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Uncheatable Grid Computing*

Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Musage
Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY 13244-1240, USA
Tel: +1 315 443-9180 Fax: +1 315 443-1122
Email: {wedus,jijia,mkmangal,mmurugé@syr.edu

Abstract The class of problems dealt by grid computing are those

which involve tremendous computations and can be broken

Grid computing is a type of distributed comput- down into independent tasks. A general grid computing en-
ing that has shown promising applications in many fields. vironment includes aupervisorand a group oparticipants

A great concern in grid computing is the cheating prob- who allow the idle cycles of their processors to be used for

lem described in the following: a participant is given the computations. The participants are totally ignorant of

D = {x1,...,7,}, it needs to computef(x) for all each other and after completing their tasks report back the
r € D and return the results of interest to the supervi- results to the supervisor.

sor. How does the supervisor efficiently ensure that the par-

e ; X Past few years have seen a tremendous growth in grid
ticipant has computed(x) for all the inputs inD, rather

o 7 _ computing with its effect being felt in the biotechnology in
than a subset of it? If participants get paid for conduct- gty entertainment industry, financial industry, etbe T
ing the task, there are incentives for cheatlng. In this success of the projects like SETI@home [2], IBM small-
paper, we propose a novel scheme to achieve thg uncheatpox research [3], GIMPS [4] has made the potential of grid
able grid computing. Our scheme uses a sampling teCh'computing visible.

nique and the Merkle-tree based commitment technique . .
d q For instance, IBM’s smallpox research [3] uses grid

to achieve efficient and viable uncheatable grid comput- . ) .
ing. cpmputmg tq find pc_)tent|al drugs to counter the smallpox
virus. Its main task is to screen hundreds of thousands of
molecules, a task that can take years even with supercom-
puters. By downloading and running the software, partic-
1. Introduction ipants can add their CPUs to the global grid. Every time
their computers are idle, the computing resources can be
The increasing complexity of computations, better pro- contributed to the grid, accelerating the screening pmces
cessing power of the personal computers and the ever inwhjle dramatically reducing the cost of the project. The
creasing reach and speed of the Internet have laid dowryesylt is that rather than spending years, it will be pos-
the path for grid computingComputational grids a novel,  sjble to screen hundreds of millions of molecules in just
evolving infrastructure that provides unified, coordimhte months. Another highly-profiled grid computing project is
access to computing resources such as processor cycleSETI@home [2], which is a scientific experiment that uses
storage, etc. Wide variety of systems, from small worksta- |nternet-connected computers in the Search for Extraterre
tions to supercomputers can be linked to a grid to form a trig| Intelligence (SETI). SETI@home has more than
powerful virtual computer. All the complexities involved i mjllion users contributing their computers’ unused preees
managing resources of a grid are hidden from the clients,ing power, to form a5 Teraflops grid, faster than IBM’s
providing a seamless access to computing resources. As aost powerful supercomputé&SCl White(12 Teraflops).

great advancement towards cost reduction, computationala|se the cost of the SETI grid is onf§00K dollars whereas
grids can be used as a replacement for supercomputers thgtsc| white costsi 10 million dollars [2].

are presently used in many computationally intensive scien

. However the untrusted environments in which the com-
tific problems [1, 7].

putations are performed tend to cast suspicion on the verac-

*  This work was supported in part by Grant 11S-0219560 and IIS- ity of the results returned by the participants. The partl_c|
0312366 from the United States National Science Foundatiohby pant may not have performed the necessary computations
the CASE Center at Syracuse University. but claims to have done so. This cheating behavior, if un-




detected, may render the results useless. Project managergervisor sends to the participant some pre-computed sesult
from SETI@home have reportedly uncovered attempts bywithout disclosing the corresponding inputs. The partici-
some users “to forge the amount of time they have donatedpant must find out those secret inputs. Golle and Mironov
in order to move up on the Web listings of top contribu- have shown that by selecting the secret inputs in proper
tors” [5]. Yet SETI participants are volunteers who do not ways, the chance for a participant to cheat successfully is
get paid for the cycles they contribute. When participants slim. This scheme is generally referred to as theger

are paid for their contribution, they have strong incerstive scheme. The ringer scheme assumes that finding the secret
to cheat for maximizing their gain. inputs from the pre-computed results is no easier than us-

