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Abstract 
Wireless sensor networks consist of sensor nodes with sensing and communication capabilities. 
We focus on data aggregation problems in energy constrained sensor networks. The main goal of 
data aggregation algorithms is to gather and aggregate data in an energy efficient manner so that 
network lifetime is enhanced. In this paper, we present a survey of data aggregation algorithms 
in wireless sensor networks. We compare and contrast different algorithms on the basis of 
performance measures such as lifetime, latency and data accuracy. We conclude with possible 
future research directions.  
 

1. INTRODUCTION 

Wireless sensor networks (WSNs) have been 
used for numerous applications including 
military surveillance, facility monitoring and 
environmental monitoring. Typically WSNs 
have a large number of sensor nodes with the 
ability to communicate among themselves and 
also to an external sink or a base-station [1, 2]. 
The sensors could be scattered randomly in 
harsh environments such as a battlefield or 
deterministically placed at specified locations. 
The sensors coordinate among themselves to 
form a communication network such as a 
single multi-hop network or a hierarchical 
organization with several clusters and cluster 
heads. The sensors periodically sense the data, 
process it and transmit it to the base station. 
The frequency of data reporting and the 
number of sensors which report data usually 
depends on the specific application. A 
comprehensive survey on wireless sensor 
networks is presented in [3].  
Data gathering is defined as the systematic 
collection of sensed data from multiple 
sensors to be eventually transmitted to the 
base station for processing. Since sensor nodes  
 

 
 
are energy constrained, it is inefficient for all 
the sensors to transmit the data directly to the 
base station. Data generated from neighboring 
sensors is often redundant and highly 
correlated.  In addition, the amount of data 
generated in large sensor networks is usually 
enormous for the base station to process.  
Hence, we need methods for combining data 
into high quality information at the sensors or 
intermediate nodes which can reduce the 
number of packets transmitted to the base 
station resulting in conservation of energy and 
bandwidth. This can be accomplished by data 
aggregation. Data aggregation is defined as 
the process of aggregating the data from 
multiple sensors to eliminate redundant 
transmission and provide fused information to 
the base station. Data aggregation usually 
involves the fusion of data from multiple 
sensors at intermediate nodes and transmission 
of the aggregated data to the base station 
(sink).  In the rest of the paper, we use the 
term data aggregation to denote the process of 
data gathering with aggregation.  We also use 
the term sink to represent the base station.  
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Data aggregation attempts to collect 

the most critical data from the sensors and 
make it available to the sink in an energy 
efficient manner with minimum data latency. 
Data latency is important in many applications 
such as environment monitoring where the 
freshness of data is also an important factor. It 
is critical to develop energy efficient data 
aggregation algorithms so that network 
lifetime is enhanced. There are several factors 
which determine the energy efficiency of a 
sensor network such as network architecture, 
the data aggregation mechanism and the 
underlying routing protocol. In this paper, we 
describe the influence of these factors on the 
energy efficiency of the network in the context 
of data aggregation. We now present a formal 
definition of energy efficiency.  

Energy Efficiency: The functionality 
of the sensor network should be extended as 
long as possible. In an ideal data aggregation 
scheme, each sensor should have expended the 
same amount of energy in each data gathering 
round. A data aggregation scheme is energy 
efficient if it maximizes the functionality of 
the network. If we assume that all sensors are 
equally important, we should minimize the 
energy consumption of each sensor. This idea 
is captured by the network lifetime which 
quantifies the energy efficiency of the 
network.  

Network lifetime, data accuracy, and 
latency are some of the important performance 
measures of data aggregation algorithms. The 
definitions of these measures are highly 
dependent on the desired application. We now 
present a formal definition of these measures. 

Network lifetime: Network lifetime is 
defined as the number of data aggregation 
rounds till α% of sensors die where α is 
specified by the system designer. For instance, 
in applications where the time that all nodes 
operate together is vital, lifetime is defined as 
the number of rounds until the first sensor is 
drained of its energy. The main idea is to 

perform data aggregation such that there is 
uniform energy drainage in the network. In 
addition, energy efficiency and network 
lifetime are synonymous in that improving 
energy efficiency enhances the lifetime of the 
network. 

Data accuracy: The definition of data 
accuracy depends on the specific application 
for which the sensor network is designed. For 
instance, in a target localization problem, the 
estimate of target location at the sink 
determines the data accuracy.   

Latency: Latency is defined as the 
delay involved in data transmission, routing 
and data aggregation. It can be measured as 
the time delay between the data packets 
received at the sink and the data generated at 
the source nodes.   
         The design of efficient data aggregation 
algorithms is an inherently challenging task. 
There has been intense research in the recent 
past on data aggregation in WSNs. In this 
survey paper, we present an extensive 
overview of several data aggregation 
algorithms. We first present the basic 
functionality of the specific algorithm being 
described and its distinct features. We then 
discuss the performance of the algorithm and 
compare it with other similar approaches.  

 The rest of the paper is organized as 
follows. In Section 2, we categorize different 
data aggregation protocols based on the 
network architecture involved in data 
aggregation. Section 3 describes network flow 
based data aggregation protocols. In Section 4, 
we present Quality of Service (QOS) aware 
data aggregation protocols designed to 
guarantee QOS metrics such as end-to-end 
reliability and information throughput. Section 
5 describes the tradeoffs involved in different 
data aggregation protocols. Section 6 
discusses data aggregation protocols which 
address security issues involved in data 
transmission. Section 7 provides some 
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concluding remarks and future research 
directions.  
 

2. DATA AGGREGATION PROTOCOLS BASED 

ON NETWORK ARCHITECTURE 

The architecture of the sensor network plays a 
vital role in the performance of different data 
aggregation protocols. In this section, we 
survey several data aggregation protocols 
which have specifically been designed for 
different network architectures. 

2.1 Flat networks 
In flat networks, each sensor node plays the 
same role and is equipped with approximately 
the same battery power. In such networks, 
data aggregation is accomplished by data 
centric routing where the sink usually 
transmits a query message to the sensors, e.g, 
via flooding and sensors which have data 
matching the query send response messages 
back to the sink. The choice of a particular 
communication protocol depends on the 
specific application at hand. In the rest of this 
subsection, we describe these protocols and 
highlight their advantages and limitations.  
 

2.1.1 Push diffusion 

In the push diffusion scheme, the sources are 
active participants and initiate the diffusion 
while the sinks respond to the sources.  The 
sources flood the data when they detect an 
event while the sinks subscribe to the sources 
through enforcements. The sensor protocol for 
information via negotiation (SPIN) [4] can be 
classified as a push based diffusion protocol. 
The two main features of SPIN are negotiation 
and resource adaptation. For successful data 
negotiation, sensor nodes need a descriptor to 
succinctly describe their observed data. These 
descriptors are defined in SPIN as metadata. 
The format of the metadata is application 
specific. For instance, in area coverage 
problems, sensors that cover disjoint regions 
can use their unique ID as metadata.  

