION provides support for parallel access to �les for read/write oper-

ations, supports distribution of data on parallel �le systems as well as distribution and redistribution

of data among the processors of a distributed memory machine. It uses the Two-Phase Access Strat-

egy [dRBC93, BdRC93] for this purpose. Section 3 describes this work in further detail.

2. Out-of-Core Computations:Out-of-Core Computations are those in which the primary data struc-

tures are too large to �t in main memory and hence reside on disks. PASSION provides runtime,

compiler and language support for these computations. Section 4 describes this work in further detail.

3. File System Optimizations: One of the key components of PASSION is to use the access pattern

knowledge extracted from the program and provided by the compiler and runtime system to the

�le system, so that certain optimizations can be performed. These optimizations include e�cient

management and allocation of caches and bu�ers, scheduling of I/O accesses to disks and prefetching

from disks based on the access patterns. Figure 2 shows how information is passed from the program

to the compiler, from the compiler to the runtime system and from the compiler to the �le system.

Section 6 describes this work in further detail.

4. VIP-FS Portable Parallel File System: VIP-FS provides a portable parallel �le system in a dis-

tributed computing environment. The �le system is deemed a virtual �le system because it is im-

plemented using multiple individual standard �le systems integrated by a message passing system.

VIP-FS is portable across many architectures as well as many message passing systems and is designed

to work in a heterogeneous environment. Section 7 describes this work in further detail.

1

Loosely Synchronous Computations

Compiler Support for HPF Directives
Support for prefetching etc.

Two-Phase Access Manager

Prefetch Manager

Compiler & Runtime Support

I/O Intensive OOC Applications

I/O Controller
and

Disk Subsystem

Manager
Cache and Buffer

Figure 1: PASSION Rings

User Specified
Access Info

Static Access
Info

Dynamic Access
Pattern

Use Info in Access

and Management

Experience

Static
Interface

Set up

Interface

PROG LANGUAGE

COMPILER

RUNTIME SYS

I/O + FILE SYS

Figure 2: Information Flow in PASSION

2

5. Integrating Task and Data Parallelism Using Parallel I/O: This component deals with provid-

ing a \parallel pipes" mechanism for communication among data parallel tasks. Since data distributions

in two data parallel tasks may be di�erent and may not be known in advance, this component provides a

way to perform communication in parallel while hiding the individual distributions, and redistributing

the data if needed. Section 8 describes this work in further detail.

3 Parallel Access to Files

Many applications require accessing large arrays from disks and distributing them among the processors in

some fashion. In order to obtain better I/O performance, data is usually stored in a parallel �le system

in which the �le is striped across a number of disks. This enables the �le to be read in parallel by many

processors. The performance of parallel read and write operations depends to a large extent on the way

data is distributed on disks and processors. Data distribution on disks depends the data striping method

and �le storage order (row-major or column-major). The data distribution on the processors is said to be

a conforming distribution if it results in accessing consecutive data blocks from �les. It has been observed

that I/O performance is very good in the case of conforming distributions. Other data distributions give

much lower performance. To alleviate this problem, the Two Phase Access Strategy has been proposed

in [Bor93, BdRC93, dRBC93]. This strategy is an alternative to accessing data directly according to the

data distribution (called Direct Access Strategy).

3.1 Two-Phase Access Strategy

In the Two Phase Approach, data is �rst read in a manner conforming to the distribution on disks and

then redistributed among the processors to obtain the target distribution. The data access cost can be now

computed as a sum of �le access cost and data redistribution cost. The �le access cost for a conforming

distribution is �xed for a particular machine and programming language. Since the redistribution cost is

very small as compared to the �le access cost, the cost of accessing data becomes independent of the data

distribution on the disks. This is found to give consistently good performance for all distributions [Bor93,

BdRC93, dRBC93]. The Two-Phase Approach provides the following advantages over the conventional

Direct Access Method:-

1. The distribution of data on disks is e�ectively hidden from the user.

2. It uses the higher bandwidth of the interconnection network.

3. It uses collective communication and collective I/O operations.

4. It provides software caching of the out-of-core data in main memory to exploit temporal and spatial

locality.

5. It aggregates I/O requests of compute nodes so that only one copy of each data item is transferred

between disk and main memory.

Figure 3 shows the performance for reading a 10K � 10K array on the Intel Touchstone Delta using

64 processors. For Fortran programs the column-block distribution is the conforming distribution, so for

this distribution the Two-Phase and Direct Access Methods take the same time. For all other distributions,

data is �rst accessed assuming a column block distribution and then redistributed to obtain the target

distribution. This approach gives considerable better performance than accessing data using the Direct

Access Method.

3.2 PASSION Routines for Accessing Files

PASSION provides runtime routines for reading/writing data from parallel �les for any kind of data distri-

bution. The Two-Phase Access Strategy is used for this purpose. These routines can be called from an HPF

or Fortran 77 program. PASSION also provides a set of auxiliary routines which store information in data

structures about distributed arrays, data �les, processor con�guration etc. This information is then used by

the �le access routines. Some of the �le access and auxiliary routines are listed in Table 1.

3

Column Column Row Row
Block Cyclic Block Cyclic

Two-Phase Access Time
Direct Access Time

40

60

80

100

20

ms

10K*10K Array, 64 Processors on the Touchstone Delta

Figure 3: Two-Phase v/s Direct Access Method

Table 1: PASSION Routines for Parallel File Access
Auxiliary Routines

PASSION Routine Function

1 PASSION array map Store information about distributed arrays

2 PASSION �le map Store information about �les

3 PASSION proc map Store information about the processor con�guration

File Access Routines

PASSION Routine Function

1 PASSION read Read a distributed array from �le

2 PASSION write Write a distributed array to �le

4 Out-of-Core Computations

4.1 Models

This section discusses the architectural, programming and data storage models used by PASSION for out-

of-core computations.

4.1.1 Architectural Model

An important goal in the design of PASSION has been to make it architecture independent as far as

possible. The architectural model assumed by PASSION is that of any general distributed memory computer

in which the processors are connected together in some fashion. The system is assumed to be provided with

a set of disks and I/O nodes. The I/O nodes can either be dedicated processors or some of the compute

nodes may also serve as I/O nodes. Each processor may either have its own local disk or all processors

may share the set of disks. The I/O subsystem may have a separate interconnection network or it can

share the same network which connects the processors together. The I/O routines in PASSION have been

implemented using the native parallel �le system calls provided on the machine. Hence PASSION can be

easily ported to di�erent machines by modifying only a few of its routines, mainly those which perform I/O

and communication. PASSION is currently available on the entire family of Intel computers, namely the

Touchstone Delta, Paragon and iPSC/860 using the Concurrent File System (CFS) and e�orts are underway

4

to port it to the IBM SP-1 and SP-2 using the Vesta Parallel File System and the VIP-FS File System

(Section 7).

4.1.2 Data Storage and Access Models

Since PASSION is used in programs having large arrays which do not �t in main memory, the arrays have

to stored on disks in some fashion. PASSION supports three basic models of storing and accessing arrays,

called the Local Placement Model (LPM), the Global Placement Model (GPM) and the Partitioned-Incore
Model (PIM). The PASSION runtime system automatically handles the input-output of data for each of

these models, transparent to the user.

Local Placement Model (LPM): In this model, the global array is divided into local arrays belonging

to each processor. Since the local arrays are out-of-core, they have to be stored in �les on disk. The local

array of each processor is stored in a separate �le called the Local Array File (LAF) of that processor as

shown in Figure 4(I). The node program explicitly reads from and writes into the �le when required. The

simplest way to view this model is to think of each processor as having another level of memory which is

much slower than main memory. If the I/O architecture of the system is such that each processor has its own

disk, the LAF of each processor will be stored on the disk attached to that processor. If there is a common

set of disks for all processors, the LAF will be distributed across one or more of these disks. In other words,

we assume that each processor has its own logical disk with the LAF stored on that disk. The mapping of

the logical disk to the physical disks is system dependent. At any time, only a portion of the local array is

fetched and stored in main memory. The size of this portion depends on the amount of memory available.

The portion of the local array which is in main memory is called the In-Core Local Array (ICLA). All

computations are performed on the data in the ICLA. Thus, during the course of the program, parts of the

LAF are fetched into the ICLA, the new values are computed and the ICLA is stored back into appropriate

locations in the LAF.

Global Placement Model (GPM): In this model, the global array is stored in a single �le called the

Global Array File (GAF) as shown in Figure 4(II) and no local array �les are created. The global array

is only logically divided into local arrays in keeping with the SPMD programming model. But, there is a

single global array on disk. The PASSION runtime system automatically fetches the appropriate portion of

each processor's local array from the global array �le. The advantage of the Global Placement Model is that

it saves the initial local array �le creation phase in the local array model. The disadvantage is that each

processor's data may not be stored contiguously in the GAF, resulting in higher I/O latency time. Also,

explicit synchronization is required when a processor needs to access data belonging to another processor.

Partitioned-Incore Model (PIM): The Partitioned-Incore Model illustrated in Figure 4(III) is a vari-

ation of the Global Placement Model. The array is stored in a single global array �le as in the Global

Placement Model, but there is a di�erence in the way data is accessed. In the Partitioned-Incore Model, the

global array is logically divided into a number of partitions, each of which can �t in the main memory of

all processors combined. Thus the computation on each partition is essentially an in-core problem and no

I/O is required during the computation on the partition. Hence the name Partitioned-Incore Model. The

reading of each partition and its in-core distribution among processors is done by the PASSION runtime

system using the Two-Phase Data Access Method [BdRC93, dRBC93]. This model is useful when the data

access pattern in the program has good locality. Otherwise, creating in-core partitions itself is di�cult.

4.2 Runtime Support

In out-of-core computations, data needs to be moved back and forth between main memory and disks. Also,

since the global array is distributed, a processor may need data from the local array of another processor.