Therefore, we need methods to detect the cheating being the brute-force approach to try all the inputs. Therefor
haviors in grid computing. We formulate the problem of the functionf must have the one-way property, i.e., it is
uncheatable grid computinig the following: difficult to find « from f(z). The ringer scheme is thus re-
stricted to computations that have such a one-way property
and it cannot be applied to generic computations.

Szada, Lawson, and Owen extend the ringer scheme to
deal with other general classes of computations, including
optimization and Monte Carlo simulations [10]. They pro-
pose effective ways to choose ringers for those computa-
tions. It is still unknown whether the schemes proposed
in [10] can be extended further to generic computations.

Problem 1 (Uncheatable Grid Computing\ participant is
assigned a task consisting of computifig:) for all the in-
putsz € D = {x1,...,z,}, Wheren = |D|; the partic-
ipant needs to return the results of interest to the supervi-
sor. A dishonest participant might compuféx) for only

x € D', whereD’ is a subset ofD, but claims to have
computedf for all the inputsHow does the supervisor effi-
ciently detect whether the participant is telling a truthar
lie?

A straightforward solution is ta@ouble-checlevery re-
sult. The supervisor can assign the same task to more . .
than one participant and compare their results. This sim—z'l' Model of Grid Computing
ple scheme leads to the wastage of processor cycles that are
precious resources in grid computing. Moreover, it intro-
ducesO(n) communication cost for each participant. Note
that in grid computing, the supervisor only needs the par-
ticipant to return the results of interest, which is usually

2. Problem Definition

We consider a grid computing in whiamtrusted par-
ticipantsare taking part. The computation is organized by a
supervisor Formally, such computations are defined in our
model by the following elements:

very small number compared ta ThereforeO(n) over- e Afunction f : X — T defined on a finite domain
head is substantial. X. The goal of the computation is to evalugten all
An improved solution is to ussamplingtechniques. The xr € X. For the purpose of distributing the computa-
supervisor randomly selects a small number of inputs from tion, the supervisor partitioX into subsets. The eval-
D (we call these randomly selected inputs samples or sam-  uation of f on subsetX;; is assigned to participant
ple inputs); it only double-checks the results of these sam- o A screenerS. The screener is a program that takes as
ple inputs. If the dishonest participant computes only one oyt a pair of the forn(a: f(x)) for = € X, and re-
half of the inputs, the probability that it can successfully turns a strings = S(x; f(x)). S is intended to screen
cheat the supervisor is one out2f, wherem is the num- for “valuable” outputs off that are reported to the su-
ber of samples. If we make: large enough, e.gn = 50, pervisor by means of the string We assume that the
the cheating is almost impossible. This solution has a very run-time of S is of negligible cost compared to the
small computational overhead(m)), becausen < n. evaluation off.

However, this scheme still suffers from th&n) commu-
nication cost because it requires the participant to selnd al
the results back to the supervisor, including those that are
of no interest to the supervisor. To improve this situation, 5 participant can choose to cheat for a variety of rea-
we have developed a Commitment-Based Sampling (CBS)sqns we categorize the cheating using the following two
scheme. Our scheme rec}uces the communication overheag, jels. We assume that the participant is given a domain
to_O(mlog_n). Becausql is usually large (e.gn = 2), D c X, and its task is to computé(x) for all z € D.

this result is a substantial improvement. From now on, we us® as the domain of for the partici-
pant.