The initiating node which has new data 
advertises the data to the neighboring nodes in 
the network using the metadata. A 
neighboring node which is interested in this 
kind of data, sends a request to the initiator 
node for data. The initiator node responds and 
sends data to the sinks. Each node has a 
resource manager which keeps track of its 
energy usage. Each node polls its resources 
such as battery power before data 
transmission. This allows sensors to cut back 
on certain tasks when its energy is low.  
Simulation results show that SPIN performs 
almost identical to flooding in terms of the 
amount of data acquired over time. However, 
SPIN incurs a factor of 3.5 less energy 
consumption compared to flooding and is able 
to distribute 60% more data per unit energy 
compared to flooding. SPIN is also well suited 
for environments with mobile sensors since 
the forwarding decisions are based on local 
neighborhood information. One of the main 
advantages of SPIN is that topological 
changes are localized since each node only 
requires the knowledge of its single hop 
neighbors. The main disadvantage of SPIN is 
its inability to guarantee data delivery. For 
instance, in intrusion detection applications, if 
the nodes interested in the data are farther 
away from the source node, and the 
intermediate nodes are not interested in the 
data, then the data is not delivered to the sink 
nodes.   
 
2.1.2 Two phase pull diffusion 
Intanagonwiwat et al. [5] have developed an 
energy efficient data aggregation protocol 
called directed diffusion. Directed diffusion is 
a representative approach of two phase pull 
diffusion. It is a data centric routing scheme 
which is based on the data acquired at the 
sensors. The attributes of the data are utilized 
message in the network. Figure 1 illustrates 
the interest propagation in directed diffusion. 
If the attributes of the data generated by the 
source match the interest, a gradient is set up 
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to identify the data generated by the sensor 
nodes. The sink initially broadcasts an interest 
message in the network. The gradient specifies 
the data rate and the direction in which to send 
the data. Intermediate nodes are capable of 
caching and transforming the data. Each node 
maintains a data cache which keeps track of 
recently seen data items.  After receiving low 
data rate events, the sink reinforces one 
particular neighbor in order to attract higher 
quality data. Thus, directed diffusion is 
achieved by using data driven local rules.  

Average dissipated energy which is the 
ratio of total energy dissipated per node to the 
number of distinct events seen by sinks and 
average delay were used as the performance 
metrics. Simulation results indicate that 
directed diffusion has significantly higher 
energy efficiency than an omniscient multicast 
scheme in which each node transmits data 
along the shortest path multicast tree to all 
sinks. The average dissipated energy in 
directed diffusion is only 60% of the 
omniscient multicast scheme. The average 
delay of directed diffusion is comparable to 
omniscient multicast. Directed diffusion is an 
appropriate choice for applications with many 
sources and few sinks.  In directed diffusion, it 
is not necessary to maintain global network 
topology unlike SPIN. However, directed 
diffusion is not suitable for applications which 
require continuous data delivery to the sink.  
 

Impact of source- destination location on 
directed diffusion 
The performance of the data aggregation 
protocol in directed diffusion is influenced by 
factors such as the position of source and 
destination nodes and network topology. 
Krishnamachari et al. [6] have studied the 
impact of source-destination placement and 
communication network density on the energy 
costs associated with data aggregation. The 
event radius model (ER) and random source 
(RS) model are considered for source 
placement. In the ER model, all sources are 
assumed to be located within a fixed distance 
of a randomly chosen “event”  location. In the 
RS model, a fixed number of nodes are 
randomly chosen to be sources.  

The analytical bounds on energy costs 
with data aggregation show that significant 
energy cost saving is achieved when the 
sources are close together and far away from 
the sink. The optimal data aggregation tree 
can be constructed in polynomial time if the 
set of source nodes are connected.  
Simulations were performed on a 100 node 
network with the number of sources varying 
from 1 to 15 ensuring that the sources were 
connected. The energy gains due to data 
aggregation are predominant in networks with 
a large number of sources that are several 
hops away from the sink. 

 
 
 
 
 
                    Source 
 

 
 
 
 
                                             Sink 
 
      

 
                                                                                                                              
 

 
 

Figure 1: Interest propagation in directed diffusion. 
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2.1.3 One phase pull diffusion 
Two phase pull diffusion results in large 
overhead if there are many sources and sinks. 
Krishnamachari et al. [7] have proposed a one 
phase pull diffusion scheme which skips the 
flooding process of directed diffusion. In one 
phase pull diffusion, sinks send interest 
messages that propagate through the network 
establishing gradients. However, the sources 
do not transmit exploratory data. The sources 
transmit data only to the lowest latency 
gradient pertinent to each sink. Hence, the 
reverse route (from the source to the sink) has 
the least latency. Removal of exploratory data 
transmission results in a decrease in control 
overhead conserving the energy of the sensors.  
 In [7], simulations have been 
performed comparing push diffusion with one 
phase pull diffusion. The simulation results 
show that one phase pull outperforms push 
diffusion when the source event rate is very 
high.  However, when the sink interest rate is 
high push diffusion performs better than one 
phase pull diffusion. A wrong choice of 
diffusion mechanism results in excessive 
control overhead. For instance, when the 
source rate is high and the sink interest rate is 
low, employing push diffusion results in 80% 
increase in control overhead compared to one 
phase pull diffusion. 
 

2.2. Hierarchical networks 
A flat network can result in excessive 
communication and computation burden at the 
sink node resulting in a faster depletion of its 
battery power. The death of the sink node 
breaks down the functionality of the network.  
Hence, in view of scalability and energy 
efficiency, several hierarchical data 
aggregation approaches have been proposed. 
Hierarchical data aggregation involves data 
fusion at special nodes, which reduces the 
number of messages transmitted to the sink. 
This improves the energy efficiency of the 
network. In the rest of this subsection, we 

describe the different hierarchical data 
aggregation protocols and highlight their main 
advantages and limitations.  
 
2.2.1 Data aggregation in cluster based 
networks 
In energy constrained sensor networks of large 
size, it is inefficient for sensors to transmit the 
data directly to the sink. In such scenarios, 
sensors can transmit data to a local aggregator 
or cluster head which aggregates data from all 
the sensors in its cluster and transmits the 
concise digest to the sink. This results in 
significant energy savings for the energy 
constrained sensors. Figure 2 shows a cluster 
based sensor network organization. The 
cluster heads can communicate with the sink 
directly via long range transmissions or multi 
hopping through other cluster heads. Recently, 
several cluster based network organization and 
data aggregation protocols have been 
proposed. In this section we discuss three such 
protocols viz., Low Energy Adaptive 
Clustering Hierarchy (LEACH), Hybrid 
Energy Efficient Distributed Clustering 
Approach (HEED) and clustered diffusion 
with dynamic data aggregation (CLUDDA). 
 Heinzelman [8] et al. were the first to 
propose an energy conserving cluster 
formation protocol called LEACH. The 
LEACH protocol is distributed and sensor 
nodes organize themselves into clusters for 
data fusion. A designated node (cluster head) 
in each cluster transmits the fused data from 
several sensors in its cluster to the sink. This 
reduces the amount of information that is 
transmitted to the sink. The data fusion is 
performed periodically at the cluster heads. 
LEACH is suited for applications which 
involve constant monitoring and periodic data 
reporting.  The two main phases involved in 
LEACH are: setup phase and steady state 
phase. The setup phase involves the 
organization of the network into clusters and 
the selection of cluster heads.   
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The steady state phase involves data 
aggregation at the cluster heads and data 
transmission to the sink.  A predetermined 
fraction of nodes, f, elect themselves as the 
cluster head during the set up phase. A sensor 
node i compares a random number n between 
0 and 1 with a threshold ηi. If n  > ηi, the 
sensor node becomes a cluster head.  The 
threshold ηi is given by 