This requires data to be communicated between processors. Thus, runtime support is needed to perform

I/O as well as communication. The PASSION Runtime Library for out-of-core computations consists of a

set of high level specialized routines for parallel I/O and collective communication. These routines are built

using the native communication and I/O primitives of the system and provide a high level abstraction which

5

DisksDisks

Local array Local array
 Files Files

P3P2

P0 P1

Processors

(I) Local Placement Model

Global Array

To P1

To P3To P2

To P0

Out-of-core Distribution

Global Array

To P1

To P3To P2

To P0

Out-of-core Distribution

P3P2

P0 P1

Processors

Disk 0

Disk 1

Disk 2

Disk 3

N

E

T

O

R
K

W

I/O Nodes

(II) Global Placement Model

To P0 To P1

To P3To P2

In-core Distribution

Partitions

Slab

Global File

Global Array

(III) Partitioned In-core Model

Figure 4: Data Storage Models

6

Table 2: Some of the PASSION Routines for Out-of-core Computations

Array Management Routines

PASSION Routine Function

1 PASSION read section Read a regular section from LAF to ICLA

2 PASSION write section Write a regular section from ICLA to LAF

3 PASSION read with reuse read section with data reuse [TBC94a]

4 PASSION prefetch read Asynchronous (non-blocking) read of a regular section

5 PASSION prefetch wait Wait for a prefetch to complete

Communication Routines

PASSION Routine Function

6 PASSION oc shift Shift type collective communication on out-of-core data

7 PASSION oc multicast Multicast communication on out-of-core data

Mapping Routines

PASSION Routine Function

8 PASSION oc disk map Map disks to processors

9 PASSION oc �le map Generate local �les from global �les

Generic Routines

PASSION Routine Function

10 PASSION oc transpose Transpose an out-of-core array

11 PASSION oc matmul Perform out-of-core matrix multiplication

avoids the inconvenience of working directly with the lower layers. For example, the routines hide details

such as bu�ering, mapping of �les on disks, location of data in �les, synchronization, optimum message size

for communication, best communication algorithms, communication scheduling, I/O scheduling etc.

4.2.1 Out-of-Core Runtime Library

The PASSION routines for out-of-core computations can be divided into four main categories based on

their functionality | Array Management/Access Routines, Communication Routines, Mapping Routines

and Generic Routines. Some of the basic routines and their functions are listed in Table 2.

1. Array Management/Access Routines: These routines handle the movement of data between the

arrays in main memory and �les on disks. Any arbitrary regular section of the can be read for an

array stored in either row-major or column-major order. The information about the array such as its

shape, size, distribution, storage format etc. is passed to the routines using a data structure called the

Out-of-Core Array Descriptor (OCAD) [TBC94a]. The Data Sieving Method described in Section 4.5.1

is used for improved performance.

2. Communication Routines:The Communication Routines perform collective communication of data

in the OCLA. We use the Explicit CommunicationMethod described in [TBC94a]. The communication

is done for the entire OCLA, i.e. all the o�-processor data needed by the OCLA is fetched during the

communication. This requires inter-processor communication as well as disk accesses.

3. Mapping Routines: The Mapping Routines perform data and processor/disk mappings. Data map-

ping routines include routines to generate local array �les from a global �le. Disk mapping routines

map physical disks onto logical disks.

4. Generic Routines: The Generic Routines perform computations on out-of-core arrays. Examples of

these routines are out-of-core transpose and out-of-core matrix multiplication.

4.3 Runtime Support for Out-of-Core Structured Problems

7

parameter (n=1024)

real A(n,n), B(n,n)

..........

!HPF$ PROCESSORS P(4,4)

!HPF$ TEMPLATE T(n,n)

!HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P

!HPF$ ALIGN with T :: A, B

...........

FORALL (i=2:n{1, j=2:n{1)

A(i,j) = (B(i,j{1) + B(i,j+1) + B(i+1,j)

+ B(i{1,j))/4

...........

B = A

Figure 5: HPF Program Fragment

Consider the HPF program fragment shown in Figure 5, which solves Laplace's equation by Jacobi

iteration method. The arrays A and B are distributed as (block,block) on a 4�4 grid of processors as shown

in Figure 6. Consider the out-of-core local array on processor P5, shown in Figure 6(B). The value of each

element (i; j) of A is calculated using the values of its corresponding four neighbors in B, namely (i � 1; j),

(i + 1; j), (i; j � 1) and (i; j + 1). Thus to calculate the values at the four boundaries of the local array,

P5 needs the last row of the local array of P1, the last column of the local array of P4, the �rst row of the

local array of P9 and the �rst column of of the local array of P6. Before each iteration of the program, P5

gets these rows and columns from its neighboring processors. If the local array was in-core, these rows and

columns would have been placed in the overlap areas shown in the Figure 6(B). This is done so as to obtain

better performance by retaining the DO loop even at the boundary. Since the local array is out-of-core,

these overlap areas are provided in the local array �le. The local array �le basically consists of the local

array stored in either row-major or column major order. In either case, the local array �le will consist of the

local array elements interspersed with overlap area as shown in Figure 6(D). Data from the �le is read into

the in-core local array and new values are computed. The in-core local array also needs overlap area for the

same reason as for the out-of-core local array. The example shown in the �gure assumes that the local array

is stored in the �le in column major order. Hence, for local computation, columns have to be fetched from

disks and then written back to disks.

At the end of each iteration, processors need to exchange boundary data with neighboring processors.

In the in-core case, this would be done using a shift type collective communication routine to directly

communicate data from the local memory of the processors. In the out-of-core case, this can be done by

either directly reading other processors' LAFs (Direct File Access Method), or by using the Two-Phase

Approach described earlier.

4.3.1 Performance Results

As examples of structured problems, we consider the Laplace equation solver described earlier and also a 2D

FFT code. The performance of the Laplace equation solver on the Intel Touchstone Delta is given in Table 3.

We use Intel's Concurrent File System (CFS) [Pie89] on the Delta which has 64 disks. The table compares

the performance of the three methods | shift using direct �le access, shift using Two Phase Method and

shift using two phase with data reuse, an optimization described in Section 4.5.3. The array is distributed

in one dimension along columns. We observe that the direct �le access method performs the worst because

of contention for disks. The best performance is obtained for the two phase method with data reuse as it

reduces the amount of I/O by reusing data already fetched into memory. If the array is distributed in both

dimensions, the performance of the direct �le access method is expected to be worse because in this case

each processor, except at the boundary, has four neighbors. So, there will be four processors contending for

8

P0 P1 P2 P3

P4 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

Array distributed on Out-of-core Local In core Local

P5

16 processors Array on P5 Array on P5

Local Array File

 on P5

Overlap Area

Overlap Area

Actual Data

(A)

(D)

(B) (C)

Figure 6: Example of OCLA, ICLA and LAF

Table 3: Performance of Laplace Equation Solver (time in sec. for 10 iterations)

Array Size: 2K � 2K Array Size: 4K � 4K

32 Procs 64 Procs 32 Procs 64 Procs

Shift using Direct File Access 73.45 79.12 265.2 280.8

Shift using Two Phase 68.84 75.12 259.2 274.7

Shift using Two Phase 62.11 71.71 253.1 269.1

with data reuse

a disk when they try to read the boundary values.

Table 4 presents the performance of the two-dimensional Fast Fourier Transform on the Intel Touchstone

Delta. The Fast Fourier Transform routine uses the PASSION routine PASSION oc transpose to perform

out-of-core transpose. The array is initially distributed in one dimension along columns. In the �rst phase,

the program performs in-core FFT on row slabs. Then the out-of-core array is transposed and the in-core

FFT is again performed on the row slabs of the transposed array. This example was run on 16, 32 and 64

processors. The slab size was varied from 1/16 to 1/2 of the local array size. As the slab size is increased,

the performance tends to improve because the number of I/O requests decreases. In all cases, however, the

time taken is dominated by I/O. As the number of processors is increased to 64, the parallel �le system is

saturated with requests from all the processors, and therefore, the performance tends to degrade.

4.4 Runtime Support for Out-of-Core Unstructured Problems

Unstructured or Irregular problems [Pon94] are an important subclass of scienti�c applications. In irregular

problems, the data access patterns cannot be predicted until runtime. Hence, optimizations that can be car-

ried out at compile-time are limited. At runtime, however, the data access patterns of a loop-nest are usually

known before entering the loop-nest. This makes it possible to utilize various preprocessing strategies to per-

form optimizations. Preprocessing methods for in-core computations have been developed [MSS+88, Pon94]

for a variety of unstructured problems including explicit multigrid unstructured computational
uid dynamic

solvers [Mav91, HB91], molecular dynamics codes (CHARMM, AMBER, GROMOS, etc.) [BBO+83], and

diagonal or polynomial preconditioned iterative linear solvers [VSM90].

Figure 7 illustrates a typical irregular loop. The data access pattern is determined by the array indir,

9

Table 4: Out-of-core 2D-FFT for 4K � 4K array (time in sec., Slab size as a fraction of local array size)

Processors Slab size Slab size Slab size Slab size

1/16 1/8 1/4 1/2

16 616.84 562.01 502.71 484.73

32 596.54 537.89 499.78 456.35

64 610.91 589.88 517.34 478.72

real x(n node),y(n node) ! data arrays

integer indir(n edge,2) ! indirection array

L1: do i = 1, n step ! outer loop

L2: do j = 1, n edge ! inner loop

x(indir(i,1)) = x(indir(i,1)) + y(indir(i,2))

x(indir(i,2)) = x(indir(i,2)) + y(indir(i,1))

end do

end do

Figure 7: An Example with an Irregular Loop

which is known only at runtime. This array is called an indirection array. Prior knowledge of loop data

access patterns (values of indir) makes it possible to predict which data elements need to be communicated

between processors. By pre-processing data access patterns, optimizations such as software caching and

communication vectorization [DMS+94] can be performed. We have developed runtime routines in PASSION

to solve out-of-core irregular problems on distributed memorymachines. The out-of-core pre-processing phase

analyzes data access patterns and computes a communication schedule [MSS+88] as well as an I/O schedule.

