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Abstract

Berman and Hartmanis [BH77] conjectured that there is a polynomial-
time computable isomorphism between any two languages complete for
NP with respect to polynomial-time computable many-one (Karp) reduc-
tions. Joseph and Young [JY85] gave a structural definition of a class of
NP-complete sets—the k-creative sets—and defined a class of sets (the

~k
Ky’

s) that are necessarily k-creative. They went on to conjecture that
certain of these K?’s are not isomorphic to the standard NP-complete
sets. Clearly, the Berman—Hartmanis and Joseph—Young conjectures can-
not both be correct.

We introduce a family of strong one-way functions, the scrambling
functions. If f is a scrambling function, then K? is not isomorphic to
the standard NP-complete sets, as Joseph and Young conjectured, and
the Berman-Hartmanis conjecture fails. Indeed, if scrambling functions
exist, then the isomorphism also fails at higher complexity classes such as
EXP and NEXP. As evidence for the existence of scrambling functions,
we show that much more powerful one-way functions—the annihilating

functions—exist relative to a random oracle.
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Random oracles are the first examples of oracles relative to which the
isomorphism conjecture fails with respect to higher classes such as EXP

and NEXP.

1 Introduction

The relationship between the Berman-Hartmanis isomorphism conjecture and
existence of one-way functions has been the subject of considerable research and
conjecture in recent years [JY85, KLD86, HH91, FKR&9].

We prove that the isomorphism conjecture is incompatible with the exis-
tence of scrambling functions, a type of powerful one-way function. To provide
plausibility for the hypothesis that scrambling functions exist, we show that
they exist relative to a random oracle, i.e., the set of oracles relative to which
scrambling functions exist has measure one in the standard Lebesgue measure
on languages. As a corollary, we obtain that the isomorphism conjecture fails
with respect to a random oracle.

The remainder of Section 1 consists of three parts: a historical survey, a
precise statement of our results, and some possible directions for future research.
Section 2 describes our notation and nomenclature. Section 3 considers the
structural consequences of the existence of scrambling functions, and Section 4
establishes the existence of scrambling functions (and still more powerful one-
way functions called annihilating functions) relative to a random oracle.

This paper has been written so that it might be read in two different ways.
General readers who want to know what we did and what it means, but not
necessarily how we did it, will want to read the remainder of this section, using
Section 2 as a general reference. Those readers who are interested in our proofs
may find it more economical to skim the preliminaries and continue their reading
with Sections 3 and 4.

1.1 A Brief Survey

In this section, we briefly survey the research that led to this work. The reader
may wish to consult Young’s excellent survey [You90] of structural research
on isomorphisms, as well as the surveys by Mahaney [Mah&86] and and Kurtz,

Mahaney, and Royer [KMR90].



1.1.1 The Structural Approach

In [BH77] Berman and Hartmanis made the following conjecture:

The Isomorphism Conjecture All NP-complete languages are polynomial-

time isomorphic to one another.

That is, in the terminology of Section 2, the NP-complete m-degree collapses.
As evidence for this conjecture, they adapted the proof of the Cantor-
Bernstein Theorem to show that the paddable NP-complete languages are iso-
morphic to one another. As all languages polynomial-time isomorphic to a
paddable language must themselves be paddable, 1t follows that the isomor-
phism conjecture is equivalent to the assertion that all NP-complete languages
are paddable. By surveying the literature of the time on NP-complete languages,
Berman and Hartmanis established that all of the then-known NP-complete lan-
guages were paddable, thereby providing empirical evidence for their conjecture.
In the years immediately following the isomorphism conjecture, research
centered not on the conjecture itself, but rather on structural predictions of the
conjecture. For example, the isomorphism conjecture predicts that there are no
sparse NP-complete languages. Mahaney, building on work of P. Berman and
Fortune, (cf. [Mah82]) verified this prediction under the hypothesis P # NP.
Another direction pursued in the years immediately following the conjecture
was to “relocate” it to other natural degrees. In their original article, Berman
and Hartmanis conjectured not only that the NP-complete degree collapsed, but
also that the PSPACE-complete degree collapsed. While they could not prove
their conjectures, Berman [Ber77] was able to obtain a number of important
partial results, e.g., that the complete m-degree for EXP consists of a single 1-li
degree.
A re-examination of the isomorphism conjecture began with Joseph and
Young’s [JY85] definition of a new class of NP-complete languages—the k-
creative languages. Joseph and Young considered the following specific k-

creative languages:
Kj o= {0 ®i(6) < il 17O+ 1

where k > 1, f is a polynomial-time computable, honest function, and ®; is the
run-time function of the ¢-th nondeterministic Turing Machine in some reason-

able indexing of TMs. At present, it is only known how to pad a K}“ when f is



polynomial-time invertible. Joseph and Young went on to assert the following

conjecture.

The Joseph-Young Conjecture There exists a one-way function f such

that for some k, K}“ 1s nonpaddable.

This conjecture goes beyond asserting that the Berman-Hartmanis conjec-
ture fails: 1t asserts that a language with a specific form witnesses the failure.
The K}“ languages are not merely m-complete for NP, they are 1-li complete.
Thus, the Joseph-Young conjecture predicts that the 1-li complete degree for NP
fails to collapse. Selman [Sel92] observed that the the Joseph-Young conjecture

entails the following, simpler, conjecture:

The Encrypted Complete Set Conjecture There exists a one-way func-
tion f such that f(SAT) is not is isomorphic to SAT.