ηi   =  
))/1mod((1 fnf

f

−
 

where mod stands for the modulus operator 
which returns the remainder after division. All 
elected cluster heads broadcast a message to 
all the other sensors in the network informing 
that they are the new cluster heads. All non-
cluster head nodes which receive this 
advertisement decide as to which cluster they 
belong to based on the signal strength of the 
message received. LEACH employs 
randomization to rotate cluster heads and 
achieves a factor of eight improvement 
compared to the direct approach in terms of 
energy consumption.  LEACH was compared 
with minimum transmission energy routing 
(MTE) in which intermediate nodes are 
chosen such that the sum of squared distances 

between adjacent nodes of the route is 
minimized. The simulation results show that 
LEACH delivers ten times more data than 
MTE for the same number of node deaths.  
Although LEACH improves the system 
lifetime and data accuracy of the network, the 
protocol has some limitations. LEACH 
assumes that all sensors have enough power to 
reach the sink if needed. In other words, each 
sensor has the capability to act as a cluster 
head and perform data fusion. This 
assumption might not be valid with energy-
constrained sensors. LEACH also assumes 
that nodes have data to send periodically. In 
LEACH, all nodes have the same amount of 
energy capacity in each election round which 
is based on the assumption that being a cluster 
head results in same energy consumption for 
every node. Hence, LEACH should be 
extended to account for node heterogeneity. In 
an improved version of this protocol, called 
LEACH-C [9], cluster formation is performed 
in a centralized manner by the sink. LEACH-
C improves the performance of LEACH by 20 
to 40 percent in terms of the number of 
successful data gathering rounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Cluster based sensor network. The arrows indicate wireless communication links. 

 
 
  

                                                                                                 - Sensors 
                                                                                      - Cluster head Sink 
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Younis et al.  [10] have proposed HEED 
whose main goal is to form efficient clusters 
for maximizing network lifetime. The main 
assumption in HEED is the availability of 
multiple power levels at sensor nodes. Cluster 
head selection is based on a combination of 
node residual energy of each node and a 
secondary parameter which depends on the 
node proximity to its neighbors or node 
degree. The cost of a cluster head is defined as 
its average minimum reachability power 
(AMRP). AMRP is the average of the 
minimum power levels required by all nodes 
within the cluster range to reach the cluster 
head. AMRP provides an estimate of the 
communication cost.  
       At every iteration of HEED, each node 
which has not selected a cluster head, sets its 
probability PCH of becoming the cluster head 
as  
 

PCH  = C ×  
maxE

Eresidual  

 
where C denotes the initial percentage of 
cluster heads (specified by the user) , Eresidual  
is the estimated current residual energy of the 
node and Emax is its initial energy 
corresponding to a fully charged battery. Each 
node sends a cluster_head_msg where the 
selection status is set to tentative if PCH  is less 
than 1 or final if PCH  is 1. A node selects its 
cluster head as the node with the lowest cost 
(AMRP) in the set of tentative cluster heads. 
Every node then changes its probability to 

,2min( CHP× 1) in the next iteration. The 
process repeats until every node is assigned to 
a cluster head. 

Inter cluster communication has not 
been considered in HEED. The performance 
of HEED has been compared with generalized 
LEACH (gen-LEACH) proposed in [10]. In 
gen-LEACH, the routing protocol propagates 
the node residual energy throughout the 
network. The cluster head election probability 
at time t is given by 

                       PL (t) = ��
�

�
��
�

�
×�

�

�
�
�

�
1 ,

)(
min k

E

tE

tot

i  

where Ei is the residual energy of node i,  

Etot = )(
1

tE
n

i
i�

=

 and k is the initial percentage 

of cluster heads. The protocols were simulated 
for varying network sizes. The simulation 
results show that HEED improves the network 
lifetime over gen-LEACH. In gen-LEACH the 
selection of cluster heads is random which 
may result in rapid death of certain nodes. 
However, in HEED the cluster heads are 
selected such that they are well distributed 
with minimum communication cost. In 
addition, the energy dissipated in clustering is 
less in HEED compared to gen-LEACH. This 
is due to the fact that gen-LEACH propagates 
residual energy. To conclude, HEED prolongs 
network lifetime and achieves a 
geographically well-distributed set of cluster 
heads.  

Recently a hybrid approach [11] has 
been proposed which combines clustering 
with diffusion mechanisms. The new data 
aggregation scheme proposed in [11] is called 
clustered diffusion with dynamic data 
aggregation (CLUDDA). CLUDDA performs 
data aggregation in unfamiliar environments 
by including query definitions within interest 
messages. The interest messages of a new 
query initiated by the sink contains the query 
and also a detailed definition of the query. The 
query definition describes the operations that 
need to be performed on the data components 
in order to generate a proper response. This 
new format of the interest message has some 
interesting features such as interest 
transformation and dynamic aggregation. 
Interest transformation utilizes existing 
knowledge of queries in order to reduce the 
overhead in processing.   

CLUDDA combines directed diffusion 
[5] with clustering during the initial phase of 
interest or query propagation. The clustering 
approach ensures that only cluster
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heads and gateway nodes which perform inter 
cluster communication are involved in the 
transmission of interest messages. This 
technique conserves energy since the regular 
nodes remain silent unless they are capable of 
servicing a request. In CLUDDA, the 
aggregation points are dynamic. The data 
aggregation task is not assigned to any 
specific group of nodes in the network. The 
nodes performing data aggregation change as 
the locations of source nodes change. Any 
cluster head or gateway node which has the 
knowledge of query definition can perform 
data aggregation.  
     An interesting feature of CLUDDA is 
that a query cache is maintained at the cluster 
heads and gateway nodes. The query cache 
lists the different data components that were 
aggregated to obtain the final data. It also 
contains the addresses of neighboring nodes 
from which the data messages originated. 
These addressees can be used to propagate 
interest messages directly to specific nodes 
instead of broadcasting. However, the memory 
requirements for this technique are yet to be 
investigated. The technique proposed also 
needs to be implemented and compared with 
other existing approaches.  
 