We describe our scheme using a computation kernel similar to the loop shown in Figure 7, on an unstruc-

tured mesh. Such a computation forms the core of many applications in
uid dynamics, molecular dynamics

etc. The calculation on each node of the mesh requires data from its neighboring nodes. We assume that

the size of both data and indirection arrays is very large and that only one of them can be stored in main

memory, while the other has to be stored on disks. This out-of-core unstructured computation is done in

three stages namely: data and/or indirection array partitioning, pre-processing of the indirection array and

actual computation using the information provided by the previous two stages. Some of the main functions

used are listed in Table 5.

4.4.1 Data/Indirection Array Partitioning

In this phase, the data and/or indirection array is divided into smaller partitions which can �t in the main

memory of the processors [Figure 8]. This is done using a graph partitioning algorithm such as Recursive

Coordinate Bisection, so as to maintain data locality as well as load balance. In the present implementation,

we partition either the data or the indirection arrays but not both, i.e. one of them is assumed to be in-core

and the other out-of-core. The partitioning is done in either of the following ways, depending on the model

of data storage and access. This is illustrated in Figure 8.

� N Partitioning: This corresponds to the Local Placement Model. The data (or indirection) array is

partitioned into some N independent partitions, each of which can �t in the main memory of any one

processor.

� Hierarchical Partitioning: This corresponds to the Partitioned In-Core Model. Partitioning is done

in two levels. In the �rst level, the data (or indirection) array is divided into a certain number of

partitions, each of which can �t the main memory of all processors combined. In the second level, each

of the partitions created above is further divided into as many partitions as the number of processors.

10

Table 5: PASSION Runtime Routines for Out-of-Core unstructured problems

Data/Indirection Array Partitioning

PASSION Routine Function

1 PASSION oc gen partition Partition data/indirection array

Pre-Processing Procedures

PASSION Routine Function

2 PASSION oc dereference Translate indices for data/indirection arrays

3 PASSION oc gen pal Generate partition allocation list for each partition

4 PASSION oc localize Out-of-core localization for o�-processor array elements.

5 PASSION oc gen schedule Generate schedule for all the partitions.

Computation Procedures

PASSION Routine Function

6 PASSION oc get partition Load partition from disk

7 PASSION oc gather Gather o�-partition elements from memory and disks

8 PASSION oc scatter Scatter o�-partition elements from memory and disks.

4.4.2 Pre-Processing

This phase performs the following steps:-

� If the data (or indirection) array has been partitioned in the previous phase, the indirection (or data)

array is divided into the same number of partitions. An indirection (or data) array element is assigned

to a particular data (or indirection) partition if most of the data (or indirection) elements required in

that iteration are in that partition. If the new partitions formed are larger than the available memory,

they are processed one slab at a time.

� For each partition, a list of data (or indirection) elements required from some other partition is created.

This list is important in optimizing the communication between processing nodes and disks. It also

determines the size of the extra bu�er space needed for out-of-partition data for computation on each

partition. Localization and schedule generation procedures are used for this step.

� Perform address translation for references to out-of-partition elements [DMS+94].

4.4.3 Computation

If there are P processing nodes, the computation involves reading in P partitions at a time from disks,

evaluating partial results and storing them back on disks [Figure 9]. This process is repeated for all partitions

and partial results are gathered. Final results are scattered to the partitions on other processors or �les on

disk.

4.4.4 Performance Results

We studied the performance of the out-of-core unstructured molecular dynamics and CFD codes on an Intel

iPSC/860 with 16 processing nodes, 2 I/O nodes and 4 disks. In the molecular dynamics code, the data

array is small, but the indirection array is very large. Hence we kept the indirection array out-of-core and

the data array in-core.

Tables 6 and 7 show the pre-processing time for the cases with 14K and 6K atoms respectively. The slab

size as well as number of processors was varied. It can be observed that as the slab size is increased, the

performance improves because the number of I/O accesses is reduced. The performance also improves as

the number of processors is increased. The best performance is observed for 8 processors with slab size of

64K. The performance degrades for the 16 processor case because the I/O subsystem gets saturated.

11

Second Level Partitioning

(Partitions = No. of Processors)

Hierarchial Partitioning

First

Level

Partitioning

N Partitioning

Figure 8: Data/Indirection Array Partitioning

Data

Partition

I

Data Array

Data from

partitions on

other processor

Data from

partition on

disk file

Indirection array slabs

(Brought in-core one at a time)

Partition I of address translated Indirection Array

Partition References

Out of partiti
on referencesOut of partition references

Figure 9: Computation Phase: Data partition is indirectly referenced using indirection array partition

Table 6: Pre-processing Time in sec. for MD Kernel (14K Atoms)

Processors Slab size

8 K 16K 32K 64K 128K

2 194.61 190.81 188.85 187.83 190.95

4 134.79 129.84 127.54 130.27 138.45

8 115.35 99.68 94.62 92.16 98.54

16 127.22 109.77 107.81 111.73 107.25

12

Table 7: Pre-processing Time in sec. for MD Kernel (6K Atoms)

Processors Slab size

8 K 16K 32K 64K 128K

2 135.79 117.10 113.48 110.98 117.56

4 89.95 85.74 86.33 85.14 85.59

8 82.36 78.60 75.31 72.79 73.88

16 162.62 128.52 111.88 108.21 109.92

Table 8: Computation Time in sec. for MD Kernel (14K Atoms)

Processors Slab Size

8K 16K 32K 64K 128K

2 40.20 39.63 38.98 38.89 40.62

4 26.24 24.83 23.01 22.23 23.42

8 43.54 41.58 34.57 30.52 26.88

16 81.14 78.41 94.38 76.80 75.48

Tables 8 and 9 show the computation times for one iteration of the molecular dynamics kernel for various

number of processors and slab sizes. This time also includes the communication time to gather and scatter

o�-processor data. The best performance is observed for 8 processors in the 14K atoms case and for 4

processors in the 6K atoms case.

For the unstructured CFD problem, we used the N Partitioning Scheme on the data arrays. The pre-

processing time and computation time for a 50K mesh are shown in Figures 10 and 11 respectively. As the

number of processors is increased, both pre-processing and computation times decrease. Also, the perfor-

mance is better for smaller number of partitions (ie. large partition size). This is because of the smaller

number of I/O requests.

4.5 Optimizations

This section describes some of the optimizations incorporated in the PASSION Runtime Library for out-of-

core computations.

4.5.1 Data Sieving

All the PASSION runtime routines for reading or writing data from/to disks support the reading/writing

of regular sections of arrays. We de�ne a regular section of an array as any portion of an array which can

be speci�ed in terms of its lower bound, upper bound and stride in each dimension. The need for reading

Table 9: Computation Time in sec. for MD Kernel (6K Atoms)

Processors Slab Size

8K 16K 32K 64K 128K

2 41.62 45.05 39.98 38.86 42.55

4 26.22 25.00 23.29 22.40 24.25

8 42.19 39.00 34.15 31.23 28.12

16 95.26 88.44 85.96 82.63 83.66

13

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
Number of processors

20.0

40.0

60.0

80.0

100.0

Tim
e (

Se
c)

8 Partitions
16 Partitions
32 partitions

Figure 10: Preprocessing time for unstructured CFD kernel (50K Mesh)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
Number of processors

0.0

500.0

1000.0

1500.0

Tim
e (

Se
c)

8 Partitions
16 Partitions
32 Partitions

Figure 11: Computational time for unstructured CFD kernel (50K Mesh)

14

(1,1) (1,11)

(11,11)(11,1)

(2,3) (2,9)

(10,9)(10,3)

Figure 12: Accessing out-of-core array sections

array sections from disks may arise due to a number of reasons, for example FORALL or array assignment

statements involving sections of out-of-core arrays.

Consider the array of size (11,11) shown in Figure 12, which is stored on disk. Suppose it is required to

read the section (2:10:2,3:9:2) of this array. The elements to be read are circled in the �gure. Since these

elements are stored with a stride on disk, it is not possible to read them using one read call. A simple way

of reading this array section is to explicitly move the �le pointer to each element and read it individually,

which requires as many reads as the number of elements. We call this the Direct Read Method. A major

disadvantage of this method is the large number of I/O calls and low granularity of data transfer. Since the

I/O latency is very high, this method proves to be very expensive. For example, on the Intel Touchstone

Delta using 1 processor and 1 disk, it takes 16.06 ms. to read 1024 integers as one block, whereas it takes

1948 ms. to read all of them individually.

Suppose it required to read a section of a two-dimensional array speci�ed by (l1 : u1 : s1; l2 : u2 : s2).

The number of array elements in this section is (b(u1 � l1)=s1c+ 1)� (b(u2 � l2)=s2c+ 1). Therefore, in the

Direct Read Method,

No. of I/O requests = (b(u1 � l1)=s1c + 1) � (b(u2 � l2)=s2c + 1)

No. of array elements read per access = 1

Thus in this method, the number of I/O requests is very high and the number of elements accessed per

request is very low, which is undesirable.

We propose a much more e�cient method called Data Sieving to read or write out-of-core array sections

having strides in one or more dimensions. Data Sieving can be explained with the help of Figure 13. As

explained earlier, each processor has an out-of-core local array (OCLA) associated with it. The OCLA is

(logically) divided into slabs, each of which can �t in main memory (ICLA). The OCLA shown in the �gure

has four slabs. Let us assume that it is necessary to read the array section shown in Figure 13, speci�ed by

(l1 : u1 : s1; l2 : u2 : s2), into the ICLA. Although this section spans three slabs of the OCLA, because of the

stride all the data elements can �t in the ICLA.

In the Data Sieving Method, the entire block of data from column l2 to u2 if the storage is column major,

or the entire block from row l1 to u1 if the storage is row major, is read into a temporary bu�er in main

memory using one read call. The required data is then extracted from this bu�er and placed in the ICLA.

Hence the name Data Sieving. A major advantage of this method is that it requires only one I/O call and

the rest is data transfer within main memory. The main disadvantage is the high memory requirement.