Intuitively, f(SAT) is an encrypted version of SAT. Tt is easy to see that f(SAT)
is in NP: z € f(SAT) if and only if there exists an instance ¢ of SAT and a
truth assignment v such that f(¢) = « and v(p) = true. As f is itself 1-1 and
length increasing, we must have f: SAT <. f(SAT), and therefore f(SAT) is
NP-complete. Without further knowledge about f, there is essentially only one

clear choice for a padding function:

Pf(SAT)(l‘, y) = f(psat(9(®),y))

where psat is a padding function for satisfiability, and ¢ : f(SAT) <V . SAT.
This candidate padding function is easily seen to be 1-1 (as g and pgar and f
are 1-1), and length-increasing in both arguments (again, because g and psat
and f are). Unfortunately, the only way to recover y from f(psat(9(%),y))
appears to require the ability to invert f, and this we cannot do.

To summarize the foregoing discussion, we have the following four state-

ments:
JYC: The Joseph-Young Conjecture some K}“ is nonpaddable.

ECSC: The Encrypted Complete Set Conjecture there is a 1-way func-
tion f such that f(SAT) is nonpaddable.

IC;_;;: The 1-li Isomorphism Conjecture The complete 1-1i degree of NP

consists of a single polynomial time isomorphism type, and



IC: The Isomorphism Conjecture The complete m-degree of NP consists

of a single polynomial time isomorphism type.

with the following known structure:
JYC = ECSC = -IC,_;; = —IC.

It is not known which, if any, of these implications can be reversed at NP.
Not surprisingly, more is known about higher complexity classes. A well-known
theorem of Berman [Ber77] states that the complete m-degree of EXP consists
of a single 1-li degree, ie., =IC**" = —ICFX. A more recent theorem of
Watanabe [Wat91, Theorem 4] states that =IC® = ECSC® for deterministic
complexity classes C that contain coNEXP.

The Berman-Hartmanis and Joseph-Young conjectures both predicted prop-
erties of the NP-complete degrees that were not known to hold anywhere:
Berman and Hartmanis predicted that the complete m-degree for NP collapses,
and yet no nontrivial collapsing m-degree was known to exist; while Joseph and
Young predicted that the complete 1-li degree for NP does not collapse, and yet
no noncollapsing 1-1i degree was known to exist.

If one-way functions fail to exist, then every one-one length-increasing poly-
nomial-time computable function is necessarily invertible, and so by results
of Berman and Hartmanis, any two 1-li equivalent sets must be polynomial-
time isomorphic, and thus every 1-li degree collapses. Therefore, a minimal
hypothesis for the construction of a noncollapsing 1-li degree is the existence of
a one-way function. Watanabe [Wat85] conjectured that the existence of a one-
way function ¢s an adequate hypothesis for the construction of a noncollapsing
1-li degree, and he was proven correct by Ko, Long, and Du [KLD86]. This
validation of a prediction of the Joseph-Young conjecture is an important piece
of evidence in its favor.

Somewhat later, we [KMR88] showed that there are nontrivial collapsing m-
degrees, providing analogous evidence in favor of the Berman-Hartmanis con-

jecture. (See [KMRY0] for a more complete discussion of this.)

1.1.2 Relativizations

Relativizations have long been used in complexity theory to probe the limi-
tations of our proof techniques. Indeed, the use of relativizations has been so
successful that at times it seems that any reasonable complexity theoretic state-

ment holds relative to some oracle. The various isomorphism conjectures are a



notable exception to this trend: it has proven very difficult to produce oracles
relative to which one can decide the various conjectures.

The one simple relativization is an oracle relative to which the complete
m-degree for EXP collapses. By Berman’s theorem that the m-complete for
degree EXP consists of a 1-1i degree, it suffices to take an oracle relative to
which one-way functions fail to exist, for if one-way functions don’t exist, then
all 1-1i degrees must collapse. The original Baker-Gill-Solovay oracle relative to
which P = NP suffices.

In contrast, and in spite of widely perceived similarities between NP and
EXP, progress has not been made in obtaining an oracle relative to which the
complete degree for NP collapses.

Kurtz [Kur83b] provided the first example of an oracle relative to which P #
NP and yet the isomorphism conjecture fails. The failure of the isomorphism
conjecture relative to Kurtz’s oracle is different from that predicted by Joseph
and Young, as it is obtained by splitting the m-complete degree for NP into
several 1-degrees. Hartmanis and Hemachandra [HH91], by combining Kurtz’s
construction with Rackoff’s [Rac82] construction of an oracle relative to which
P = UP # NP, construct an oracle relative to which both conjectures fail. Thus,
while the Berman-Hartmanis and the Joseph-Young conjectures cannot both be
true, they can both be false.

After publication of the Hartmanis-Hemachandra paper, this was the state
of knowledge on oracles and isomorphisms: we knew of oracles relative to which
complete degrees at or above EXP collapsed, and we knew of oracles relative
to which NP did not collapse, but we knew of no natural complexity class for
which oracles of both sorts existed. Thus, while we knew of oracles that made
the Berman-Hartmanis and Joseph-Young conjectures fail, we didn’t know of
any oracles relative to which either conjecture succeeded.

After [KLD86] and [KMR88] appeared, we hoped to break the impasse. We
expected that the techniques of [KLD86] could be exploited in an oracle con-
struction relative to which the Joseph-Young conjecture holds; and we expected
that the techniques of [KMR88] could be used to construct an oracle relative to
which the Berman-Hartmanis conjecture holds.

We achieved limited success [KMR87] by constructing a sparse oracle relative
to which there is a collapsing m-degree in NP. As sparse oracles seem less likely
to distort structural relationships, we take this as evidence for the proposition

that some m-degree in NP collapses.



Homer and Selman [HS88] achieved the first breakthrough, producing an or-
acle relative to which the m-complete degree for ¥4 collapses, as well as an oracle
relative to which it fails to collapse. By their efforts, the complete m-degree for
Y2 became the first natural degree to have both collapsing and noncollapsing
relativizations. Recently, Fenner; Fortnow, and Kurtz [FFK92] demonstrated
the existence of an oracle relative to which the isomorphism conjecture is true.
Although the construction of these two oracles were substantial technical ad-
vances, neither is so natural as to provide a plausible source of intuition about
the unrelativized case.