2.2.2 Chain based data aggregation 
In cluster-based sensor networks, sensors 
transmit data to the cluster head where data 
aggregation is performed. However, if the 
cluster head is far away from the sensors, they 
might expend excessive energy in 
communication. Further improvements in 
energy efficiency can be obtained if sensors 
transmit only to close neighbors. The key idea 
behind chain based data aggregation is that 
each sensor transmits only to its closest 
neighbor. Lindsey et al. [12] presented a chain 
based data aggregation protocol called power 
efficient data gathering protocol for sensor 
information systems (PEGASIS). In 
PEGASIS, nodes are organized into a linear 

chain for data aggregation. The nodes can 
form a chain by employing a greedy algorithm 
or the sink can determine the chain in a 
centralized manner. Greedy chain formation 
assumes that all nodes have global knowledge 
of the network.  The farthest node from the 
sink initiates chain formation and at each step, 
the closest neighbor of a node is selected as its 
successor in the chain. In each data gathering 
round, a node receives data from one of its 
neighbors, fuses the data with its own and 
transmits the fused data to its other neighbor 
along the chain. Eventually the leader node  
which is similar to cluster head transmits the 
aggregated data to the sink.  Figure 3 shows 
the chain based data aggregation procedure in 
PEGASIS. Nodes take turns in transmitting to 
the sink. The greedy chain formation approach 
used in [12] may result in some nodes having 
relatively distant neighbors along the chain. 
This problem is alleviated by not allowing 
such nodes to become leaders.   
 The PEGASIS protocol has 
considerable energy savings compared to 
LEACH. The distances that most of the nodes 
transmit are much less compared to LEACH 
in which each node transmits to its cluster 
head. The leader node receives at most two 
data packets from its two neighbors. In 
contrast, a cluster head in LEACH has to 
perform data fusion of several data packets 
received from its cluster members. The main 
disadvantage of PEGASIS is the necessity of 
global knowledge of all node positions to pick 
suitable neighbors and minimize the 
maximum neighbor distance. In addition, 
PEGASIS assumes that all sensors are 
equipped with identical battery power and 
results in excessive delay for nodes at the end 
of the chain which are farther away from the 
leader node. In [12], two other protocols viz., 
a binary chain based scheme and a three-level 
chain based scheme have been proposed. In 
the binary chain based protocol, each node 
transmits data to a close neighbor in a
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given level of the hierarchy. The nodes that 
receive data at each level form a chain in the 
next higher level of the hierarchy. At the 
highest level, the leader node transmits the 
aggregated data to the sink.  In the three level 
scheme, the protocol starts with the formation 
of a linear chain among all nodes and then it 
divides them into G groups. Each group has 
N/G successive nodes of the chain where N is 
the total number of nodes. Only one node 
from each group participates in the second 
level of the hierarchy. The G nodes in the 
second level are further divided into two 
groups so that only three levels are maintained 
in the hierarchy.  

Both energy efficiency and delay are 
considered while evaluating the performance 
of the above protocols. The metric is 
computed by multiplying the average energy 
cost per data gathering round with the unit 
delay (transmission time for a 2000 bit 
message) for the scheme. The performance of 
the algorithms was compared in terms of the 
Energy×Delay metric proposed in [12]. 
Simulation results show that the chain based 
binary scheme is eight times better than 
LEACH and 130 times better than the direct 
scheme for a 50m×50m network. The chain 
based three level scheme is 5 times better than 

PEGASIS and 140 times better than the direct 
scheme for a 100m×100m network.  
PEGASIS outperforms LEACH by 100 to 200 
percent in terms of the number of data 
gathering rounds for different network sizes. 
No conclusions can be drawn about the 
optimality of a single scheme for optimizing 
the Energy×Delay metric. The energy costs of 
transmissions depend on the spatial 
distribution of nodes which preclude the 
optimality of a single scheme for all network 
sizes. However, experimental results indicate 
that the binary chain based scheme performs 
the best for small network sizes.  
 
2.2.2.1 Chain construction algorithms 

The effectiveness of chain based data 
aggregation protocols depends largely on the 
construction of an energy efficient chain. In 
this subsection, we describe some chain 
construction algorithms.  Du et al. [13] have 
developed an energy efficient chain 
construction algorithm which employs 
insertion operations to add the least amount of 
energy consumption to the whole chain. The 
main focus is on energy efficient all to all 
broadcasting in sensor networks.  
 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: Chain based organization in a sensor network.  The ovals indicate sensors and the arrows indicate the 

direction of data transmission.
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A multiple chain scheme has been proposed 
which divides the whole network into four 
regions centered at the node that is closest to 
the center of the sensing region. For each 
region, a linear chain is constructed which 
ends at the center node. The multiple chain 
scheme aims to decrease the total transmission 
distance for all-to-all broadcasting.  
          In the greedy chain construction 
algorithm proposed in [12], the process starts 
with the farthest node from the sink. This node 
is the head of the chain. At each step, a non-
chain node which is closest to the chain head 
is selected and appended to the chain as the 
new head. The procedure is repeated until all 
nodes are in the chain. This process does not 
necessarily minimize the total transmission 
energy. The authors in [13] have proposed a 
minimum total energy algorithm which 
constructs a chain with minimum � 2d where 

d is the distance between two adjacent nodes 
in the chain. The chain construction starts with 
the node farthest from the sink as the leader. 
At each step, a new node is inserted such that 

� 2d  of the current chain with the new node 

increases to the minimum possible extent 
compared to the old chain. This new node 
becomes the leader. The algorithm has a 
complexity of O(n3 ) where n is the total 
number of nodes.  
          The algorithm proposed in [13] and the 
greedy algorithm were simulated on networks 
of different sizes with random sensor 
deployment. The number of rounds until the 
first node dies was used as the performance 
measure. The results indicate that in highly 
dense networks or in networks with a large 
distance to the sink, the two algorithms have 
identical performance. This is because, in 
dense networks, the distances between nodes 
are small and any node has a good chance of 
being selected in the chain construction. For 
networks with moderate density, the minimum 
total energy algorithm achieves 15% to 30% 
performance improvement compared to the 
greedy algorithm. In general, we need to      

consider factors such as density of the network 
and location of the sink while choosing an 
appropriate chain construction algorithm. 
 