Another disadvantage is the extra amount of data that is read from disk. However, we have found that the

savings in the number of I/O calls increases performance considerably. For this method, assuming column

major storage,

No. of I/O requests = 1

No. of array elements read per access = (u2 � l2 + 1)� nrows

15

OCLA

In-core
buffer

ICLASlab

Sieve
Read contiguous block

Section(l1,l2)

(u1,u2)

Figure 13: Data Sieving

Data Sieving is a way of combining multiple I/O requests into one request so as to reduce the e�ect of

high I/O latency time. A similar method called message coalescing is used in interprocessor communication,

where small messages are combined into a single large message in order to reduce the e�ect of communication

latency. However, Data Sieving is di�erent because instead of coalescing the required data elements together,

it actually reads even unwanted data elements so that large contiguous blocks are read. The useful data is

then �ltered out by the runtime system in an intermediate step and passed on to the program. The unwanted

data read into main memory is dynamically discarded.

Reducing the Memory Requirement: If the stride in the array section is large, the amount of memory

required to read the entire block from column l2 to u2 will be quite large. There may not be enough main

memory available to store this entire block. Since the amount of memory available to create a temporary

bu�er is not known, we make the assumption that there is always enough memory to create a bu�er of size

equal to that of the ICLA. The Data Sieving Method described above is modi�ed as follows to take this

fact into account. Instead of reading the entire block of data from column l2 to u2, we read only as many

columns (or rows) at a time as can �t in a bu�er of the same size as the ICLA. For each set of columns read,

the data is sieved and passed on to the program. This reduces the memory requirements of the program

considerably and increases the number of I/O requests only slightly. Let us assume that the array is stored

in column major order on disk and n columns of the OCLA can �t in the ICLA. Then for this case

No. of I/O requests = d(u2 � l2 + 1)=ne

No. of array elements read per access = n� nrows

Writing Array Sections: Suppose it is required to write an array section (l1 : u1 : s1; l2 : u2 : s2) from the

ICLA to the LAF. The issues involved here are similar to those described above for reading array sections.

A Direct Write Method can be used to write each element individually, but it su�ers from the same problems

of large number of I/O requests and low granularity of data transfer. In order to reduce the number of I/O

requests, a method similar to the Data Sieving Method described above needs to be used. If we directly use

Data Sieving in the reverse direction, ie. elements from the ICLA are placed at appropriate locations in a

temporary bu�er with stride, and the bu�er is written to disk, the data in the bu�er between the strided

elements will overwrite the corresponding data elements on disk. In order to maintain data consistency, it is

necessary to �rst read the entire block from the LAF into the temporary bu�er. Then, data elements from

16

Table 10: Performance of Direct Read/Write versus Data Sieving (time in sec.)

2K � 2K global array on 64 procs. (local array size 2K � 32), slab size = 16 columns

PASSION read section PASSION write section

Array Section Direct Read Sieving Direct Write Sieving

(1:2048:2, 1:32:2) 52.95 1.970 49.96 5.114

(1:2048:4, 1:32:4) 14.03 1.925 13.71 5.033

(10:1024:3, 3:22:3) 8.070 1.352 7.551 4.825

(100:2048:6, 5:32:4) 7.881 1.606 7.293 4.756

(1024:2048:2, 1:32:3) 18.43 1.745 17.98 5.290

Table 11: I/O requirements of Direct Read and Data Sieving Methods

2K � 2K global array on 64 procs. (local array size 2K � 32), slab size = 16 columns

No. of I/O requests No. of array elements read

Array Section Direct Read Sieving Direct Read Sieving

(1:2048:2, 1:32:2) 16384 2 16384 65536

(1:2048:4, 1:32:4) 4096 2 4096 65536

(10:1024:3, 3:22:3) 2373 2 2373 40960

(100:2048:6, 5:32:4) 2275 2 2275 57344

(1024:2048:2, 1:32:3) 5643 2 5643 65536

the ICLA can be stored at appropriate locations in the bu�er and the entire bu�er can be written back to

disk.

This is similar to what happens in cache memories when there is a write miss. In that case, a whole

line or block of data is fetched from main memory into the cache and then the processor writes data into

the cache. This is done in hardware in the case of caches. PASSION does this in software when writing

array sections using Data Sieving. Thus, writing sections requires twice the amount of I/O compared to

reading sections, because for each write to disk the corresponding block has to �rst be fetched into memory.

Therefore, for writing array sections

No. of I/O requests = 2d(u2 � l2 + 1)=ne

No. of array elements transferred per access = n� nrows

Performance of Sieving: Table 10 gives the performance of Data Sieving versus the Direct Method

for reading and writing array sections. An array of size 2K � 2K is distributed among 64 processors

in one dimension along columns. We measured the time taken by the PASSION read section() and

PASSION write section() routines for reading and writing sections of the out-of-core local array on each

processor. We observe that Data Sieving provides tremendous improvement over the Direct Method in all

cases. The reason for this is large number of I/O requests in the Direct Method, even though the total

amount of data accessed is higher in Data Sieving. Table 11 gives the number of I/O requests and the total

amount of data transferred for each of the array sections considered in Table 10. We observe that in the

Data Sieving Method, the number of data elements transferred is more or less the same for all cases. This

is because the total amount of data transferred depends only on the lower and upper bounds of the section

and is independent of the stride. Hence the time taken using Data Sieving does not vary much for all the

sections we have considered. However, there is a wide variation in time for the Direct Method, because only

those elements belonging to the section are read. The time is lower for small sections and higher for large

sections.

17

Read Read ReadComp Comp CompWrite Write Write

(A) Without Prefetch

Read

Read Read

Comp Comp Comp WriteWriteWrite

(B) With Prefetch

Figure 14: Data Prefetching

We observe that even for writing array sections, Data Sieving performs better than Direct Write even

though it requires reading the section before writing. As expected, PASSION write section() takes about

twice the time as PASSION read section() when using Data Sieving. Comparing the Direct Write and

Direct Read Methods, we �nd that writing takes slightly less time than reading data. This is due to the way

I/O is done in the Intel Touchstone Delta. The cwrite call returns after data is written to the cache in the

I/O node, without waiting for the data to be written to disk.

All PASSION routines involving array sections use Data Sieving for greater e�ciency.

4.5.2 Data Prefetching

In the Local Placement Model, the OCLA is divided into a number of slabs, each of which can �t in the

ICLA. Program execution proceeds as follows:- a slab of data is fetched from the LAF to the ICLA; the

computation is performed on this slab and the slab is written back to the LAF. This is repeated on other

slabs till the end of the program. Thus I/O and computation form distinct phases in the program. A

processor has to wait while each slab is being read or written as there is no overlap between computation

and I/O. This is illustrated in Figure 14(A) which shows the time taken for computation and I/O on 3 slabs.

For simplicity, reading, writing and computation are shown to take the same amount of time, which may

not be true in certain cases.

The time taken by the program can be reduced if it is possible to overlap computation with I/O in

some fashion. A simple way of achieving this is to issue an asynchronous I/O read request for the next slab

immediately after the current slab has been read. This is called Data Prefetching. Since the read request

is asynchronous, the reading of the next slab can be overlapped with the computation being performed

on the current slab. If the computation time is comparable to the I/O time, this can result in signi�cant

performance improvement. Figure 14(B) shows how prefetching can reduce the time taken for the example

in Figure 14(A). Since the computation time is assumed to be the same as the read time, all reads other

than the �rst one get overlapped with computation. The total reduction in program time is equal to the

time for reading two slabs, as only two of the three reads can be overlapped in this example.

Prefetching can be done using the routine PASSION prefetch read() and the routine PASSION prefetch wait()

can be used to wait for the prefetch to complete. We have implemented an out-of-core Median Filtering

program using Prefetching. Median Filtering is frequently used in computer vision and image processing

applications to smooth the input image. Each pixel is assigned the median of the values of its neighbors

within a window of a particular size, say 3� 3 or 5� 5 or larger. Figures 15 and 16 show the performance of

Median Filtering on the Intel Touchstone Delta for windows of size 3� 3 and 5� 5 respectively. The image

is of size 2K � 2K pixels. We observe that in all cases, prefetching improves performance signi�cantly.

Further details about Data Prefetching are given in [TBC+94b].

18

4 8 16 32 64
Processors

0.0

10.0

20.0

30.0

40.0

50.0

Tim
e (

se
c)

Without prefetch
With prefetch

Figure 15: Median Filtering using 3� 3 window

4 8 16 32 64
Processors

0.0

20.0

40.0

60.0

80.0

100.0

Tim
e (

se
c)

Without Prefetch
With Prefetch

Figure 16: Median Filtering using 5� 5 window

4.5.3 Data Reuse

One way to reduce the amount of I/O is to reuse the data already fetched into main memory instead of

reading it again from disk. This can be explained with the help of the Laplace equation solver program

discussed earlier. Suppose the array is distributed along columns. Then the computation of each column

requires one column from the left and one column from the right. The computation of the last column

requires one column from the overlap area and the computation of the column in the overlap area cannot

be performed without reading the next column from the disk. Hence, instead of reading in the column in

the overlap area again with the next set of columns, it can be reused by moving it to the �rst column of

the array and the last column can be moved to the overlap area before the �rst column. If this move is

not done, it would be required to read the two columns again from the disk along with data for the next

slab. The reuse thus eliminates the reading of two columns in this example. In general, the amount of data

reuse would depend on the intersection of the sets of data needed for computations involving two consecutive

slabs. Data Reuse is described in further detail in [TBC94a].

19

5 Compiler Support

This section discusses the issues involved in compiling I/O intensive problems. The PASSION compiler is

targeted for languages like Fortran 90D [BCF+93] and High Performance Fortran [For93], which provide

explicit directives to distribute arrays across the processors of a parallel system. The compiler support is

intended for programs with arrays that are too large to �t in main memory (out-of-core arrays) and for

programs in which data has to be read from �les. Such a compiler has to perform the following two main

tasks:-

� Generate runtime calls to perform read/write of the arrays.

� Perform automatic program transformations to improve I/O performance.

A number of compiler techniques have been developed for in-core programs. Similar techniques can

be used for compiling out-of-core programs. This section brie
y describes some of the important steps in

compiling out-of-core programs and some compiler techniques used in the PASSION compiler.