In this paper, we show that the encrypted complete set conjecture holds
relative to a random oracle, i.e., the set of oracles relative to which the encrypted
complete set conjecture holds has measure one in the usual Lebesgue measure
on languages. Relative to a random oracle, higher complexity classes such as
PSPACE and EXP fail to collapse, and so we provide numerous examples of

natural complexity classes that can be relativized in both directions.

1.1.3 Random Oracles

We think of relativizations as providing alternative computational universes.
One often stated complaint about relativizations, however, 1s that these alter-
native universes are not consistent with one another. In other words, if 7 is a
statement about complexity theory, e.g., P # NP, there may be oracles A and
B such that 74 is true, and yet 72 is false. Because of this, the existence of
an oracle A relative to which 74 holds can only be taken as weak evidence for
(unrelativized) T.
In 1981, Bennett and Gill made the following dramatic conjecture [BG81].

The Random Oracle Conjecture If the set of oracles A relative to which
a complexity theoretic statement T4 holds has measure one, i.e., if T holds

relative to a random oracle, then the unrelativized T is true.

They based their conjecture on the following intuition: We know that there are
(qualitatively) good pseudorandom languages A in P. We expect that pseudo-
random and random languages will have essentially the same properties. Thus,
it is reasonable to expect that 74 will equal 7% for random R. But since A is
inP, 74 = 7, and so we expect that 7 will equal 7 as desired. Alternatively,
either the Random Oracle Conjecture is true, or there are essential structural

properties of random sets that cannot be captured by any pseudorandom set.



Since 1981, the random oracle conjecture has been refuted twice. Kurtz
[Kur83a] pointed out that coNP C P5*T but coNP¥ ¢ PSATF for random R.
More recently, Chor, Goldreich, and Hastad [CGH90] showed that coNPF ¢z PE
for random R, which together with the Fortnow, Karloff; Lund, Nisan [FKLN92]
proof that PH C IP gives another counterexample.

Both counterexamples have a common flavor. Imagine that there are expo-
nentially many boxes, one of which contains a prize. If the prize is placed at
random, then a computational agent that can only examine polynomially many
boxes has essentially no chance of finding the prize, no matter how powerful
he may be. If, on the other hand, the prize is placed only pseudorandomly,
then a sufficiently powerful computational agent will find it every time. Both
counterexamples rely on finding computational agents (PSAT or IP) that are
strong enough to defeat any polynomial time pseudorandom prize-hiding strat-
egy; but these agents must themselves be defeated when presented with a truly
random prize-hiding strategy. Stated somewhat differently, both PSAT and 1P
are sufficiently powerful to search any pseudorandom language; but for random
R, neither pSATE pop IPF is powerful enough to search R.

The main result of this paper is that the isomorphism conjecture fails relative
to a random oracle. In our case, the computational agents we will need to
consider will be in P, and so, in some sense, we end up relying on the fact that
PF isn’t powerful enough to search R. But now we’re back to the observation
upon which the random oracle conjecture was based: there seem to be good
pseudorandom languages in P, and we only need them to be good enough to
defeat P, not PAT or IP. We believe that such pseudorandom languages exist,

and that therefore the unrelativized isomorphism conjecture fails.

1.2 Overview of New Results

This section surveys the technical contributions of this paper. A one-way func-
tion (cf. Definition 3.1) is a polynomial-time computable, one-one, honest func-
tion that is not polynomial-time invertible. We have not been able to make
progress on the Joseph-Young conjecture under the hypothesis that “vanilla”
one-way functions exist. We have, however, been able to make considerable

progress under a stronger hypothesis: the existence of scrambling functions.

Definition 3.2 A function f is a scrambling function if and only if f is a one-

one, honest, polynomial-time computable function such that range(f) does not



contain a nonempty paddable language.
The existence of scrambling functions implies the Joseph-Young conjecture:

Theorem 3.3 If scrambling functions exist, the complete 1-li degree for NP

fails to collapse.

Theorem 3.4 If f is a scrambling function, then K}“ 15 a nonpaddable 1-1i
complete language for NP.

Theorem 3.7 If scrambling functions exist, then the complete 1-li degrees for

NP, PSPACE, EXP, NEXP, and RE all fail to collapse.

In as much as a direct proof of the existence of scrambling functions seems
to be well beyond our immediate ability, as a surrogate, we looked for an oracle
relative to which such functions exist. It was intuitively obvious that scrambling
functions must exist relative to a random oracle. In fact, much more powerful

one-way functions exist relative to a random oracle:

Definition 3.8 A function f is an annihilating function if and only if f is a
one-way function such that all polynomial-time decidable subsets of range(f)

are sparse.

It is not difficult to see that an annihilating function is necessarily a scram-

bling function.
Theorem 4.9 Annihilating functions exist relative to a random oracle.
Combining Theorems 3.7 and 4.9 yields

Theorem 4.10 Relative to a random oracle, the complete 1-li degrees for NP,
PSPACE, EXP, NEXP, and RE do not collapse. In particular, the isomorphism

conjecture fails relative to a random oracle.

1.3 Further Questions

We see a number of opportunities for improving on these results.
A first opportunity is to weaken the structural hypotheses that suffice to
prove the encrypted complete set conjecture. We speculate that the encrypted

complete set conjecture is equivalent to the existence of some sort of one-way



function, more powerful than the “vanilla” one-way functions, and weaker than
our scrambling functions.