2.2.3 Tree based data aggregation 
In a tree based network, sensor nodes are 
organized into a tree where data aggregation is 
performed at intermediate nodes along the tree 
and a concise representation of the data is 
transmitted to the root node. Tree based data 
aggregation is suitable for applications which 
involve in-network data aggregation. An 
example application is radiation level 
monitoring in a nuclear plant where the 
maximum value provides the most useful 
information for the safety of the plant. One of 
the main aspects of tree-based networks is the 
construction of an energy efficient data 
aggregation tree. In this subsection, we 
describe the construction of data aggregation 
trees. 
  Ding et al. [14] have proposed an 
energy aware distributed heuristic (EADAT) 
to construct and maintain a data aggregation 
tree in sensor networks. The algorithm is 
initiated by the sink which broadcasts a 
control message. The sink assumes the role of 
the root node in the aggregation tree.  The 
control message has five fields: ID, parent, 
power, status and hopcnt indicating the sensor 
ID, its parent, its residual power, the status 
(leaf, non-leaf node or undefined state) and 
the number of hops from the sink. After 
receiving the control message for the first 
time, a sensor v sets up its timer to Tv. Tv 
counts down when the channel is idle. During 
this process, the sensor v chooses the node 
with the higher residual power and shorter 
path to the sink as its parent. This information 
is known to node v through the control 
message. When the timer times out, the node v 
increases its hop count by one and broadcasts 
the control message. If a node u receives a 
message indicating that its parent node is node 
v, then u marks itself as a non leaf node. 
Otherwise the node marks itself as a leaf node. 
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The process continues until each node 
broadcasts once and the result is an 
aggregation tree rooted at the sink. The main 
advantage of this algorithm is that sensors 
with higher residual power have a higher 
chance to become a non-leaf tree node. To 
maintain the tree, a residual power threshold 
Pth is associated with each sensor. When the 
residual power of a sensor falls below Pth, it 
periodically broadcasts help messages for Td  
time units and shuts down its radio. A child 
node upon receiving a help message, switches 
to a new parent. Otherwise it enters into a 
danger state. If a danger node receives a hello 
message from a neighboring node v with 
shorter distance to the sink, it invites v to join 
the tree.  
     The protocol proposed in [14] was 
simulated on a sensor field of 160m m160× . 
The results show that EADAT extends 
network lifetime and conserves more energy 
in comparison with routing methods without 
aggregation. The results also indicate that with 
EADAT, the average residual energy of all 
alive sensors decreases much more slowly 
compared to the scenario when no aggregation 
was used. Another interesting observation was 
regarding the variation of network lifetime 
with the network density. The network 
lifetime increases linearly with the network 
density. The heuristics proposed in EADAT 
can thus be used to construct energy efficient 
aggregation trees.  

In applications where each sensor node 
has data to send to the sink in every round of 
communication, it is essential to maximize the 
network lifetime. Tan et al. [15] have 
proposed a power efficient data gathering and 
aggregation protocol (PEDAP). The goal of 
PEDAP is to maximize the lifetime of the 
network in terms of number of rounds, where 
each round corresponds to aggregation of data 
transmitted  from different sensor nodes to the 
sink. PEDAP is a minimum spanning tree 
based protocol which improves the lifetime of 

the network even when the sink is inside the 
field. In contrast, LEACH and PEGASIS 
perform poorly when the sink is inside the 
sensor field. PEDAP minimizes the total 
energy expended in each communication 
round by computing a minimum spanning tree 
over the sensor network with link costs given 
by 

Cij (k) = 2 ×  Eelec  ×  k + Eamp  ×  k ×  dij 
2 

where Cij (k) is the cost of transmitting a k bit 
data packet from node i to node j, Eelec  is the 
energy dissipated by the transmitter or 
receiver circuitry, Eamp  is the energy 
dissipated by the transmit amplifier and dij  is 
the distance between node i and node j. Prim’s 
minimum spanning tree algorithm is employed 
to compute the routing paths with the sink as 
the root. The data packets are routed to the 
sink over the edges of the minimum spanning 
tree. Figure 4 illustrates tree based data 
aggregation in a sensor network. 

In order to balance the load among the 
nodes, the residual energy of the nodes should 
be considered while aggregating the data. The 
power aware version of PEDAP (PEDAP-PA) 
aims to achieve this by modifying the link 
costs as 

EC ij (k) = C ij (k) / ei 
where ei is the normalized residual energy of 
node i where the normalization is with respect 
to the initial energy in the battery. Hence a 
node with a lower residual energy incurs more 
cost in transmission of packets to its 
neighbors. The cost of communication 
between nodes i and j is asymmetric. 
Consequently, for a low energy node, the cost 
of sending data to the sink is increased.  
       The PEDAP protocol requires global 
knowledge of the location of all nodes at the 
sink. The protocols operate in a centralized 
manner where the sink computes the routing 
information. The time complexity of the 
proposed protocols is O(n2 ) where n is the 
total number of sensors in the network.  
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The performance of the protocols proposed in 
[15] was compared with LEACH, PEGASIS 
and direct transmission. The goal was to 
determine the timings of node deaths in 
PEDAP-PA improves the lifetime of the first 
node by 400% while providing a similar 
lifetime for the last node when compared with 
PEGASIS. For the scenario in which the sink 
was placed in the center of the field, PEDAP 
and PEDAP-PA improve the lifetime of the 
last node by about two times when compared 
with PEGASIS and LEACH. These results 
indicate that if balancing the load among 
nodes is important, then PEDAP-PA performs 
the best among the alternative algorithms. 
PEDAP-PA is also a good choice if the 
lifetime of the last node is critical.  
 
2.2.4 Grid based data aggregation 
Vaidhyanathan et al. [16] have proposed two 
data aggregation schemes which are based  

on dividing the region monitored by a sensor 
network into several grids. They are: grid-
based data aggregation and in-network data 
aggregation. In grid-based data aggregation, a 
set of sensors is assigned as data aggregators 
in fixed regions of the sensor network. The 
sensors in a particular grid transmit the data 
directly to the data aggregator of that grid. 
Hence, the sensors within a grid do not 
communicate with each other. In-network 
aggregation is similar to grid based data 
aggregation with two major differences viz.,  

a) Each sensor within a grid 
communicates with its neighboring 
sensors.  
b) Any sensor node within a grid can    
assume the role of a data aggregator. 
terms of rounds until the last node dies. 
The simulation results show that 
LEACH and direct transmission 
perform the worst while PEGASIS 
offers a much improved performance. 

 

 
 

 

 
 
 

Figure 4: Minimum spanning tree based routing protocol in a sensor network. The arrows indicate the routing path 
and f (., .) is the data aggregation function. 
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We now describe these two data aggregation 
schemes in greater detail. In grid-based data 
aggregation, the data aggregator is fixed in 
each grid and it aggregates the data from all 
the sensors within the grid. This is similar to 
cluster based data aggregation in which the 
cluster heads are fixed. Grid-based data 
aggregation is suitable for mobile 
environments such as military surveillance 
and weather forecasting and adapts to 
dynamic changes in the network and event 
mobility. 

In in-network aggregation, the sensor 
with the most critical information aggregates 
the data packets and sends the fused data to 
the sink. Each sensor transmits its signal 
strength to its neighbors. If the neighbor has a 
higher signal strength, the sender stops 
transmitting packets. After receiving packets 
from all the neighbors, the node that has the 
highest signal strength becomes the data 
aggregator. The in-network aggregation 
scheme is best suited for environments where 
events are highly localized.  

Figures 5 and 6 show the in-network 
and grid-based data aggregation schemes 
respectively. From Figure 5, we observe that 
sensors exchange signal strengths with their 
neighbors to determine the in-network 
aggregator which is the node with the highest 

signal strength. On the other hand, Figure 6 
shows that in grid based data aggregation, all 
sensors directly transmit data to a pre-
determined grid aggregator. A more efficient 
approach would choose either the in-network 
or the grid-based scheme on the fly based on 
the type of event and its mobility. The authors 
in [16] have proposed a hybrid scheme which 
combines the salient features of the in-
network and grid-based aggregation schemes. 
The hybrid scheme accomplishes this goal by 
combining the best of both the approaches. In 
the hybrid scheme, sensors are initially 
configured according to the in-network 
scheme. When an event occurs, the sensor 
with the most critical information is identified. 
The sensors also maintain a table of past 
events and the corresponding signal strengths. 
When a sensor detects an event, it checks its 
table for the previous event and identifies the 
nature of the event. The in-network scheme is 
followed if the sensor identifies the event as a 
localized event. If the signal strength 
measurements indicate that the event is 
mobile, it sends the information to a default 
aggregator which is a grid based aggregation 
scheme. 