2.2. Models of Cheating

1.1. Related Work
e Semi-Honest Cheating Modéft this model, the cheat-
To defeat cheating in grid computing, Golle and Mironov ing participant follows the supervisor's computations

proposed a ringer scheme [8]. In the ringer scheme, the su-  with one exception: forr € D C D, the participant



usesf(z) as the result off (z). Functionf is usually
much less expensive than functigh for instance,f

can be a random guess. The goal of the cheating par
ticipant in this model is to reduce the amount of com-
putations, such that it can maximize its gain by “per-
forming” more tasks during the same period of time.

R: ®(R) = hash(®(E)||®(F))

—= ®(R) is used as the commitment

B: ®(B) = hash(®(Ls)||®(L4))
HC: @(C') = hash(®(A)||(B))

E: ®(E) = hash(®(C)||®(D))

Malicious Cheating Modelln this model, the behav-
ior of the participant can be arbitrary. For example, a
malicious participant might have calculated functio
fonallz € D, but when it computes the screener L
function S, instead of computing(z; f(x)), it might
computeS(z; z), wherez is random number. In other
words, the participant intentionally returns wrong re-
sults to the supervisor, for the purpose of disrupting
the computations.

Ly

Ly Ly

Selected D(L;) = f(a;), fori=1...n
Sample z3

Figure 1. CBS Scheme: the Merkle Tree and
the Verification

To maximize their gains, rational cheaters tend to use y,o supervisor side i9(264), which is about 6 million ter-

minimal cost to falsify the contributions they have never abytes. Very few networks can handle such a heavy network
made. Their behaviors fall into the semi-honest cheating|0ad

model. Therefore, in this paper, we focus onskeni-honest
cheating model.

Is it possible not to require each participant to send all
the outputs? Or is it possible just to ask the participant to
send the results for those sample inputs? The solution is
non-trivial because we have to prevent the participant from
computing the results for the sample inputs after it learns

Assume that a participant is assigned a task that consistsvhich inputs are samples. For examplezif is selected
of computingf (z) forallz € D, whereD = {z1,...,z,}. as a sample, the supervisor negds;) from the partici-

2.3. Definition of Uncheatable Grid Computing

If a participant computes the functighonly onz € D/,
whereD’ C D, we define théhonesty ratior as the value

of %. When the participant is fully honest, the honesty ra-
tioisr = 1; otherwiser < 1.

Definition 2.1 (Uncheatable Grid Computing) Le®r(r)

pant to check whether the participant has correctly calcu-
lated f(x). However, without a proper security measure,
the participant, who has not computgdz, ), can always
compute it after learning, is a sample. This defeats the
purpose of sampling.

One way to solve the above problem is to esenmit-

be the probability that a participant with honesty ratio  ment Before the participant knows thay, is a sample, it
can cheat without being detected by the supervisor. Letneeds to send the commitment fffz;,) to the supervisor.
Ceheating b€ the expected cost of successful cheating, andonce the participant commits, it cannot charfge;, ) with-
Ctask e the overall computation cost of the required task. out being caught. The supervisor then tejjsto the partic-
We say a grid computing isncheatabléf one of the fol-  jpant, which has to reply with the original value ¢fz;,)
lowing or both inequalities are true: that was committed. Since any input has equal probability
to become a sample, this means the participant has to com-
mit all the results for those inputs; how can it be done effi-
ciently? Obviously the participant cannot afford to serel th
commitment for each single input, because the:) com-
munication cost makes it no better than the naive sampling
scheme. The participant cannot hash all thesesults to-
gether to form one single commitment either; although this
method achieves the commitment for all results, it makes
The naive sampling scheme can solve the uncheatableverifying a single result difficult because to do that, the su
grid computing problem with efficient computation cost, but pervisor needs to know all the other 1 results.
it requires expensivé(n) communication cost. To each In summary, we need a commitment scheme that (1) al-
participant, this cost might not be too high, but to the su- lows all then results to be committed efficiently, and (2) al-
pervisor, the cost might be overwhelming. For example, if lows the verification of each single result to be performed
the task of grid computing is to break a 64-bit password us- efficiently. We use the Merkle Tree [9] to achieve these
ing the brute force method, the total communication cost at goals.