A second opportunity is to explore additional structural consequences of the
existence of scrambling and/or annihilating functions. It seems that the exis-
tence of annihilating functions ought to have profound structural consequences,
and yet none of our structural theorems requires this power. In particular, we
would like to see a proof that the existence of annihilating functions implies
the complete m-degree for NP consists of a single 1-1i degree, or perhaps that
the existence of annihilating functions implies that the polynomial-time hier-
archy separates. In view of Theorem 4.9, these structural consequences would
immediately hold relative to a random oracle.

We would like to see structural hypotheses that are equivalent to the exis-
tence of these strong one-way functions, much as P # UP is equivalent to the
existence of one-way functions. This sort of structural taxonomy of one-way
functions seems to have a great deal of promise.

A final opportunity is to look for more powerful structural properties that
hold relative to random or generic oracles. We have found random oracles,
in particular, to be a valuable “laboratory” for exploring the plausibility of
various structural hypotheses. In particular, random oracles tend to be very
good at separating deterministic and nondeterministic complexity classes, and

at producing languages with very strong immunity properties.

2 Background Notation and Terminology

2.1 Numbers, Strings, and Languages

The set of natural numbers, {0,1,2,...}, is denoted by w. We identify each
z € w with the a-th string over ¥ = {0, 1} in the lexicographic ordering on X~
and use natural numbers and strings over ¥* interchangeably.

Languages are subsets of X*. The characteristic functions are the total
functions from w to {0, 1}, and are denoted collectively by 2. We identify each
language I C ¥* with its characteristic function: L(w) = 1 means w € L and
L{w) = 0 means w ¢ L. The complement of L in ¥*, i.e., ¥* — L, is denoted
by L.

The cardinality of a language L is denoted by ||L||. A language L is sparse
if and only if there 1s a polynomial p such that for every n there are at most
p(n) elements of L of length at most n, i.e., [[L [ X"]] < p(n) for all n € w.

10



2.2 Reducibility, Equivalence, and Isomorphism

If A and B are languages, and if f: ¥* — ¥* is computable in polynomial-time,

then A is polynomial-time many-one reducible to B via f if and only if
rt€A << flz)eB

for all z in ¥*. This relation is denoted by f: A <P B. Often the specific
reducibility f will not be mentioned, leaving us to simply write A <P B. If
frA <P B, and f is also one-one, then we say A is polynomial-time one-one
reducible to B, and write f: A <[ B. If f is length-increasing as well as one-one,
then we say A is polynomial-time 1-li reducible to B, and write f: A <V, B. As
a general rule, we are only interested in (possibly relativized) polynomial-time
reducibilities, and so we abbreviate polynomial-time many-one reducible by m-
reducible, polynomial-time one-one reducible by I-reducible, and polynomial-time
1-li reducible by 1-li reducible.

A language L is complete for a class C with respect to a reducibility <;
if and only if L is in C, and for all L' € C, L’ <, L. In the literature, the
term NP-complete 1s often used without specifying the intended reducibility.
In the early literature, NP-complete usually meant with respect to log-space
reductions. In more recent literature, NP-complete has come to mean with
respect to m-reductions. We use the term in this latter sense.

If A<P Band B <P A, then we say A and B are polynomial-time many-one
equivalent, and write A =P B. The notions of I-equivalent and I-li equivalent
are defined analogously. The collection of languages equivalent to a language A
is called the degree of A. Thus, the m-degree of A is {B : A = B}. The set of
NP-complete languages is an important example of an m-degree.

If f: A <P B, where f is one-one, onto, and polynomial-time invertible, then
we say that f is a polynomial-time isomorphism between A and B, and write
f: A =P B. We abbreviate polynomial-time tsomorphism by isomorphism. We
say that a degree collapses if and only if all of its members are isomorphic to one
another. Notice that m-degrees and 1-degrees are always unions of isomorphism
classes, but 1-1i degrees need not be [KLD86].

A function f is honest if and only if there 1s a polynomial p such that for
every # € ¥*, |z < p(|f(z)]). A function f is one-way if and only if f is a
one-one, honest, polynomial-time computable function that has no polynomial-
time computable inverse, i.e., there is no polynomial-time computable ¢ such

that, for all , ¢(f(x)) = . One-way functions are not known, but are widely

11



believed, to exist.

2.3 Padding and Pairing

A padding function {{-,-)) is a polynomial-time computable, one-one function
from pairs of strings to strings that is polynomial-time invertible in both argu-

ments [MY85]. A language A is paddable [BH77] if and only if for all # and
Y

reA = {(z,y)eA

If a padding function ({-,-)) is also onto, then we say {{-,-)) is a polynomial-
time pairing function.

Let (-, -) be the standard Rogers’ pairing function [Rog67, Page 64], where
(x,y) = %((1‘ +y)? + x + 3y). It is easy to see that (z,y) is a polynomial-
time pairing function according to our definitions; moreover, {-,-) is length-
nondecreasing in both arguments. Let B ® C denote {{b,¢) :be BAce C}. If
B is m-complete for NP, then A = B ® X* is 1-1i complete for NP.

Most complexity classes are closed under ®, i.e., if C is a complexity class,
and A, B € C, then A ® B € C. Moreover, most complexity classes contain
¥*. For such complexity classes, the construction above yields a simple but
important result: If B i1s m-complete for C, then B ® ¥* is paddable and 1-li

complete for C.

3 Structural Theorems

In this section, we consider various strengthenings of the definition of a one-way
function. We show that if one-way functions of a particular type—scrambling
functions—exist, then the complete 1-11 degrees of several complexity classes all

fail to collapse and, in particular, the isomorphism conjecture fails.

Definition 3.1. A function [ is a one-way function if and only if f is honest,

one-one, polynomial-time computable, and not polynomial-time invertible.