 
 

 
  

 
                                                                                                   Grid aggregator 
                                   In-network                               7.5 
               7.5                        aggregator        
 

        3.2                                                                                                                                   5.8            
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Figure 5: An in-network data aggregation                       Figure 6: Grid based data aggregation. The arrows 
scheme. The numbers indicate the signal                        indicate the  transmission of data from sensors to 
strengths detected by the sensors. The arrows                 the grid aggregator.  
indicate the exchange of signal strengths 
between neighboring nodes. 

Sink    Sink 
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Simulations were performed on a 100 node 
network with random deployment [16]. In 
terms of the data acquired (throughput), the 
hybrid scheme and the in-network scheme 
perform almost identical to the perfect 
aggregation scheme in which each sensor is 
assumed to know the best aggregator. In terms 
of data latency, the hybrid scheme performs 
much better than the no-aggregation (classic 
flooding) and grid based schemes. The 
schemes have also been compared with 
respect to the total energy consumption of the 
sensor network. The simulation results 
indicate that the energy consumed by the grid 
based scheme is a factor of 2.2 less than the 

no-aggregation scheme. The in-network 
scheme and the hybrid scheme achieve a 
factor of 2.4 improvement compared to the 
no-aggregation scheme. The results show the 
superiority of the aggregation schemes 
compared to a no-aggregation scheme. 
However, for a more complete performance 
evaluation, the schemes need to be simulated 
under more elaborate scenarios such as 
multiple event detection. Table 1 summarizes 
the different hierarchical data aggregation 
protocols and their vital characteristics. Table 
2 presents some important differences 
between flat and hierarchical data aggregation 
protocols. 

  
 

Table 1: Summary of hierarchical data aggregation protocols 

Protocol Organization 
type 

Objectives Characteristics  

LEACH cluster Network lifetime: 
number of nodes that 
are alive, latency 

Randomized cluster head 
rotation, non-uniform energy 
drainage across different sensors.  

HEED cluster Lifetime: number of 
rounds until the first 
node death 

Assumption: Multiple power 
levels in sensors.  Cluster heads 
are well distributed.  Achieves 
better performance than LEACH 

PEGASIS           chain Lifetime: average 
energy expended by 
a node 

Global knowledge of the 
network is required. 
Considerable energy savings 
compared to LEACH. 

Hierarchical  
chain based 
protocols 

chain Energy×  delay Binary chain based scheme is 
eight times better than LEACH 
and the three level scheme is 5 
times better than PEGASIS. 

EADAT tree Lifetime: number of 
alive sensors at the 
end of simulation 
time 

Sink initiated broadcasting 
approach. It is not clear how to 
choose the threshold power (Pth) 
for broadcasting help messages. 
No comparisons made with other 
existing aggregation algorithms. 

PEDAP-PA tree Lifetime: time until 
the death of last node 

Minimum spanning tree based 
approach. Achieves two times 
performance improvement 
compared to LEACH, PEGASIS. 
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Table 2:Data aggregation in hierarchical networks versus flat networks 

 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
3. NETWORK FLOW BASED DATA 
AGGREGATION PROTOCOLS 
 Though most data aggregation protocols can 
be classified based on network architecture, 
some protocols pursue a different approach in 
that the sensor network is represented as a 
graph. Such protocols can be classified as 
network flow based protocols, in which data 
aggregation is modeled as a network flow 
problem. The main goal of network flow 
based protocols is optimization of network 
lifetime subject to energy constraints on 
sensor nodes and flow constraints on 
information routed in the network. In this 
section, we describe network flow based 
protocols and the optimization approaches 
involved.  
 
 
 

 
 
 
3.1 Data aggregation protocols for lifetime 
maximization 
In this section, we discuss three data 
aggregation approaches viz., maximum 
lifetime data gathering with aggregation 
(MLDA), a polynomial time approximation 
scheme and flow optimization with data 
aggregation. 
 
3.1.1 Maximum lifetime data aggregation   
Kalpakis et al. [17] have studied the maximum 
lifetime data gathering with aggregation 
(MLDA) problem employing efficient data 
aggregation algorithms. The goal of the 
MLDA problem is to obtain a data gathering 
schedule with maximum lifetime where 
sensors aggregate incoming data packets.  
 
 

Hierarchical networks Flat networks 

Data aggregation performed by 
cluster heads or a leader node. 

Data aggregation is performed 
by different nodes along the 
multi-hop path. 

Overhead involved in cluster or 
chain formation throughout the 
network. 

Data aggregation routes are 
formed only in regions that 
have data for transmission. 

Even if one cluster head fails, 
the network may still be 
operational.  

The failure of sink node may 
result in the break down of 
entire network. 

Lower latency is involved since 
sensor nodes perform short-
range transmissions to the 
cluster head.  

Higher latency is involved in 
data transmission to the sink 
via a multi-hop path.  

Routing structure is simple but 
not necessarily optimal. 

Optimal routing can be 
guaranteed with additional 
overhead. 

Node heterogeneity can be 
exploited by assigning high 
energy nodes as cluster heads. 

Does not utilize node 
heterogeneity for improving 
energy efficiency. 
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 The sensor network is modeled as a directed 
graph G = (V,E). The edges of G have an 
associated capacity fi,j which indicates the 
number of packets transmitted from node i to 
node j. An optimal admissible flow network is 
obtained using integer programming with 
linear constraints. The integer program 
computes the maximum system lifetime T 
subject to energy constraints of the sensors 
and capacity constraints on the edges. A 
scheduling algorithm is proposed that finds a 
sequence of aggregation trees that can 
aggregate and transmit T data packets from 
each sensor to the sink. Figure 7 shows an 
admissible flow network G with 70 rounds. In 
the aggregation tree T of Figure 7, sensors B 
and D transmit one data packet to sensor A, 
which aggregates the incoming packets with 
its own packet and transmits to the sink C.   