Pr(r) <e,foragivens(0 < e <1)

or Ccheating > Ctask~

3. The Commitment-Based Sampling Scheme



3.1. The Commitment-Based Sampling Scheme

The Merkle tree (also called hash tree) is a complete bi-

nary tree equipped with a functidrush and an assignment

We demonstrate how the verification works using an ex-
ample depicted in Fig. 1. Assume thaf is selected as an
sample, whose corresponding leaf node in the trebsis
The participant finds the path froiy to the root (depicted

®, which maps a set of nodes to a set of a fixed-size strings by the double lines). Then the participant sends to the super
In a Merkle tree, the leaves of the tree contain the data, andvisor f («3) and all thed values of the sibling nodeg.(, A,
the ® value of an internal tree node is the hash value of the D, andF") along the path. The sibling nodes are depicted by

concatenation of thé values of its two children.

To build a Merkle tree for our problem, the participant
constructsn leavesL, ..., L,. Then it builds a complete
binary tree with these leaves. Thevalue of each node is
defined as the following (we udéto denote an internal tree
node, and/j. s andV,;41+ to denotel’s two children):

(L)
o(V)

flzs), fori=1,...,n
hash(®(Viese)||®(Vyight)),

@)

where {|” represents the concatenation of two strings, and
the functionhash is a one-way hash function such as MD5
or SHA. To make a commitment on all the data on the
leaves, the participant just needs to sdnd?) to the su-
pervisor, whereR is the root of the Merkle tree. Fig. 1 de-
picts an example of the Merkle tree built for our purpose.

After receiving the commitment, the supervisor ran-

the black nodes in the figure. To verify whether, before com-
mitting ®(R), the participant has computef{zs) or not,
the supervisor first makes suférs) is correct. Then the su-
pervisor reconstructs the roft from f(z3), ®(L4), P(A4),
®(D), and®(F).! If ®(R') = ®(R), we can say that the
participant knowsf (z3) before building the Merkle tree.

We call the scheme described above the Commitment-
Based Sampling (CBS) scheme. Its steps are described in
the following:

Step 1: Building Merkle Tree. Using Eq. (1), the partici-
pant builds a Merkle tree with leaf nodés, ..., L,, and
®(L;) = f(x;),fori = 1,...,n. The participant then sends
®(R) to the supervisor.

Step 2: Sample SelectionThe supervisor randomly gen-
eratesm numbers4i, ..., i,,) in domain[1, n], and sends
thesem numbers to the participant. These numbers are the

domly selects a number of samples, and sends them tcsample inputs.

the participant. The participant needs to provide the evi-
dence to show that, before making the commitment, it has

already computed for those samples. Let be a sam-
ple, and L be z's corresponding leaf node in the tree.
Let A denote the path fronl. to the root (not includ-
ing the root), and lefd represent the length of the path.
In order to prove its honesty regardinx), the partici-
pant sendg (x) to the supervisor; in addition, for each node
v € A, the participant also sends(v’s sibling) to the su-
pervisor. We use\,..., Ay to represent thes@ val-
ues.

To verify the participant’s honesty on samplgethe su-
pervisor first verifies the correctnessfdf:). If f(z) sent by
the participant is incorrect, the participant is caughtathe
ing immediately. Even iff (x) from the participant is cor-

rect, it cannot prove the participant’s honesty because the

participant, who did not computg(z), can compute the
correctf(x) after knowingz is the sample. The supervisor
uses the commitmeri(R) made by the participant to en-
sure that the corregt(x) is used at the time of building the
Merkle tree. To achieve this, the supervisor uges) (cor-
rect) and\q, ..., Ag to reconstruct the root of the Merkle
tree R/, thus getting®(R’). Only if ®(R') = ®(R), will

the supervisor trust that the participant has correctly-com
putedf(x) before building the Merkle tree. The communi-
cation cost of this process is proportional to the height of

the tree. Because the Merkle tree is a complete binary tree

with n leaves, its height i®(log n), wheren = |D|.