Our definition of one-way function requires totality, which is not the case in
all presentations, e.g., [GS88]. Berman [Ber77], Grollmann and Selman [GS84,
(S88], and Ko [Ko85] show that the existence of one-way functions is equivalent
to P # UP. Ko, Long, and Du [KLD86] show by a simple padding construction

that if one-way functions exist, then length-increasing one-way functions exist.

12



We introduce two more powerful variants of the notion of a one-way function,
and show that if these functions exist, then the complete 1-li degree for NP (and

for many other natural complexity classes) does not collapse.

Definition 3.2. A function [ is a scrambling function if and only if f is a one-

way function and range(f) does not contain a nonempty paddable language.

As with “vanilla” one-way functions [KLD8&6, Proposition 2.1], if scrambling
functions exist, then length-increasing scrambling functions exist.
The existence of scrambling functions implies that the encrypted complete

set conjecture is valid.

Theorem 3.3 If scrambling functions exist, then the complete 1-li degree for

NP fails to collapse, and so the isomorphism conjecture fails.

Proof: Let f be alength-increasing scrambling function and let A be paddable
1-1i complete for NP. Consider B = f(A). Since f is honest, it follows that B
is in NP, and, moreover, since f: A <[ . B, Bis 1-li complete for NP.

As B C range(f), B cannot be paddable. As paddability is an isomorphism

invariant, A and B are not isomorphic.

O

It is natural to ask whether the existence of scrambling functions implies the
Joseph-Young conjecture.
To this end, let ®;(x) denote the the running time of the i-th nondetermin-

istic Turing machine on input z. Recall that Joseph and Young define
Kf = {f@) : @:(F(0) < il [FOF +il}

for £ > 0 and one-one, honest, polynomial-time computable f.

By definition each K}“ is a subset of range(f), and so is not paddable if f is
a scrambling function. By the analysis in [JY85], the K}“ ’s will be 1-1i complete
for NP whenever f is an honest polynomial-time computable 1-1 function. We

have

Theorem 3.4 If f is a scrambling function, then each KJ’? 15 a nonpaddable
1-li complete language for NP.

13



The proof of Theorem 3.3 is far more general than it might initially appear.
In particular, the hypothesis that A was 1-1li complete for NP was only used to
ensure that B <[, A. By isolating this hypothesis, we can extend the proof of

Theorem 3.3 to obtain the noncollapse of many other 1-1i degrees.

Definition 3.5. A language A is image complete if and only if for every poly-
nomial-time computable 1-1i function f, f(A4) <}, A. A 1-li degree is image

complete if and only if all of its members are image complete.

Theorem 3.6 If scrambling functions exist, then every image complete 1-li de-

gree with a paddable element fails to collapse.

Image completeness is a property shared by the complete languages for most
natural complexity classes containing NP. In particular, the 1-1i complete lan-
guages for NP, PSPACE, EXP, NEXP, and RE are all image complete.

Theorem 3.7 If scrambling functions exist, then the complete 1-li degrees for

NP, PSPACE, EXP, NEXP, and RE all fail to collapse.

In Section 4, we will show that there are oracles relative to which scrambling
functions exist, indeed, that much more powerful sorts of one-way functions exist

relative to random oracles.

Definition 3.8. A function f is an annihilating function if and only if f is a
one-way function such that all polynomial-time decidable subsets of range(f)

are sparse.

As before, if annihilating functions exist, then length-increasing annihilating
functions exist.

Annihilating functions are, in one sense; the most powerful sort of one-way
function possible, for the range of every polynomial-time computable one-one
function must contain sparse sets in P with arbitrarily large polynomial census
functions.

It is easy to see that every annihilating function is a scrambling function.
The main result of the Section 4 is that annihilating functions exist relative to

a random oracle.

14



4 Randomness

In this section we show that annihilating functions exist relative to a random
oracle. Although it is easy to give heuristic arguments for this result, its proof
requires a measure theoretic argument. Section 4.1 sketches most of the back-
ground needed for the proof which appears in Section 4.2. Readers should not
be intimidated by measure theory. As we shall see below, the standard measure
on 2% 1s a direct generalization of probability over finite spaces. We refer readers

who want a systematic introduction to measure theory to any of the excellent

texts of Dudley [Dud89], Oxtoby [Oxt80], or Rudin [Rud87].

4.1 Measure Theory Background

Here we briefly develop the standard Lebesgue measure on 2% and discuss two
results of general measure theory: countable subadditivity and Kolmogorov’s
zero-one law.

Recall that 2% is the collection of all total functions from w to {0,1}, or,
equivalently, the collection of all infinite sequences of 0’s and 1’s. Let’s view 2%
as the collection of all possible infinite sequences of independent tosses of a fair
coin. For A C 2%, the measure of A (written p(A)) is simply the probability
that an element of 2 is in A. One can formally define this measure as follows.

Let ¢ range over finite sequences of 0’s and 1’s and let {o) denote the
collection of all infinite sequences that begin with o, i.e., that have ¢ as an
initial subsequence. Fix an arbitrary o of length m. The probability that m
independent tosses of a fair coin will produce ¢ is 277, So, the probability that
a randomly chosen infinite sequence begins with ¢ should be 277, Thus we
define p({o)h) = 27™.

To extend p beyond measuring the {o)’s, the idea is to take u(A) as the
limit of measures of approximations to A. We say that a countable collection
of o’s, oy, o1, ..., covers A if and only if A C U2 {c;) and we define the size
of this cover to be > 2 n({o:)). The outer measure of A (written p*(A)) is
the greatest lower bound of the sizes of covers of A. One would like to define
u(A) = p*(A) for arbitrary A, but there is a problem. Using the axiom of
choice one can construct an Ay such that u*(Ag) + p*(Ag) > 1, where Ay
denotes the complement of A in 2% [Oxt80]. On sets such as Ay, p* fails to
make sense as a probability measure. We thus say that A is measurable if and

only if p*(A) + p*(A) = 1 and then define p(A) = p*(A) for measurable A and

15



leave p(A) undefined otherwise. It can be shown (cf. [Dud89, Oxt80, Rud87])
that all Borel sets are measurable. All of the A considered below will be first
order definable, therefore Borel, and therefore measurable. We will use the term
probability as a synonym for measure. E.g., if we say that a random oracle R is
in A with probability p, this means that .4 has measure p.