The integer programming approach 
involves solving a linear program with O(n3) 
variables and constraints where n is the total 
number of sensors. This approach is 
computationally expensive for large values of 
n. To alleviate this problem, a clustering based 
approach called greedy CMLDA has been 

proposed to obtain efficient data gathering  
schedules in large networks. Each cluster is 
referred to as a super-sensor. A maximum 
lifetime schedule is first obtained for the 
super-sensors which is then used to construct 
aggregation trees for the sensors. The initial 
energy of each super-sensor is equal to the 
sum of the initial energies of all the sensors 
within it. The distance between any two super-
sensors Si and Sj is assigned as the maximum 
distance between two nodes u and v such that 
u∈Si and v∈ Sj. The maximum lifetime 
schedule for the super-sensors is obtained by 
using the MLDA algorithm. At every step of 
tree construction, the node with maximum 
residual energy is included in the tree. The 
time complexity of the approach is polynomial 
in the number of sensors which involves 
solving a linear program with O(m3) variables 
where m is the number of clusters. An 
incremental CMLDA heuristic has also been 
proposed which builds a flow network by 
incrementally provisioning capacities on the 
edges. Using this heuristic, the lifetime of the 
network scales linearly with the energy of the 
sensors. 
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Figure 7: Illustration of an admissible flow network G with lifetime 70 rounds and an aggregation tree T with 
lifetime 30 rounds. The shaded nodes represent the sinks. 
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The algorithms in [17] were evaluated by 
comparing their performance with a chain 
based 3 level hierarchical protocol proposed 
by Lindsey et al. [12] (refer to Section 2.1). 
Simulation results show that the lifetime 
obtained with the incremental CMLDA is 
within 3% of the optimal solution while the 
greedy CMLDA obtains lifetime within 9% of 
the optimal solution. The greedy and 
incremental CMLDA protocols perform 
almost two times better than the hierarchical 
protocol proposed in [12] in terms of system 
lifetime. The proposed heuristics need to be 
generalized for more general situations in 
which a sensor acts as a data aggregator only 
for packets from certain sensors while it can 
be used as a router for other sensors.  
 
3.1.2 A polynomial time approximation 
scheme 
        Xue et al. [18] have studied the data 
aggregation problem in the context of energy 
efficient routing for maximizing system 
lifetime. The problem was modeled as a 
multicommodity flow problem, where the data 
generated by a sensor node is analogous to a 
commodity. They have proposed an algorithm 
which computes (1-∈) approximation to the 
optimal lifetime for any ∈>0. The objective of 
the multicommodity flow problem is to 
maximize the network lifetime T (time until 
first node dies), subject to flow conservation 
and energy constraints. A fully polynomial 
time approximation scheme (FPTAS) finds an  
∈ approximate solution, which returns at least 
(1-∈) times the optimal value. Its time 
complexity is polynomial in the size of the 
network. A Maxconcurrent flow (Maxlife) 
algorithm was proposed which computes a 
shortest path for one commodity at each 
iteration of the algorithm. This is followed by 
updating the weight of each sensor sk  which 

represents the marginal cost of using an 
additional unit of the sensor’s energy reserve. 
Since all data sources share a common 
destination, a shortest path tree rooted at the 

data sink is eventually formed. For the multi-
sink data aggregation problem, a modification 
of Dijkstra’s shortest path tree algorithm has 
been used. The objective is to compute an 
aggregation forest which is a unification of M 
trees routed at data sinks 1, 2, …, M.   
       The performance of the proposed 
algorithm (Maxlife) has been compared with 
the minimum energy routing algorithm 
(MinEnergy). The goal of MinEnergy is to 
minimize the energy consumption for each 
data packet routed through the network. Each 
source node computes a shortest path to the 
sink in terms of the total energy cost. The 
simulation results show that as the network 
size grows, MaxLife doubles the lifetime 
achieved by MinEnergy. The results indicate 
that MaxLife outperforms MinEnergy for 
different network sizes and different number 
of data sinks. However, the performance gain 
decreases when the number of data sinks 
grows.  
    
3.1.3 Energy constrained network flow 
optimization  
Hong et al. [19] have formulated the data 
gathering problem as a restricted flow 
optimization problem.  The goal of maximal 
data gathering problem (MDG) is to maximize 
the number of data gathering rounds subject to 
the energy constraints of the sensors. The 
energy constraints on the nodes are 
transformed into edge capacitates. The quota 
constraint requires each node to generate a 
fixed number of packets in a given round. The 
MDG problem is reduced to a restricted flow 
problem with edge capacities  (RFEC). The 
sensor network is modeled as a graph  
G = (V, E) and the RFEC problem determines 
whether or not there exists a data flow which 
satisfies the flow constraints, quota constraint 
and the edge capacity constraints. The 
capacity of an edge is given by c(u,v)=N×nu 

where nu is the number of data packets 
generated per round and N is the total number 
of rounds.  
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Given a graph G and a flow f, the residual 
graph induced by f is a graph Gf = (V, Ef).  An 
edge (u, v) in Ef  has residual capacity cf 

(u,v)=c(u,v) - f(u,v). The RFEC algorithm 
finds the shortest augmenting path P from the 
source to the sink in Gf . The RFEC algorithm 
obtains an integer valued solution that 
specifies the number of data packets to be 
transferred between two neighboring sensors 
for each round.  The shortest path heuristic 
may not obtain the optimal solution because it 
searches over possible paths in the original 
graph instead of the residual graph. Examples 
have been presented in [19] where for 
networks with 4 or more sensors, the MLDA 
algorithm [17] achieves only 50% of the 
optimal system lifetime.   
  
3.2 Network correlated data gathering 
In sensor networks, the data gathered by 
spatially close sensors are usually correlated. 
Cristescu et al. [20] have studied the problem 
of network correlated data gathering. When 
sensors use source coding strategies, we have 
a joint optimization problem which involves 
optimizing rate allocation at the nodes and the 
transmission structure. Slepian-Wolf coding 
and joint entropy coding with explicit 
communication have been investigated in the 
context of data gathering. In Slepian-Wolf 
coding, optimal coding allocates higher rates 
to nodes closer to the sink and smaller rates to 
the nodes at the extremity of the network. In 
the explicit communication model, larger rates 
are allocated to nodes farther from the sink 
and smaller rates to nodes closer to the sink.  

The sensor network is represented as a 
weighted graph G= (V, E). Every node i 
transmits data at a rate Ri through the network 
to the sink. The minimum cost data gathering 
tree problem attempts to find a spanning tree 
(ST) of G and rate allocations Ri that minimize  

 

the cost C defined as C = ),( e
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where h (xe, we)  is an arbitrary cost function 
of the flow x through an edge e with weight 
we. This is equivalent to minimizing 
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 where dST(i,s) is the total 

weight of the path from node i to s in the 
spanning tree. In Slepian –Wolf coding, in the 
presence of a single sink, the shortest path tree 
(SPT) is optimal for any rate allocation.  