The PASSION compiler compiles an out-of-core (OOC) HPF program in two phases. The �rst phase

performs preprocessing of the source HPF program in the global name space. In the second phase, optimiza-

tions on the corresponding node program are carried out. Figure 17 shows the phases in compiling an OOC

program using the PASSION compiler. While the �rst phase is independent of the underlying execution

model, optimizations in the second phase di�er according to the execution models.

� Phase I: Global Program Preprocessing

In the �rst phase, data
ow analysis is performed to obtain
ow information about the scalar and array

variables.

{ Global Data
ow Analysis and FORALL Optimizations: Preprocessing of the SPMD program in-

volves performing analysis of the source program in the global name space using standard data
ow

techniques. The main aim of the data
ow analysis is to examine the access patterns of the program

variables. We are interested in �nding (1) when a particular program variable is �rst accessed

(read/written), (2) how many times this variable is de�ned (written), (3) where is the last access

of this variable, (4) how many elements of an array are used in more than one access, (5) which

array dimension is accessed more often. This information helps the compiler to compute the range

of each array variable. In addition, the compiler can check whether the array statements could

be reorganized so that the statements that access the same program variables are closer in the

program space. Data
ow analysis also provides dependence information about the FORALL and

array assignment statements. Using interval analysis, redundant computation can also be de-

tected. Using this information, multiple FORALL statements can be merged to remove redundant

computation.

� Phase II: Local Program Optimizations

In the second phase, the PASSION compiler operates in the local name space. The second phase

involves four parts, (1) Work Distribution, (2) Loop Optimizations, (3) Local Data
ow Analysis, (4)

Communication and I/O Optimizations and (5) Inter and Intra File Reorganization.

{ Work Distribution: To distribute work among processors, the compiler uses distribution infor-

mation provided by the compiler directives. Work distribution involves (1) computing local array

sizes for each processor, (2) scalarizing the FORALL statement and generating corresponding DO

loops in the local name space. All necessary communication is detected and the corresponding

communication sets are computed.

{ Loop Optimizations:

� Memory Transformations: In out-of-core programs, computation is performed on data which

is present in the primary memory of compute nodes. This requires fetching slabs of data from

disk and computing on the in-core slabs. As a result, computation has to be reordered. This

20

Phase 1

Global Name Space
Preprocessing

Phase 2

Local Name Space
Compilation

Source HPF Program
Lexical Analysis

Analysis of File/Data Distributions

 Dataflow Analysis

in Global Name Space

FORALL Optimizations

Work Distribution

Loop Optimizations

 Dataflow Analysis
in Local Name Space

Communication / I/O Optimizations

Intra-file Reordering

Calling Runtime Routines
Node+MP+I/O

Figure 17: PASSION Compiler Phases

21

reordering can be done by stripmining the computation. The local computation corresponding

to a FORALL statement is stripmined according to the available memory. Depending on the

underlying execution model, di�erent strategies are used to stripmine local computation. The

information about the amount of available memory is obtained either from compiler directives

or at runtime.

� Locality Transformations: The time required to access data from disks depends on how

data is accessed and how data is stored on disks. In order to reduce the I/O cost, either

the computation can be reordered (iteration blocking, tiling [Iri88, SD90, WL91, CK89])

according to the placement of data in �les (to take advantage of data locality) or data can be

reordered in �les according to the computation. Reordering of data in �les results in extra

overhead. However, computation reordering may not always be trivial. In such cases, data

reorganization on �les is preferred. Locality analysis also helps a compiler to predict when to

prefetch data. Data prefetching can be used to hide memory latency and disk accesses can

be overlapped with computation.

{ Local Data
ow Analysis: In this step, the local program is analyzed for dependencies of program

variables in the local name space. The data
ow information provides information about where

a particular program variable is accessed. Also, data
ow analysis provides information about

which program variables are updated and which processors require the updated variables. This

information is used for optimizing communication and I/O.

{ Communication Optimizations: In out-of-core compilation, communication can be performed

using two di�erent methods, In-core Communication and Out-of-core Communication. In the In-

core CommunicationMethod, the data corresponding to each slab is fetched when the computation

on the slab is performed. In the Out-of-core Communication Method, data required by the

entire out-of-core array is fetched. The choice between the two methods depends on the type of

computation inherent in the program. Information provided by the local data
ow analysis can be

used to aggregate communication and to place communication calls in suitable places.

{ I/O Optimizations: The I/O cost associated with a program can be measured either using the

number of I/O requests or using the number of disk requests. There are several ways of optimizing

the number of I/O (disk) requests. From our previous work, it has been observed that several I/O

requests with small request sizes degrade the I/O performance. Hence to achieve high performance,

multiple I/O requests can be aggregated. Using local data
ow analysis, the compiler determines

what data can be accessed using a single I/O request. The data
ow information can also be used

to place I/O calls so that the overall I/O cost can be reduced. Strategies like two-phase access

and disk-directed I/O [Kot94] can be used to optimize I/O from disks.

{ Inter and Intra File Organizations: The �nal step in the local program optimization involves

organization of data across �les and within �les. Depending on the underlying execution model,

the compiler generates local array �les. The data is either reorganized into the required format

or written into local �les. The second optimization involves reorganizing data within each array

�le. Both global and local data
ow analyses provide information about variable access patterns.

Using this information, the data within a �le can be arranged so as to match the access pattern.

5.1 Language Support

For e�cient compilation of out-of-core programs, the compiler requires information about the distribution

of arrays on processors as well as on the disks. Languages like Fortran D, High Performance Fortran provide

explicit directives to describe distribution of data on processors. However, no directives are provided to

specify data distribution on disks.

Various attempts have been made to provide compiler directives for describing data distribution on disks

(Vienna Fortran [BGMZ92, ZBC+92], HPF [Sni92]). However at present there is no consensus about how

the distribution information should be passed to the compiler. There exist several problems in de�ning such

directives. The out-of-core arrays used in the programs are stored as �les. Hence in case of out-of-core

problems, two distinct distributions exist. First is the array distribution and second is the �le distribution.

Most of the high performance �le systems distribute �les over disks. Distribution of the �le depends on many

22

factors such as number of disks, type of data striping and the language used for computation. Files can be

created during the programs or they may be already stored on the �le system. As a result, the �le size may

not be known at compile time. Also, one or more arrays (which can have di�erent distributions) can be

initialized from the same �le. Compiler directives should be designed to provide all the above information.

Since the design of the �le system is architecture dependent, these directives should provide a portable

interface to the underlying �le system.

In the case of the PASSION compiler, compilation depends on the programming model as well as on

the underlying execution model (Local Placement Model or Global Placement Model). The user can direct

the compiler to choose a particular execution model. In addition, the PASSION compiler provides a set

of compiler directives to provide information about distribution of arrays and �les. Some of the proposed

directives are described below.

� DISKS: This directive is used for describing the logical mapping of disks over which one or more

�les may be distributed and/or which are used to distribute scratch �les for out-of-core computations. The

syntax for this directive is similar to the PROCESSORS directive in HPF. For example,

DISKS D(8,8)

indicates that disks are logically arranged as a two-dimensional logical grid of size 8�8. This directive

enables a compiler to associate a disk (or a set of disks) with processors for �le distributions and out-of-core

computations. Many processors are allowed to be associated with one disk and many disks are allowed to

be associated with one processor.

� FILEPROC: This directive is also similar to the PROCESSORS directive in HPF except that it

speci�es the processors which really participate in performing I/O. From our earlier studies [BdRC93, Bor93],

we observed that the best performance need not necessarily be obtained when all processors performing

computations also perform I/O. Thus, this provides the user the
exibility to specify a set of processors to

perform I/O. This directive is optional, and if not speci�ed, the default is the number of processors speci�ed

in the PROCESSORS directive. For example,

FILEPROC FP(2,2)

speci�es that a 2�2 array of processors participates in I/O.

� FILEDISTR: This directive declares a �le-template and distributes it over the speci�ed number of

disks declared in the DISK directive. It also uses the optional FILEPROC parameter. This directive uses

names declared in DISKS and FILEPROC as pointers to the corresponding topologies. For example,

FILEDISTR F(D,[FP])

declares a �le-template F which is distributed over D disks, and it associates this template with the

processors declared in FP. Thus a �le distributed over a set of disks can be associated with di�erent sets of

processors by using this directive. For example, when declared together,

FILEDISTR F(D, FP1)

FILEDISTR F(D, FP2)

permit two di�erent processor con�gurations to access �les on the same set of disks.

� FILEALIGN: This directive is similar to the ALIGN directive of HPF. FILEALIGN aligns the list

of associated �les to the template declared using FILEDISTR directive. However, there is a fundamental

di�erence between ALIGN and FILEALIGN. A �le may not have a size at declaration time. Thus the

same �le may be aligned to more than one �le-templates as illustrated above. This is quite logical since a �le

can be opened by two di�erent processor grids. Following example illustrates the FILEALIGN directive.

FILEALIGN F :: F1, F2, F3

� ASSOCIATE: This directive describes the relationship between an array's and the corresponding �le's

mapping. That is, the ASSOCIATE directive associates a �le-template with the corresponding array

template. ASSOCIATE directive has the following form

23

ASSOCIATE :: (�le-template, array-template)

For example,

ASSOCIATE :: (F,A),(,),...

associates the �le-template F with the array-template A. Thus, this directive provides an HPF compiler

a list of �les to be used for I/O for a set of arrays aligned to the corresponding array template.

� OUT OF CORE: This directive declares an array as an out-of-core array. The following example

declares array A as an out-of-core array.

OUT OF CORE :: C

6 File System Support

PASSION interacts mainly with the �le system handler portion of the underlying operating system. This

interaction includes providing information about data access patterns for parallel I/O and sending actual

data access requests. The information can originate either from the PASSION runtime calls embedded in

the application or from the two-phase manager. This information can be broadly classi�ed into following

categories:

� Hints for prefetching data.

� Data distribution and redistribution on disks (GPM to LPM, LPM to GPM, etc.).

� File system parameters (stripe size, number of disks for striping etc.)

The �le system processes the information provided to it to generate a schedule for disk I/O and to

determine data �le layout on disks. It also passes feedback information (load, prefetch and current queue

sizes etc.) to the Two-Phase Manager and the Runtime System.