Countable subadditivity is the property of u that, if <-’4i>z’eN is a sequence of

measurable sets, then

(U A) < D u(A.
iEN iEN
In probabilistic language this says that the probability of a countable union of
events is bounded above by the sum of the probabilities of the individual events.
Countable subadditivity, simple reasoning about limits, and finitary probability
theory are the primary mathematical tools in the next section.

A tail set 18 a subset P of 2% that is closed under finite variants, i.e., if X
and Y are subsets of w such that X AY is finite, then X € P «<— Y € P.
Kolmogorov’s zero-one law [Oxt80, Theorem 21.3] states that a measurable tail
set must have measure 0 or 1. The zero-one law thus gives us a means to convert
bounds of measures of sets to exact measures, e.g., to show that a tail set .4 has
measure 1, it is enough to show that 4 has positive measure.

If P is a predicate with u({R : PR}) = 1, then we say P holds relative to a
random oracle. In essence, this defines our use of the word random. Structural
properties such as { X . p* + Np* } are definable tail sets, and so have measure
0 or 1 by Kolmogorov’s zero-one law. Informally, this means that there is a well-

defined “measure 1”7 theory.

4.2 Annihilating functions exist relative to a random or-

acle

We focus our attention on the following function:
8(x) = R(z1)R(210)...R(z10%°]).

Intuitively, £ maps z to a string of length 3|z|+1 by copying and concatenating
3|#| + 1 independent “bits” from the oracle R. Note that for distinct « and #’,
the parts of the oracle that determine ¢%(z) and £%(2') are disjoint, i.e., the
values ¢f(z) and &% (2') are independent. As ¢ maps strings of length n to
strings of length 3n + 1, it is honest.
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Proposition 4.1 &7 is an annihilating function with probability at least 1/2.

Lemmas 4.2 through 4.8 establish this proposition which, together with an
application of Kolmogorov’s zero-one law, will yield the existence of annihilating

functions relative to a random oracle (Theorem 4.9).

Lemma 4.2 £ is one-one with probability at least 1/2.

Proof: If ¢f(a) = ¢f(b), then a and b must have the same length. We show
Prob[(3a,b € S")[a#b & ¥(a) = €R(b)]] < 27" (1)

Since > . 277=2 = 1/2, (1) implies that the probability that ¢ fails to be
one-one is no more than 1/2 and so the lemma follows.

If a and b are distinct elements of length n, then the probability that they
have the same image under ¢ is exactly 1/23"*!. There are (2;) distinct pairs
of elements of length n, and so the probability that there exist two strings of
length n having the same image under £ can be bounded above by

(2”) 1 _oanmhan - n-ign 1
2

93n+1 - 93n+1 < 93n+1 - gn42"
Therefore, (1) and the lemma follow.

O

The next lemma helps reduce the problem of showing Proposition 4.1 to
the problem of reasoning about the behavior of individual machines that try to
decide subsets of the range of ¢f. Let M range over relativized, polynomially-
clocked, deterministic TMs in which the clocks do not depend on the oracle.
For each such M\, define

Sy = {R : L(M\R) C range(¢f) = L(M\R) is sparse }

Lemma 4.3 If, for each M\, u(Sﬁ) =1, then £ is an annihilating function
with probability at least 1/2.

Proof: The argument is organized into a series of three claims. First define

if M® is polynomial-time and L(MR)] }
C range(¢ft), then L(MT) is sparse ’

s = {rsn |

where M ranges over deterministic, relativized TMs.
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Claim 1 If u(8) = 1, then ¢ is an annihilating function with probability at
least 1/2.

The probability that £¢# is an annihilating function is easily seen to be p(SN
{R : €8 is honest & 1-1 }) Suppose u(S) = 1. Then,

p(SN{R: ¢% is honest & 1-1 H p({ R: ¢f is honest & 1-1 H
p({ R:&Mis 1-1})

> 1/2, by Lemma4.2.

Therefore, Claim 1 follows.
Claim 2 S = mﬁ8ﬁ~

Suppose that R € §. Then, by the definitions of § and the S3;’s, R €
ﬂﬁSﬁ Hence, S_g ﬂﬁSﬁ

Suppose R € S. Then, for some M, M?* is polynomial-time, L(M%) C
range(£%), and L(MT) is not sparse. Clearly, then, there is an M such that
L(MT) C range(¢f) and L(M*%) is not sparse. So, R € Uﬁ% = NGS5
Hence, § 2 NS85

Therefore, Claim 2 follows.

Claim 3 If, for each M\, w(Sy) =1, then p(NpS5) = 1.

By countable subadditivity, the union of countably many sets of measure 0
is itself a set of measure 0. So, the intersection of countably many measure 1

sets is also measure 1. Therefore, Claim 3 follows.

Putting the three claims together, we obtain the lemma.

O

For the rest of this section fix an arbitrary M and let LE = L(M\R). The
aim of Lemmas 4.5 through 4.8 is to show that:

Relative to a random oracle R, if LR C range(¢ft), then LR is sparse.

As our choice of M was arbitrary, by the previous lemma it follows that this
suffices to establish Proposition 4.1.
We introduce some more terminology. We say that MP on argument y

examines r if and only if in the course of the computation of M\R(y) the machine
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queries its oracle about some string of the form x10* for k < 3|z|. Intuitively,
this means that the computation learns some information about the value of
f(x).