Step 3: Participant’s Proof of Honesty. For eachi €

i1,...,4m}, the participant finds the pathfrom the leaf
nodeL; to the rootR; then for each node € ), the par-
ticipant sends to the supervisb(v’s sibling). Thesed val-
ues are denoted by, ..., A\y. The participant also sends
f(x;) to the supervisor.

Step 4: Supervisor's  \Verification. For each
i € {i1,...,im}, the supervisor verifies whethéf(z;)
from the participant is correct.

1. If f(=;) is incorrect, the verification stops and the par-
ticipant is caught cheating.

. If f(=x;) is correct, using the recursive procedure de-
fined in Eq. (1), the supervisor reconstructs the root
®(R’) of the hash tree fronf(z;) and Ay, ..., Ag. If
®(R) # ®(R'), the verification stops and the partici-
pant is caught cheating. #(R) = ®(R’), the verifi-
cation succeeds for the sample

If the above \verification succeeds for all
i € {i1,...,im}, the supervisor is convinced that,
with high probability, the participant has not cheated.

The reconstruction of?’ can be conducted using the following pro-
cedure: withf(z3) and ®(L4), we can computed(B); then with
$(A), we can computeb(C); then with ®(D), we can compute
®(E); finally we computed(R’) from ®(E) and®(F').



To verify whether f(x;) is correct does not necessarily

mean that the supervisor has to re-compfte; ). There are

many computations whose verification is much less expen-
sive than the computations themselves. For example, factor
ing large numbers is an expensive computation, but verify-

ing the factoring results is trivial.

Regarding the communication cost, for each sample, the

participant needs to ser@(logn) data to the supervisor.
Therefore, the total communication overhead forsam-
ples isO(mlogn).

3.2. Security Analysis

In the following theorem, we usé to denote the input
2’s corresponding leaf node. We ugdo denote the Merkle
tree built by the participant, and we uBgo denote the root
of the tree.

Let A be the path from the leaf to the rootR, and
let A1, ..., Ay represent th@ values of the sibling nodes
along the path\. According to the property of the Merkle
tree, ®(R) can be computed using(L) and \y,..., \g.
We useA(D(L), Ay,...,Ag) = ®(R) to represent this cal-
culation, whered(R) is already committed to the supervi-
sor by the participant.

Theorem 1 (Soundness)lIf the participant indeed has
computedf(z) at the time of building the Merkle tree, it
should succeed in proving its honestyaan

If the participant is dishonest arde{ L) # f(z), to cheat
successfully, the participant must fingl, . . ., %, such that

A(f(z), AL )
= A®(L), A1, ...,\g) = B(R).

BecauseA consists of a series of one-way hash func-
tions, given®(R), when®(L) # f(z), it is computation-
ally infeasible to find\}, . .., \’; to satisfy the above equa-
tion. This proves that it is computationally infeasible for
the dishonest participant to convince the supervisor that i
knows f (z) at the time of building the Merkle tree. &

In the following theorem, let; be the probability that
the participant can guess the correct resultf¢f), i.e.,
Prgyess(®(L) = f(x)) = ¢. Let D’ be the set of inputs
that are computed honestly by the participant, so honesty

igisr — 2l
ratio isr = 57

Theorem 3 Whenm samples are used in the CBS scheme,
The probability that a participant with honesty ratiocan
cheat successfully is

Pr(cheating succeeds) = (r + (1 —r)q)™. @)

Proof. Since each sample is uniformly-randomly selected,
the probability that a sample belongs toD’ is r. When
x € D', i.e., the participant has indeed computgd:),
according to Theorem 1, the participant should be able to
convince the supervisor of its honesty on sampl&hen