The I/O subsystem in PASSION assigns priorities to the processing of access requests and di�erent types

of information provided by other layers. Current access requests are serviced immediately because access

requests result in blocking of processes until the request is completed. Similarly, information about data

distribution and redistribution is processed immediately. Prefetching (on the basis of hints provided) on

the other hand is done in disk idle time when there is no pending disk access request or higher priority

information to be processed (Figure 18, lines 13{17). Whenever there are no pending disk requests, the

prefetch information is analyzed to produce a schedule of attached disks for all active processes performing

I/O. Scheduling is done so as to give representation to all active processes in the computational array and

to keep the prefetch cache full at all the I/O nodes.

The PASSION I/O subsystem ensures that prefetch information is updated after each read request.

Updation consists of releasing the cache block in the case of a cache hit or removing prefetch entry in the

case of a cache miss. This ensures that data which will not be required in the future does not occupy the

cache or if a particular process has a higher I/O request rate, it does not overrun the cache. A vacancy in

the cache triggers more prefetching when the I/O node is idle.

Changes in access patterns of processes during run time are also accommodated. Thus if a process has

a conditional I/O access, it may still inform about it. The �le system prefetches that information if it has

su�cient cache space and time. And �nally, when the accesses are actually made, it deletes all the requests

which have become obsolete. For this, it relies on the ordering of requests which is ensured by the suggested

speci�cation scheme. Thus, for all read requests from the computational node to the I/O node there are

following possibilities :

� Hit in the prefetch cache : Data requested is returned and the prefetch manager is informed. The

prefetch manager deletes all requests that will not be possible any more (like those in other conditional

branch) and schedules more reads for the space now available in the cache.

24

1 PASSION I/O SERVER
2 BEGIN
3 DO FOREVER
4 IF disk access request (READ/WRITE) for data D THEN
5 IF D not prefetched THEN
6 Record prefetch Miss
7 Schedule an immediate request for D on disk
8 ELSE IF D prefetched THEN
9 Record prefetch Hit
10 Deallocate resources held for D.
11 Deallocate resources with conditional data
12 END IF
13 ELSE IF prefetch hints THEN
14 Save them
15 ELSE IF data dist. or �le parameter info. THEN
16 set system parameters
17 ELSE IF Idle THEN
18 CALL Prefetch Scheduler
19 END IF
20 END DO
21 END

Figure 18: PASSION I/O server process

� Miss in the prefetch cache : There are two situations. One is that there were no prefetch requests

associated with this data item. In that case it informs the prefetch manager to update the state (access

rates etc.) of this process. The second case is when there was a prefetch request associated with it

but it could not be completed either because the rate of access of this process is greater than what

the prefetch manager predicted, or there was not enough cache available to service it. In this case, the

prefetch manager schedules this request immediately on the disk and updates its entries as in the case

of a hit.

In addition to this, it also provides for locality based caching as a default caching scheme (whenever there

is enough cache left after servicing prefetch requests).

6.1 Performance Results for prefetching

Table 12: Performance results for random �le accesses from a shared �le in 8-Kbyte blocks on Intel iPSC/860

No. of Accesses No. of Processors Without Prefetching With Prefetching

per processor (P) Time(ms) Time(ms)

50 1 789 277

50 2 870 294

50 4 1780 296

100 1 1461 555

100 2 1601 584

100 4 4055 640

We used Intel iPSC/860 (16 processor nodes, 2 I/O nodes) for the experimental evaluation of the prefetch-

ing technique. Modi�cations were made in the Intel Concurrent File System (CFS) to incorporate all the

features described earlier. Table 12 shows the results for random accesses to a shared �le using Mode 0 of

25

Table 13: Performance of out-of-core matrix multiplication

Matrix Size No. of Processors Without Prefetching With Prefetching

N�N (P) Time(Sec) Time(Sec)

512 1 581.5 570.1

512 4 233.7 194.9

512 8 176.3 159.6

the CFS (each node maintains its own �le pointer and can access information anywhere in the �le). The

accesses had a fairly equal distribution over both the I/O nodes. It shows performance improvement of up

to 80% over the case without prefetching. With the increase in the number of processors from two to four,

the performance without prefetching was poor primarily because I/O nodes have to service twice as many

requests. With prefetching on the other hand, data blocks had already been prefetched when the request

arrived. We also tested an out-of-core matrix multiplication algorithm discussed in [BCT94] and generated

access pattern information using read dependency analysis. The results obtained are listed in Table 13. It

can be observed that prefetching improves performance considerably.

7 VIP-FS: A VIrtual Parallel File System

As parallel I/O techniques become more intricate and complex, they become more cumbersome for users to

take advantage of. In an e�ort to provide a simple straight-forward interface to parallel I/O that is available

in many environments we have developed VIP-FS, a VIrtual Parallel File System [dRHC94].

VIP-FS is a portable parallel �le system for distributed computing that provides high level data map-

ping abstractions. The �le system is deemed a virtual �le system because it is implemented using multiple

individual standard �le systems integrated by a message passing system. VIP-FS is portable across many

architectures as well as many message passing systems and is designed to work in a heterogeneous environ-

ment.

7.1 Functional Description

VIP-FS has two functional layers: the Parallel File Interface layer (PFI) and the Local Device Interface layer

(LDI). Figure 19 illustrates the logical con�guration of VIP-FS.

7.1.1 PFI: The Parallel File Interface

User applications interact with VIP-FS through the PFI layer. A user de�ned data mapping is passed to

the PFI layer for all �les opened or created. This data mapping gives each user application process a "local"

view of some subset of the global data. Data access requests are then passed to the PFI layer where the

mapping functions determine where the data should reside. From this, the PFI layer distributes/gathers the

data according to the mapping function to/from the appropriate physical I/O devices through the LDI layer.

7.1.2 LDI: The Local Device Interface

The LDI layer is for the most part a stream-lined request �ller. As requests from the PFI layer are received,

the data is immediately read/written to the speci�ed location and the result returned. No computation or

synchronization is done on the LDI side of the system. The only exception to this is in the case of collective

read accesses.

Collective read access is a modi�ed form of the two-phase access paradigm developed by del Rosario,

Bordawekar, and Choudhary [dRBC93]. The collective read access is initiated by each application process

making a request for the same set of data from the global data view (the data requested can and generally

will contain regions that are outside each of the computational process' "local" data view as speci�ed by the

data mapping). Exactly one PFI layer process transmits the request to all LDI processes. The LDI can then

26

Standard UNIX
I/O Calls

Passing
System

Message

VIP-FS Calls

User Application

Local I/O Device

Local Device Interface

Parallel File Interface

Figure 19: VIP-FS Logical Overview

determine what portion of the data request resides locally and access the data in the most e�cient manner.

The LDI then parses the data accessed and delivers the data segments to the appropriate computational

processes as determined by the user speci�ed data mapping.

By allowing the collective accessing of data as described above we gain performance bene�ts in three

areas:

� Fewer read requests are sent across the network.

� Data can be accessed e�ciently according to its physical distribution, rather than accessing it according

to individual data requests.

� Data is delivered directly to the proper computational processes as speci�ed by the data mapping. No

extra swapping of data is necessary among computational processes.

However, this type of access requires the LDI layer to have knowledge of the data mapping and to calculate

the mapping function for the above described collective read accesses, thus adding a level of complexity to

the LDI layer that would otherwise not be present.

7.2 I/O Subsystem

A key feature of VIP-FS is versatility. Instead of mandating a particular I/O subsystem with �xed I/O

nodes and �xed compute nodes, we allow the user to con�gure the system in any fashion desired.

The only knowledge the user needs of the underlying I/O system is which nodes have local I/O devices.

Any combination of I/O nodes and computational processes may be distributed in any fashion desired with

the only restriction being that there may be at most one I/O process per node. Figure 20 shows distribution

possibilities of computational processes and I/O nodes.

There is also the option to the user of not specifying any I/O node setup in which case a system speci�c

default will be used to identify available I/O nodes. Thus, the user needs no knowledge of the underlying

I/O subsystem to take advantage of the parallel I/O facilities provided by VIP-FS. However, if the appli-

cation would bene�t from a customized I/O setup, the user has the ability to con�gure the system to the

application's speci�c needs.

27

PFI

User App

PFI

User App

PFI

User App

Disk
or

Raid

Disk
or

Raid

LDI

User App

PFI

LDI Disk
or

Raid

User App

PFI
Disk

or
Raid

LDI

User App

PFI

User App

PFI

User App

PFI

PFI: Parallel File Interface

LDI: Local Disk Interface

: Physical Node

Message Passing Medium

LDI

....

Figure 20: VIP-FS Distribution over Physical Nodes

8 Parallel I/O for Integrating Task and Data Parallelism

I/O techniques have been used in the past in communicating data among sequential tasks. A Unix pipe is an

example of such an approach. This component of PASSION involves developing parallel pipes to facilitate

communication between data parallel tasks (potentially executing on di�erent architectures). Given that the

distribution of data, the number of processors etc. may be di�erent in the two communicating data parallel

tasks, several issues need to be addressed. These include redistribution of data at the time of communication,

protocol for communication, providing information about the distribution in one task to the other etc. This

work addresses these issues.

In an integrated data/task parallel system [FAXC94], CHANNELS can be used as a mode of communica-

tion between data parallel tasks. We use parallel I/O techniques to implement CHANNELS. A CHANNEL

provides a uniform mode of communicating data between two data parallel tasks. Programs are constructed

by using CHANNELS to plug together concurrent tasks. This provides a many-to-many communication

model between di�erent processes of the communicating tasks. Figure 21 shows two tasks T1 and T2 con-

nected by a CHANNEL C. The two tasks are assumed to be data-parallel executing on m and n processors

respectively.

The features of CHANNELS include the following:-

� Distribution Independence: Tasks on the two ends of a CHANNEL may have di�erent data distribu-

tions. A CHANNEL provides a uniform mode of communicating data which is distribution indepen-

dent. For example, data in task T1 may be distributed in a block fashion and data in task T2 may be

distributed in a cyclic fashion.