We decompose L% into two disjoint languages:

OF = ye IR . ME on argument y examines

" some z such that R(z)=y .
UR - y e iR . MPE on argument y fails to exam-

" ine any z such that Rz) =y .

Let’s view ME as trying to accept a subset of range(¢%). One can then think
of Q® as being the “responsible” subset of ER, 1.e., the subset of LR consisting
of those y € LB for which MF has successfully obtained a preimage of y under
&R In contrast, UF is the “irresponsible” subset of LR as it contains y € LR
for which M was not able to obtain a preimage under €. By a reasonably
straightforward argument, the proof of Lemma 4.7 establishes that QF is sparse
relative to a random oracle R. By a rather more involved argument, the proof
of Lemma 4.6 shows that, relative to a random oracle R, if U® C range(¢%),
then U% is finite. At an intuitive level, this last assertion seems quite plausible:
If you say that y € £37*! is in the range of £¥ without querying R about any
preimage x, you have a probability of 27 /2371 = 1/22"+! of being correct. You
cannot expect to have an infinite run of wins against such odds. However, the
formalization of this heuristic argument leads us into an analysis of a topological

structure that ¢® imposes on 2¢.

Definition 4.4. We say that R and S are z-variants (written R ~, S) if and
only if RAS C { x10% 1 k < 3n }, i.e., R and S are identical except perhaps on

the strings that determine the value of £ on input z.

Clearly ~, is an equivalence relation for every string x and every R has
exactly 231°1+1 many z-variants (including R itself). The next lemma states the

fundamental fact we use about z-variants.

Lemma 4.5 (The z-Variant Density Lemma) Suppose ¢ > 0, ¢ € w, and
A is a measurable subset of 2% such that for every oracle R,
[{S:S ~; RINA|
{55~ R} —

Then, p(A) < e.
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Proof: Here, and only here, do we make use of more tools from measure theory
than those introduced in Section 4.1. See [Dud89] or [Rud87] for background
on product measures.

Let n = |z| and let &’ be a distinct copy of w. We factor 2* into a product
of {0’1}3n+1 and 2¢' in which, for each R € 2%, R = (ro, R1) where 7y =
R(z1)R(z10) ... R(x10%") (= ¢%(z)) and R; is just the sequence R with each
of the elements at positions z1, 210, ..., and £103" removed. Let 14 be the
characteristic function of A over {0, 1}3n+1 x 2¢' that is, for R = (ro, R1),
14(ro, R1) = 1 when R € A and 14(rg, R1) = 0 when R ¢ A.

We view {0, 1}3n+1 as a measure space under the uniform, normalized count-
3+ as weight 27371, Let pg be this

measure. Also let pq be the standard Lebesgue measure on 2’ One can show

ing measure, i.e., each element of {0, 1}

that g is the product of measures pg and gy, and so, by Fubini’s Theorem
[Dudg89, Rud&7],! we have that

WA = / / 1a(ro, By) dpo(ro) duy (Ry).

Now, using the terminology of the prior two paragraphs, the inequality of
the hypothesis can be restated as: for each R; in 2“’1,

/1A(7“0,R1) d/,to(?“o) S €.

Therefore,

p ) = [ [1ato m)duto) din(r) < [edunir) = o
as required.
O

We introduce one more bit of terminology for the proof of the next lemma.
If L is an oracle-dependent language, then we say LT on argument y depends
on x if and only if there is an S, S ~, R, such that y € L% A L°. Clearly, if
our L on argument y depends on x, then ME on argument y must examine
z, but the converse is not necessarily true. Note that by the definition of U, if

y = 8(x) € UR, then ME on argument y does not depend on x.

Lemma 4.6 With probability 0, U is an infinite subset of range(¢f).

I Actually, we are using a special case of Fubini’s Theorem, the Product Measure Existence
Theorem [Dud89, Theorem 4.4.4].
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Proof: For each k, define

U®R C range(¢ft) and for some =z }
with |z| > k we have éf(x) ¢ UR |~

R(k) = {R
A little playing with quantifiers shows that Ng>oR(k) is the collection of all
oracles R such that U is an infinite subset of range(¢t). Thus, to show the

lemma it suffices to prove that u(R(k)) = 0 as k — oo. To help establish this

convergence, we define, for each z € w:
Clx) = {R cURC range(ﬁR) and E’R(a:) eUt } .

M(z) = {R: forsomez' #z, &B(a')=¢R(2)}.

Cl() = {R : (i) U™ C range(&™), (i) &''(») € U™, and}

(iii) z is the only string that ¢ maps to £f(z)
= Cz) — M(z).

Note that R(k) = Up>k Upen» C(x) and C(x) C C'(x) U M(x). So, to bound
#(R(k)), we bound the u(C(z))’s and, to bound u(C(x)), we bound u(C'(z))
and p(M(x)).

Fix # and let n = |z|.

We first bound pi(M (z)). Since £f(2) = ¢#(y) implies that |y| = n, the only
strings different from z that £ could map to £f(z) are the y € (X" — {z }).
There are 2" — 1 many such y and each has a 1 in 23" +! chance to map to £f(z).

Since these events are pairwise independent, we therefore have

2n -1

pMe) = 2ol 2
Next we bound p(C’'(x)). We show
pOE) < o gl

To establish this, it suffices by Lemma 4.5 to argue that, for each R, at most
one of R’s 2°"*! many z-variants can be in C'(z).

Pick an arbitrary R. If none of R’s z-variants is in C'(x), we are done. So,
suppose that at least one of R’s z-variants is in C'(z). Without loss of generality
suppose R itself is in C’'(z). Let y = ¢%(z) and let S be an arbitrary x-variant
of R distinct from R.