Proof. If the participant is indeed honest, according to » ¢ D—D’, i.e., the participant did not compuféz) when
the CBS scheme, when building the Merkle tree, we have building the tree, according to Theorem 2, itis computation
®(L) = f(x). Therefore, during the verification, the super- ally infeasible for the participant to cheat unleisg.) hap-

visor gets

S(R) = A(f(x), M, )
AP(L), A1,y .., A|)
o(R).

pens to equalf(x). SiNce Pryuess(P(L) = f(x)) = ¢,
whenz € D — D’, the probability to cheat successfully is
q.
Combining both cases af € D’ andx € D — D', for
one sampler, the probability that the participant can prove
its honesty on sample is (r + (1 — r)q). Therefore, the

Therefore, according to the CBS scheme, the participantprobability that the participant can prove its honesty dn al

succeeds in proving its honesty on |

Theorem 2 (Uncheatability)If the participant is dishonest
on f(x), i.e., when building the Merkle tre®(L) # f(x).

Using the CBS scheme, it is computationally infeasible for

the participant to convince the supervisor that it knof(s)
when building the Merkle tree.

m samples igr + (1 —r)g)™. n
To keep the probability of successful cheating below a
small threshold, the sample sizex should be

> loge
“log(r+(1—-7r)q)

®)

Fig. 2 shows how large: should be for different honesty

Proof. According to the CBS scheme, the partici- ratiosr, givene = 0.0001. For example, let us consider a

pant sendsf(z) and \j,...,\}; to the supervisor. Af-
ter verifying the correctness of(x), the supervisor uses
O(R') = A(f(x), A}, ..., Ny) to reconstruct the root (de-

situation where the participant has conducted only one half
of the task, which means only one half of the leaf nodes in
the Merkle tree contain the actually computed results, and

noted byR’) of the tree. The supervisor believes that the the other half contain guessed results. When the probability

participant is honest ofi(z) only if ®(R’) = ®(R).

of guessing the correct results is 0.5 (ie= 0.5), we need



at least33 samples to ensure the probability of successful
cheating to be below = 0.0001. Wheng =~ 0 (i.e., itis al-

most impossible to make a correct guessfdm) without
computing it), we only neetl4 samples.
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(b) Details in the Shading Area

efforts (¢ = 0.0001)
Figure 3. Storage Usage Improvement

puting thosed values requires the rebuilding of the whole
3.3. Storage Usage Improvement subtree depicted in the shading area. The cost of the rebuild
ing is O(2°), an increase o2’ folds compared to the CBS
It should be noted that the CBS scheme requires the parscheme.
ticipant to store the entire Merkle tree in its memory or hard We use theelative computation overhead (rct) indi-
disk, and the amount of space requiredi§D|). Today’s  cate how theD(2¢) computation overhead impacts the en-
hard-disk technologies make it possible for a participant t tire task. Therco is defined as the ratio of the total com-
accept tasks withD| as large ag* (by using gig-bytes of  putation overhead fom samples to the cost of computing
storage); however, storage becomes a problem Wbers f(z) for all inputs inD. Let f. represent the cost of com-
much larger than®’. puting f(z) for one input. LetS = 27 ~¢*1 represent the
We noticed that if a task is as large 28, then comput-  amount of space for storing the partial tree. To rebuild one
ing f(x) must be very fast; otherwise it might take the par- subtree of height, we need to computg functions for2*
ticipant unreasonablely long time to finish the task. So we inputs. If we ignore the cost of hash function, the cost of re-

can make a tradeoff between time and storage in the fol-puilding a subtree equals computifigor 2¢ times. Hence
lowing way: Assume the height of the entire Merkle tree is we have the following formula:
H = log|D|, and the root is at level. Instead of storing

the entire Merkle tree, the participant only stores the tige m-2¢-f, m-2°
to level H — ¢, where0 < ¢ < H. Fig. 3(a) depicts the part "= Dl f. T oH
of the tree that needs to be stored. The total amount of stor- m 2m
age required isi)(%), a decrease df folds. T 9H-0H g