� Information Hiding: A CHANNEL provides an interface between two communicating tasks to fa-

cilitate information hiding. Task T1 need not be aware of the data distribution in task T2 and vice

versa. It pushes the data for communication to one end of the CHANNEL, and also speci�es its data

distribution. The other task can request the data from the CHANNEL in its own distribution format.

� Synchronization: The communicating tasks use the CHANNEL for synchronization. The receiving

task has to wait for the CHANNEL to get full before it can proceed.

28

TASK T1 TASK T2

P1

P2

Pm

P1

Pn

CHANNEL C

Figure 21: CHANNEL connection between two tasks

TASK T1 TASK T2

P1

P2

P3

P4

P1

P2

R1

R2

R3

R4

File 1

CHANNEL

MW MR

C

Figure 22: Shared File Model

8.1 Shared File Model - SFM

In this model, a CHANNEL is implemented using a shared �le as illustrated in Figure 22.

T1 and T2 are two tasks connected by a CHANNEL C. The CHANNEL is unidirectional with T1 as the

sending task and T2 as the receiving task. Data D is communicated over the CHANNEL. The shared �le

consists of a number of regions Ri. Process Pi of task T1 writes to region Ri of the shared �le. This region

may be contiguous or striped.

The mapping function MW provides a one-to-one mapping between the processes Pi executing task T1

and the regions Ri of the shared �le. The mapping function MR maps the regions Ri of the shared �le to

the processes Pi executing task T2. MR can be a one-to-many mapping as we allow many processes to read

from the same �le region even though only one process can write to a given region. SimilarlyMR can also

be a many-to-one mapping.

Multiple-Readers/Multiple-Writers are allowed in this model for implementingCHANNELS. The mapping

function MW could map a process either to a contiguous region or a striped region on the �le. The

information about the mapping is speci�ed at the beginning of the �le. The mapping function MR is

de�ned by using this information at the top of the �le. Synchronization is achieved through a synchronization

variable at the beginning of the �le. Ports for a given CHANNEL are de�ned by the �le pointers opened at

29

each end of the CHANNEL. The �les need not be stored on disks. They are stored in memory bu�ers and

when the bu�ers over
ow, they are transferred to disks. The �les are reclaimed once they are read. This

approach allows dissimilar sets of processors to communicate as long as the �le formats are the same. Hence

this approach extends easily to a heterogeneous environment.

8.2 Multiple File Model (MFM)

One of the limitations of the SFM is that it does not allow the data to be communicated in a pipelined fashion.

If a large data structure has to be transferred from one task to another, the transfer can be pipelined by

breaking the data structure into a number of smaller data sets. Each set has a synchronization variable

associated with it. Multiple �les can provide this abstraction of communication. This model implements a

CHANNEL using a multiple �le system. This is similar to the previous model except that it o�ers multiple

�les as an intermediate storage facility. In the MFM, the mapping functionMW gives a �le name as well as

a �le region to map the data of a process in a task. A process can typically have more than one �le on which

its data is mapped. Synchronization variables are associated with each �le or a set of �les in the MFM. Since

there are multiple synchronization variables, the communication over the CHANNEL can be pipelined. The

�les in this case are smaller as the data is distributed over multiple �les.

We have implemented these two models for an image processing application on the Intel IPSC-860, details

about which can be found in [ACFK94].

9 Related Work

There has been some related research in software support for high performance parallel I/O. Vesta is a

parallel �le system designed and developed at IBM T. J. Watson Research Center [CFPB93, CF94] which

supports logical partitioning of �les. PIOUS [MS94] is a parallel �le system for a networked computing

environment. File declustering, where di�erent blocks are stored on distinct disks is suggested in [LKB87].

This is used in the Bridge File System [DSE88], in Intel's Concurrent File System (CFS) [Pie89] and in

various RAID schemes [PGK88]. There are several schemes that allow for the exploitation of access pattern

information. Crockett [Cro89] discusses parallel �le accesses in relation to possible storage techniques. Kotz

et. al. [EK89] use pattern predictors to predict an application's future access patterns to perform prefetching.

More recently, Patterson et. al. [PGS93] discuss the bene�ts of disclosing application level hints about future

I/O accesses. Prefetching for in-core problems is discussed in [MLG92, CKP91]. The e�ects of prefetching

blocks of a �le in a multiprocessor �le system are studied in [D. 90].

Joel Saltz and his group at the University of Maryland have developed the PARTI/CHAOS toolkit,

which is a collection of runtime library routines to handle in-core irregular computations [DSB91, SBW91].

Compilation methods for irregular problems have been investigated by Ponnusamy [Pon94], Das [DPSM92]

and Hanxleden [vKK+92].

There has been a lot of work done in compiler optimizations for data locality. These techniques are also

applicable for compiling out-of-core programs. Abu-Sufah investigates strategies to improve performance

of fortran programs in virtual memory environment [AS79]. Compiler transformations such as tiling, strip-

mining, loop interchange, loop skewing are proposed by Wolfe [Wol89b, WB87, Wol87, Wol89a]. Transfor-

mations like Unroll-and-Jam and Scalar Replacement are proposed by Carr [Car93, CK94]. Callahan studies

the problem of register allocation [CCK90]. Irigoin and Triolet also propose transformations to improve

locality [Iri88]. An excellent description of compiler transformations is given in [BGS93]. Wolf and Lam

propose an elegant loop transformation theory to improve locality and parallelism [WL91, Wol92]

Language extensions for out-of-core data parallel programs are proposed by the Vienna Fortran group [BGMZ92].

Marc Snir of IBM has submitted a proposal [Sni92] for I/O in HPF to the HPF Forum.

10 Conclusions

PASSION provides software support for high performance parallel I/O on distributed memory parallel com-

puters. It provides support for compiling out-of-core data parallel programs, parallel input-output of data

and parallel access to �les, communication of out-of-core data, redistribution of data stored on disks, many

30

optimizations including Data Prefetching from disks, Data Sieving, Data Reuse etc., as well as support at the

�le system level. PASSION also provides an initial framework for runtime support for out-of-core irregular

problems. This report gives a brief overview of the various components of PASSION, together with some

performance results on real applications.

All the runtime procedures, optimizations and �le system support described in this report have been

implemented. A subset of the compiler has been implemented and a full implementation is in progress.

PASSION is currently available on the Intel Paragon, Touchstone Delta and iPSC/860 using Intel's Concur-

rent File System. E�orts are underway to port it to the IBM SP-1 and SP-2 using the Vesta Parallel File

System.

11 PASSION Related Papers

Additional information about PASSION is available on the World Wide Web at

http://www.cat.syr.edu/passion.html. PASSION related papers can also be obtained from the anony-

mous ftp site erc.cat.syr.edu directory ece/choudhary/PASSION, or from ftp.npac.syr.edu directory

users/choudhar. The following is the list of papers related to the PASSION project and their corresponding

�le names:-

� ics94-out-of-core-hpf.ps.Z: \Compiler and Runtime Support for Out-of-Core HPF Programs",

Rajeev Thakur, Rajesh Bordawekar and Alok Choudhary, Proc. of Int. Conf. on Supercomputing (ICS

94), July 1994, pp. 382-391.

� splc94 passion runtime.ps.Z: \PASSION Runtime Library for Parallel I/O", Rajeev Thakur, Ra-

jesh Bordawekar, Alok Choudhary, Ravi Ponnusamy and Tarvinder Singh, Proc. of the Scalable Parallel

Libraries Conference, Oct. 1994

� passion report.ps.Z: \PASSION: Parallel and Scalable Software for Input-Output", Alok Choud-

hary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy, Tarvinder Singh and

Rajeev Thakur, NPAC Technical Report SCCS{636, Sept. 1994.

� access reorg.ps.Z: \Data Access Reorganizations in Compiling Out-of-core Data Parallel Programs

on Distributed Memory Machines ", Rajesh Bordawekar, Alok Choudhary and Rajeev Thakur, NPAC

Technical Report SCCS{622, Sept. 1994.

� vipfs.ps.Z: \The Design of VIP-FS: A Virtual Parallel File System for High Performance Parallel

and Distributed Computing", Juan Miguel del Rosario, Michael Harry and Alok Choudhary, NPAC

Technical Report SCCS{628, May 1994.

� adopt.ps.Z: \ADOPT: A Dynamic Scheme for Optimal Prefetching in Parallel File Systems", Tarvin-

der Singh and Alok Choudhary, NPAC Technical Report SCCS{627, 1994.

� task data.ps.Z: \Integrating Task and Data Parallelism Using Parallel I/O Techniques", Bhaven

Avalani, Alok Choudhary, Ian Foster and Rakesh Krishnaiyer, Proc. of the Int. Workshop on Parallel

Processing, Bangalore, India, Dec. 1994.

Acknowledgments

This work has been in
uenced by a number of people. We are thankful to Ken Kennedy, Chuck Koelbel,

Geo�rey Fox, Joel Saltz and Paul Messina for collaboration on various parts of this work and many en-

lightening discussions. We thank Justin Rattner and Dave Riss of Intel SSD for recognizing the importance

and providing support for this work. Brad Rullman of Intel SSD has provided technical input on various

aspects. We thank Marc Snir of IBM Corp. for his encouragement, collaboration, technical insight and

support for this work. We thank Yarsun Hsu and the entire parallel I/O group at IBM Yorktown Heights for

many fruitful discussions. We thank Rick Stevens, Ian Foster, Mani Chandy and Dan Reed for collaboration

31

and technical discussions. Terry Pratt has provided technical input and support through CESDIS. Robert

Ferraro of JPL has provided many insights into applications needing massively parallel I/O solutions.

Mike del Rosario has collaborated with us in the implementation of VIP-FS and the Two Phase Data

Access Method. We thank Ravikumar Muppirala of the Chemistry department at Syracuse University for

providing us the protein molecule structures used in this paper.

References

[ACFK94] B. Avalani, A. Choudhary, I. Foster, and R. Krishnaiyer. Integrating Task and Data Parallelism Us-

ing Parallel I/O Techniques. In to appear in Proceedings of the International Workshop on Parallel

Processing, Bangalore, India, December 1994.