Claim 1 ye U”.
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Since R € C'(z), by clause (ii) in the definition of C'(z), y € U%. As U on
argument y does not depend on x and since y € U% it follows that y € Us' for
each S ~, R. In particular, y € U°. Hence, Claim 1 follows.

Claim 2 y ¢ range(¢”).

Since S ~; R, but S # R, we have £°(z) # ¢f{(z) = y. By clause (iii) in the
definition of C'(z), ¢ maps each string in (X* — {z}) to someplace other than
y. But, since S ~, R, ¢° and £ act identically on (X* — {z}). Hence, Claim
2 follows.

Thus, by Claims 1 and 2, y € (U® — range(¢%)). So, by clause (i) in the
definition of C'(x), S ¢ C'(x). Since S was an arbitrary z-variant of R distinct
from S, we therefore have that R is the only one of its z-variants in C'(x)—as
required. We thus obtain (3).

Now, since C(z) C C'(x) U M(z),

pC(x) < p(C'(2)) + p(M(z))

1 2" —1

< SELNE) + pECESY (by (2) and (3))
1

T 92ntl”

Since for each k we have R(k) = Up>k Urex» C(z), it follows by countable
subadditivity that

1 1 1
n(R(k)) < Z Z p(C(x)) < Z Z St = Z il = ok
n>k zexX™ n>k zeX™ n>k
Therefore, limy oo #(R(k)) = 0 as was to be shown.

O

We note that in the above argument one needs to use only two facts about
U: that (a) for each = and y, if y = £%(z) € U*, then U® on argument y
does not depend z and that (b) for each y, the set {R Ty € UR} is measurable.
(Condition (b) guarantees that the C(x)’s are measurable which in turn allows
application of Lemma 4.5.) Thus, so long as U satisfies these two conditions, it
does not have to be given by a polynomial-time deterministic TM, in fact U

does not even have to be computable relative to R!

Lemma 4.7 QF is sparse with probability 1.
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Proof: Let p be a polynomial such that, for each oracle R and input y, p(|y|)
bounds the run time of M. Recall that by the definitions of ¢# and Q¥, QF C
range(£%) C Up 5Bt

For the moment fix a y € ¥3"+1 For any given € X", the probability
that ¢f(z) = y is 1/257*1. Recall that the value of £ on z depends solely
on R(zl),..., R(z103") and is thus independent of the rest of the oracle R.
Therefore, for each =, 1/23"*! is an upper bound on the probability that
R(z) = y and MPE examines z on argument y. Since for any R, ME on
argument y can examine no more than p(3n + 1) many #’s of length n, the
probability that MFE on argument y examines a preimage of y is at most p(3n+
1)/237+1,

As the bound of the prior paragraph was for an arbitrary y € L3711 it
follows that the expected number of elements of length 3n 4+ 1 accepted by
MPE is bounded above by 237+1 . (p(3n + 1)/23"*1) = p(3n + 1). By Markov’s
Inequality we know that if X 1s a nonnegative random variable and a > 0, then
Prob[X > a- EX] < 1/a. Thus, the probability that @ can contain more than
n? - p(3n + 1) many elements of length 3n + 1 is less than n=2.

Therefore, for each k: the probability that there exists some n > k such that
||QR N 23""'1” > n? - p(3n + 1) is bounded above by

1 1
2w < T

n>k

Thus, it follows that Q¥ is sparse with probability 1.

Lemma 4.8 With probability 1, if IR C range(¢%), then LR s sparse.

Proof: Recall that L¥ is the disjoint union of Qf and U®. By Lemma 4.6,
with probability 1, if U is a subset of range(£%?), then U is finite. By Qs
definition, it is a subset of range(¢f) and, by Lemma 4.7, Qf is sparse with
probability 1. Thus, the lemma follows.

O

Therefore, by Lemmas 4.3 and 4.8, Proposition 4.1 follows. We can now

prove

Theorem 4.9 Annihilating functions exist relative to a random oracle.
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Proof: If an annihilating function exists with respect to an oracle R, then
clearly an annihilating function exists with respect to all its finite variants. By
Kolmogorov’s zero-one law, the measure of the set of oracles R such that there
is an annihilating function relative to R has measure 0 or 1. By Proposition
4.1, there is a set of positive measure on which ¢® is an annihilating function.

The theorem follows.

O

The next theorem is an immediate consequence of Theorem 4.9, Theorem 3.7,

and the fact that all annihilating functions are scrambling functions.

Theorem 4.10 Relative to a random oracle, the complete 1-li degrees for NP,
PSPACE, EXP, NEXP, and RE do not collapse. In particular, the isomorphism

conjecture fails relative to a random oracle.

We also observe that relative to a random oracle, the NP-complete languages

require exponential time to compute deterministically:

Corollary 4.11 Relative to a random oracle, the smallest deterministic class
that

e is closed under precomposition with the polynomial-time computable func-

tions; and
o contains NP

s EXP.

Proof: The proofs of Lemmas 4.3 through 4.8, mutatis mutandis, show that
if TH is a deterministic oracle Turing machine that makes fewer than 27" /n?
queries on strings of length 3n 4 1 for infinitely many n, then 7% cannot accept

range(£%) relative to a random oracle. The corollary follows immediately.

O

Independently of and simultaneously with our work, Rudich [Rud&8] proved
that, relative to a random oracle, there is a one way function f such that no
BPP-machine can invert f on a nonsparse set. His proof is essentially the proof
of Lemma 4.7, together with the observation that P = BPP relative to a random
oracle. By combining our Theorem 3.9 with Rudich’s observations, we obtain

the following purely complexity theoretic result:
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Corollary 4.12 Relative to a random oracle, there is a UP set whose only BPP

subsets are sparse.
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