To prove that it has computetz) (in Step 3 of the CBS
scheme), the participant must find the path from the sam- The above equation indicates thab is only affected
ple z’s corresponding leaf node to the root, and then send toby m and S, not by the amount of inputs i®. The more
the supervisor thé values of the sibling nodes along this storage a participant uses for storing the tree, the lower
path. Unfortunately the sibling nodes in the lower part ef th is the relative computation overhead. For example, when
tree cannot be obtained from the storage. The shading arean = 64, if we use4G (232) hard disk space to store the
in Fig. 3(a) represents the subtree that contains the samplg@artial Merkle tree, we haveco = 2725, This means that,
x but not saved in the storage. Fig. 3(b) depicts an exam-regardless of how large a task is, compared to the cost of
ple of the unsaved subtree. From the figure, we can see thathe task, the computation overhead at the participant side
nodesVy, V,, and Vs are also the sibling nodes along the is negligible when we uséG disk space. Therefore, even
path, but thei® values are not saved, but need to be recom- for a task of siz&°, using4G disk space provides a feasi-
puted. From Fig. 3(b), it is not difficult to see that recom- ble solution both storage-wise and computation-wise.



4. A Non-Interactive CBS Scheme Step 2: Sample SelectionlLet g be a one-way hash func-

tion. AssumeD = {z1,...,x,} is assigned to the partici-
The CBS scheme has an extra round of interaction be-pant. The participant uses the following method to generate
tween the supervisor and the participant. This interagtion  m numbers{iy, . .., i, } in domain[1, n):

volves the participant’s sending the commitment and the su- .
pervisor's sending the samples. The interaction ensuags th ik = (9" (®(R)) mod n) +1, for k=1...m (4)
the supervisor sends the samples only after it receives th%vhere
commitment. Although the communication cost of this ex-
tra round of interaction is not a concern, the interaction is k.( (R))
often found less appealing because of the implementation
issues involved in grid computing. ) ] ]
In many grid computing architectures, the supervisor  MPUtSzi, fori € {iy, ..., in }, are the selected samples.
might not be able to directly interact with the participants In other words, thekt.h sample is th_e result of applying the
For example, in the GRACE (Grid Architecture for Com- one-way hash functiog on & for & times.
putational Economy) architecture [6], which represents a step 3: Participant’s Proof of Honesty. This step is also
futuristic paradigm of a service oriented computing indus- exactly like the CBS scheme.
try, there exists a Grid Resource Broker (GRB), which acts
as a mediator between the supervisor and the participantStep 4: Supervisor’s Verification. Using Eq. (4), the su-
The GRB is responsible for finding more resources (partici- Pervisor regenerates the sample choitgs. . . , i, } from
pants) and scheduling of tasks among the resources depend2(22). It then uses the Step 4 of the CBS scheme to ver-
ing on their availability and capability. ify the participant's results.
In the GRACE architecture, the supervisor assigns a big
bulk of tasks to GRB, and relies on GRB to interact with 4.2. Security Analysis
and assign tasks to the participants. The supervisor ddes no o _
even know which participant is conducting what tasks. If ~ ASsume the participant has conducted the computations
the supervisor wants to verify the participant's honesty on ONly for the inputs inD’, whereD" C D, and the honesty
its own using the CBS scheme, it will be difficult because ratio isr = [Zl < 1. Also assume that the sample choices
GRB hides the participants from the supervisor. generated by the participant ase, . . ., S,,. The only way
One way to get rid of this extra round of interaction is to that the participant can cheat successfully is to make sure
let the participant generate the sample choices. Obvipuslythat all theS; fori = 1...m fall into D’.2
if the participant is to select the samples, the sample selec  Assuming the perfect randomness of the one-way hash
tion must satisfy the following properties: values, the probability that all thesesample choices are in
the set ofD’ is ™. Namely when building the Merkle tree,
the participant can use whatever values to repj&eg for
2. The samples must be hard to predict. x € D — D', the probability to produce the sample choices