[AS79] W. Abu-Sufah. Improving the Performance of Virtual Memory Computers. PhD thesis, Dept. of Com-

puter Science, University of Illinois, 1979.

[BBO+83] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus. CHARMM: A

Program for Macromolecular Energy Minimization and Dynamic Calculations. Journal of Computational

Chemistry, 4:187, 1983.

[BCF+93] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran 90D/HPF compiler for distributed

memory MIMD computers: Design, implementation, and performance results. In Proceedings of Super-

computing '93, pages 351{360, November 1993.

[BCT94] R. Bordawekar, A. Choudhary, and R. Thakur. Data Access Reorganizations in Compiling Out-of-core

Data Parallel Programs on Distributed Memory Machines. Technical Report SCCS{622, NPAC, Syracuse

University, April 1994.

[BdRC93] R. Bordawekar, J. del Rosario, and A. Choudhary. Design and Evaluation of Primitives for Parallel I/O.
In Proceedings of Supercomputing'93, pages 452{461, November 1993.

[BGMZ92] P. Brezany, M. Gerndt, P. Mehrotra, and H. Zima. Concurrent File Operations in a High Performance

Fortran. In Proceedings of Supercomputing '92, pages 230{238, November 1992.

[BGS93] D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for High-Performance Computing. Tech-

nical Report UCB/CSD-93-781, Computer Science Division, University of California, Berkeley, Computer
Science Division, University of California, Berkeleyley, California 94720, 1993.

[Bor93] R. Bordawekar. Issues in Software Support for Parallel I/O. Master's thesis, Dept. of Electrical and

Computer Engineering, Syracuse University, May 1993.

[Car93] Steve Carr. Memory-Hierarchy Management. PhD thesis, Rice University, February 1993.

[CCK90] David Callahan, Steve Carr, and Ken Kennedy. Improving Register Allocation for Subscripted Variables.

Proc. of SIGPLAN'90 Conference on Program Language Design and Implementation, June 1990.

[CF94] P. Corbett and D. Feitelson. Overview of the Vesta Parallel File System. In Proceedings of the Scalable

High Performance Computing Conference, pages 63{70, May 1994.

[CFPB93] P. Corbett, D. Feitelson, J. Prost, and S. Baylor. Parallel Access to Files in the Vesta File System. In

Proceedings of Supercomputing '93, pages 472{481, November 1993.

[CK89] S. Carr and K. Kennedy. Blocking Linear Algebra Codes for Memory Hierarchies. Proc. of the Fourth

SIAM Conference on Parallel Processing for Scienti�c Computing, 1989.

[CK94] Steve Carr and Ken Kennedy. Scalar Replacement in the Presence of Conditional Control Flow. Software-
Practice and Experience, 24(1):51{77, January 1994.

[CKP91] D. Callahan, K. Kennedy, and A. Porter�eld. Software Prefetching. In Proceedings of ASPLOS 91, pages

40{52, 1991.

[Cro89] T. Crockett. File Concepts for Parallel I/O. In Proceedings of Supercomputing '89, pages 574{579, 1989.

[D. 90] D. Kotz and C. Ellis. Prefetching in File Systems for MIMD Multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, pages 218{230, April 1990.

[DdR92] E. DeBenedictis and J. del Rosario. nCUBE parallel i/o software. In Proceedings of 11th International

Phoenix Conference on Computers and Communications, pages 117{124, April 1992.

[DMS+94] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The Design and Implementation of

a Parallel Unstructured Euler Solver Using Software Primitives. AIAA Journal, 32(3):489{496, March

1994.

32

[DPSM92] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed Memory Compiler Methods for Irregular

Problems { Data Copy Reuse and Runtime Partitioning. In J. Saltz and P. Mehrotra, editors, Languages,
Compilers and Runtime Environments for Distributed Memory Machines, pages 185{220. Elsevier Science

Publishers, 1992.

[dRBC93] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel i/o via a two-phase runtime access

strategy. In Proceedings of the Workshop on I/O in Parallel Computer Systems at IPPS '93, April 1993.

[dRC94] J. del Rosario and A. Choudhary. High performance i/o for parallel computers: Problems and prospects.
IEEE Computer, March 1994.

[dRHC94] J. del Rosario, M. Harry, and A. Choudhary. The Design of VIP-FS: A Virtual Parallel File System for

High Performance Parallel and Distributed Computing. Technical Report SCCS-628, NPAC, Syracuse

University, May 1994.

[DSB91] R. Das, J. Saltz, and H. Berryman. A Manual for PARTI Runtime Primitives. Interim Report 17,

ICASE, NASA Langley Research Center, May 1991.

[DSE88] P. Dibble, M. Scott, and C. Ellis. Bridge: A High-Performance File System for Parallel Processors. In

Proceedings of the Eighth International Conference on Distributed Computer Systems, pages 154{161,

June 1988.

[EK89] C. Ellis and D. Kotz. Prefetching in �le systems for MIMD multiprocessors. In Proceedings of the 1989

International Conference on Parallel Processing, pages I:306{314, August 1989.

[FAXC94] I. Foster, B. Avalani, M. Xu, and A. Choudhary. A Compilation System that Integrates High Performance

Fortran and Fortran M. In Proceedings of the Scalable High Performance Computing Conference, May

1994.

[For93] High Performance Fortran Forum. High Performance Fortran Language Speci�cation Version 1.0. Tech-
nical Report CRPC-TR92225, Center for Research in Parallel Computing,Rice University, January 1993.

[FWM94] G. Fox, R. Williams, and P. Messina. Parallel Computing Works. Morgan Kaufmann Publishers Inc.,

1994.

[HB91] S. Hammond and T. Barth. An Optimal Massively Parallel Euler Solver for Unstructured Grids. AIAA
Journal, AIAA Paper 91-0441, January 1991.

[Iri88] Francois Irigoin. Code Generation for the Hyperplane Method and for Loop Interchange. Technical

Report E102, Ecole Des Mines De Paris, October 1988.

[Kot94] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. Technical Report PCS-TR94-226, Dept. of

Computer Science, Dartmouth College, July 1994.

[LKB87] M. Livny, S. Khosha�an, and H. Boral. Multi-Disk Management Algorithms. In Proceedings of the 1987

ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 69{77, May

1987.

[Mav91] D. J. Mavriplis. Three Dimensional Unstructured Multigrid for the Euler Equations. In AIAA 10th

Computational Fluid Dynamics Conference, June 1991.

[MLG92] T. Mowry, M. Lam, and A. Gupta. Design and Evaluation of a Compiler Algorithm for Prefetching.
Architectural Support for Programming Languages and Operating Systems, pages 62{73, 1992.

[MS94] S. Moyer and V. Sunderam. PIOUS: A Scalable Parallel I/O System for Distributed Computing Envi-

ronments. In Proceedings of the Scalable High Performance Computing Conference, May 1994.

[MSS+88] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Principles of Runtime Support

for Parallel Processors. In Proceedings of the 1988 ACM International Conference on Supercomputing,

pages 140{152, July 1988.

[PGK88] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks (RAID). In
ACM SIGMOD Conference, pages 109{116, June 1988.

[PGS93] D. Patterson, G. Gibson, and M. Satyanarayanan. A Status Report on Research in Transparent Informed

Prefetching. Technical Report CMU-CS-93-113, Carnegie Mellon University, February 1993.

[Pie89] P. Pierce. A Concurrent File System for a Highly Parallel Mass Storage Subsystem. In Proceedings of

4th Conference on Hypercubes, Concurrent Computers and Applications, pages 155{160, Match 1989.

[Pon94] R. Ponnusamy. Runtime Support and Compilation Methods for Irregular Computations on Distributed

Memory Parallel Machines. PhD thesis, Department of Computer Science, Syracuse University, Syracuse,

NY, May 1994. Available as NPAC Technical Report SCCS{633.

33

[SBW91] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and Runtime Compilation. Concurrency: Practice

and Experience, pages 573{592, December 1991.

[SD90] R. Schriber and J. Dongarra. Automatic Blocking of Nested Loops. Technical report, Research Institute

for Advanced Computer Science, May 1990.

[Sni92] Marc Snir. Proposal for IO. Posted to HPFF I/O Forum by Marc Snir, July 7 1992.

[TBC94a] R. Thakur, R. Bordawekar, and A. Choudhary. Compiler and Runtime Support for Out-of-Core HPF

Programs. In Proceedings of the 8th ACM International Conference on Supercomputing, pages 382{391,
July 1994.

[TBC+94b] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh. PASSION Runtime Library

for Parallel I/O. In Proceedings of the Scalable Parallel Libraries Conference, October 1994.

[vKK+92] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler Analysis for Irregular

Problems in Fortran D. In Proceedings of the 5th Workshop on Languages and Compilers for Parallel

Computing, August 1992.

[VSM90] P. Venkatkrishnan, J. Saltz, and D. Mavriplis. Parallel Preconditioned Iterative Methods for the Com-

pressible Navier Stokes Equations. In 12th International Conference on Numerical Methods in Fluid

Dynamics, Oxford, England, July 1990.

[WB87] M. Wolfe and U. Banerjee. Data Dependence and its Application to Parallel Processing. International

Journal of Parallel Programming, 16(2):137{178, April 1987.

[WL91] M. Wolf and M. Lam. A Loop Transformation Theory and An Algorithm to Maximize Parallelism. IEEE

Transactions on Parallel and Distributed Systems, 2(4):452{471, October 1991.

[Wol87] M. Wolfe. Iteration space tiling for memory hierarchies. Extended version appeared in the Proceedings

of the Third SIAM Conference on Parallel Processing, December 1987.

[Wol89a] M. Wolfe. More iteration space tiling. Proceedings of Supercomputing'89, November 1989.

[Wol89b] M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge, MA, 1989.

[Wol92] M. Wolf. Improving Locality and parallelism in Nested Loops. PhD thesis, Stanford University, 1992.
CSL-TR-92-538.

[ZBC+92] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a Language Spec-

i�cation. Technical Report ICASE Interim Report 21, MS 132c, ICASE, NASA, Hampton VA 23681,

1992.

34