) that are all in seD’ is r™.
When the supervisor selects the samples, the above two  Tpe one-way hash function acts as an unbiased random-

requirements are easily enforced because the Supervisogjt generator for the sample generation. There is no way for
does not tell the participant the sample choices until the pa  he participant to force the one-way function to produce cer
ticipant sends the commitment. How can we enforce thesey,in yalues or to guess which values it will produce. It ipals
requirements when we rely on the participant to generate.qmpytationally infeasible for the participant to work iret
the sample choices? reverse way, i.e., the participant cannot select the sample
first, and then build a Merkle tree that generates these se-
4.1. A Non-Interactive CBS Scheme lected samples.
Unfortunately, the non-interactive feature brings up a
We modified the CBS scheme, so that the sample choicegotential attack. In the CBS scheme, the participant has
are generated by the participant. We call this improved only one chance to cheat. Fat = 10 andr = 0.5;
scheme th&lon-Interactive CBS (NI-CBS) schenirie to Pr(successfull cheating) * in 2!°. If one cheating at-
the page limit, we will not repeat the steps that are the sametempt fails, the supervisor will not give the participantmeo

g(®(R)), fork =1
{ g(g" Y (®(R))), fork=2...m

1. The samples are selectaiter the Merkle tree is built.

as in the CBS scheme. chances to cheat. The probability bfin 2!° tends to be
Step 1: Building Merkle Tree. This step is exactly like the 5 \ye assume that the probability that the participant cansythescor-
CBS scheme. At the end, the participant se@?dR) to the rect computation results without conducting the computaaregli-

supervisor. gible, i.e..g ~ 0.



small enough for the interactive scheme, but it is still too 5. Conclusion and Future Work

large for the non-interactive scheme. The participant can u

the following strategy to cheat: We present a scheme to prevent cheating in Grid com-

puting. Our Scheme uses a Commitment-Based Sampling

. L (CBS) technique to detect whether the participant is cheat-
;ezu}t)s_ofl];(/;v) for the inputsz that are notin" (i.e., ing or not. Unlike the old schemes [8, 10], CBS handles

' ) generic computations gracefully. To prevent the partitipa

2. Compute the sample selections from the root of the from changing the computation results after learning the
Merkle tree. If they are all withiD’, cheating is suc-  samples, the CBS scheme uses the Merkle tree for the par-
cessful; otherwise pick other random numberg @s) ticipant to commit its results before learning the sample se
forze D—-D". lections. The CBS scheme can be used for generic computa-

3. Revise the Merkle tree based on the newly selected val-tions in grid computing. It is efficient in communication as
ues, and repeat step (2) until the cheating becomes sucwell as in computation. Based on the CBS scheme, we have
cessful. addressed two important issues (1) how to reduce the stor-

The participant can use the above strategy to repeatedhy?9€ requirement, and (2) how to convert the CBS scheme

make many cheating attempts until it finds out that all the T0M an interactive scheme to a non-interactive scheme.
m generated samples are 7. Since the process is non- One assumption made in the CBS scheme scheme is

interactive, the supervisor knows nothing about these at-that|D| should be significantly large. When each partici-
tempts. pant is assigned a task with very few inputs, the sampling

There are two ways to defeat this strategy: one way is to Scheme does not work well. For example, when = 1,
increase the number of samples. For example, we can us&®: €ach task consists of only one input, the cost of verify
128 samples, because makipf® attempts is a compu- N9 a sample (for the CBS scheme) is as expensive as con-
tationally infeasible task. However, this also increases t duptlng the task. Therefore, the scheme is no better.than the
computation cost for the verification at the supervisor side Naive double-check-every-result scheme. Developing effi-
because the supervisor now has to verify 128 computations ci€nt schemes for a situation wheb| is small is a chal-
much more than it needs to do in the CBS scheme. lenging open problem that we plan to pursue.

Another way to defeat the cheating strategy is to let the
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