An optimal Slepain-Wolf rate 
allocation scheme has been proposed in [20]. 
In this scheme, the closest node to the sink 
codes data at a rate equal to its unconditioned 
entropy.  All other nodes code at a rate equal 
to their respective entropies conditioned on all 
nodes which are closer to the sink than 
themselves. The main disadvantage of this 
scheme is that each sensor requires global 
knowledge of the network in terms of 
distances between all nodes. To overcome this 
problem, a fully distributed approximation 
algorithm has been proposed which provides 
solutions close to the optimum. In this 
scheme, data are coded locally at each node, 
and the conditioning is performed only on the 
neighbor nodes which are closer to the sink 
than the respective node.  
       In the explicit communication model, the 
data received by a node depends on the 
transmission structure. Hence the optimization 
of rates and transmission structure do not 
separate. Joint optimization in this case is 
hard, and approximate algorithms have been 
developed. These include the shortest path tree 
(SPT), leaves deletion, balanced shortest path 
tree (BSPT) and simulated annealing. SPT is 
computed with the distributed Bellman-Ford 
algorithm. The leaves deletion algorithm is 
based on the observation that cost 
improvements are obtained when the leaf 
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nodes change their parent node to an 
alternative node to reduce the total cost of the 
tree. The BSPT algorithm is based on a 
combination of the SPT and multiple traveling 
salesman paths (TSP). Simulations were 
performed on networks of different sizes up to 
500 nodes. Simulation results indicate that 
significant improvements in cost (C) are 
obtained by BSPT and the leaves deletion 
algorithm compared to SPT. For the explicit 
communication approach, experiments have 

shown that full conditioning on all children or 
a distance dependent correlation coefficient 
between pairs of nodes do not result in 
significant cost improvement. In terms of rate 
allocation, the Slepian-Wolf approach 
outperforms the explicit communication 
approach. This reduction in rates is achieved 
at the cost of increased network knowledge. 
Table 3 presents the main characteristics and 
limitations of different network flow based 
data aggregation algorithms. 

 
Table 3: Summary of network flow based data aggregation algorithms 

 

 
  

Algorithm Objective and 
constraints 

Approach Limitations 

CMLDA [17] Maximize: 
network lifetime 
subject to energy 
and capacity 
constraints. 

Integer linear 
programming 
approach. 

High computational 
complexity for 
networks of large 
sizes. 

Maxconcurrent  flow 
algorithm [18] 

Maximize: 
network lifetime 
subject to flow 
conservation and 
energy 
constraints. 

Dijkstra’s shortest 
path tree algorithm. 

Performance gain 
decreases with 
increase in the 
number of sinks. 

RFEC algorithm [19] Maximize: 
number of data 
gathering rounds 
subject to edge 
and capacity 
constraints. 

A residual graph 
based approach to 
determine the data 
flow. 

Need to consider 
more realistic models 
such as dynamic 
environments where 
sensors may not 
generate a fixed 
number of packets in 
a round.  

Shortest path tree 
algorithm [20] 

Minimize: Total 
transmission cost  
of transporting 
information to the 
sink subject to 
capacity 
constraints on 
links. 

Joint optimization 
of rate allocation at 
nodes and 
transmission 
structure based on 
Slepian–Wolf 
coding strategies. 

The Gaussian random 
field model for 
characterizing spatial 
correlation is 
somewhat arbitrary 
and its validity should 
be established.  
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4. QOS AWARE DATA AGGREGATION 
PROTOCOLS 
Most of the data aggregation protocols 
discussed so far are designed with energy 
efficiency as the main goal and hence result in 
networks with a long lifetime. However, in 
some applications, the main requirement is a 
desired quality of service in terms of metrics 
such as bandwidth, end-to-end delay and 
information throughput. In this section, we 
describe the data aggregation protocols whose 
main focus is on guaranteeing such QOS 
metrics. Such protocols are also based on the 
concept of network flow described in Section 
3. However, the main difference is the 
performance measure involved.  Research in 
QOS aware data aggregation can be 
categorized into two types: 

a) Data aggregation protocols that 
maximize the amount of information 
collected at the sinks subject to 
constraints on energy, latency and data 
flows. 

b) Data aggregation protocols which 
focus on congestion control and end to 
end reliability. 

We now describe such protocols in greater 
detail. 
 
4.1. Data aggregation protocols for optimal 
information extraction 
Sadagopan et al. [21] have considered the 
problem of maximizing data extraction in 
energy limited heterogeneous sensor 
networks. The problem of maximizing data 
extraction from energy constrained sensors is 
formulated as a multi-commodity flow 
problem subject to constraints on flow 
conservation. An approximation algorithm 
based on efficient heuristics such as distance, 
hop count and residual energy has been 
proposed which reduces the number of 
iterations and incorporates selfish, greedy 
behavior. The heuristics differ in terms of the 
link metric chosen for distance vector routing. 
 

 
In the exponential metric, the link metric of a 
sensor at any iteration varies exponentially 
with the residual energy of the sensor. When 
all the nodes have similar data and energy 
levels, all greedy heuristics perform similarly. 
If there are nodes with very high energy and 
low data, the exponential metric outperforms 
the other heuristics. The exponential heuristic 
results in data flows that are within 15% of the 
optimum. However, the performance of the 
exponential heuristic is influenced by the node 
and data heterogeneity of the sensors. When 
all the sensors are homogeneous, other greedy 
heuristics such as distance and hop count 
perform equally well. In addition, the problem 
formulated in [21] does not incorporate the 
data fairness issue. In reality, data from 
different sensors may have different priority 
and hence it is important to incorporate 
priority in the data extraction problem.  
    Ordonez et al. [22] have considered the 
problem of optimal information extraction in 
energy limited sensor networks. The main 
goal is to find the coordinated operation of all 
the nodes by setting transmission powers and 
flow rates in order to maximize the amount of 
information that reaches the sink. End-to-end 
fairness is guaranteed by enforcing that each 
node sends at most a fraction αi  of the total 
information that is transmitted to the sink. The 
problem is formulated as a non-linear flow 
optimization problem subject to energy 
constraints. Data aggregation can be 
accommodated by using multiple flows to 
separately represent the flow of data and the 
usage of communication channel in order to 
identify which data can be aggregated 
together. Models have been proposed for two 
problems viz., maximizing the total 
information gathered subject to energy 
constraints and minimizing the energy usage 
subject to information constraints. It was 
shown that the two problems are equivalent to 
each other in terms of correspondence  
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between optimal solutions and constraints.   
However, the latter model is computationally 
more efficient.  

Two simple and efficient heuristics 
have been proposed in [22] for assigning 
energy to the nodes and distribution of 
information. In the first heuristic called the 
direct heuristic, each node sends data directly 
to the sink. Then they assign as much 
information as possible to the nodes with the 
smallest contribution to the objective function 
which minimizes the total energy 
consumption. In the second heuristic called 
the hop heuristic, information is routed from a 
node to the closest node in the direction of the 
sink.  

Simulations were performed on line 
and square topologies of sensor networks. For 
the line topology, the hop heuristic performs 
poorly in terms of energy consumption. 
However, for the square topology, hop 
heuristic performs better than the direct 
heuristic. The effect of fairness pattern on 
optimal energy distribution has been 
investigated. The results show that when there 
are no fairness constraints, the optimal way 

for nodes to send data directly to the sink is 
such that their contributions to the objective 
function are equal. 

 
4.2 Data aggregation protocol for end-to-end 
reliability and congestion control 
He et al. [23] have proposed an aggregation 
scheme that adaptively performs application 
independent data aggregation (AIDA) in a 
time sensitive manner. Their work isolates 
aggregation decisions into a module that 
resides between the network and data link 
layers The main goal is to maximize the 
utilization of the communication channel. 
AIDA performs lossless aggregation in which 
the upper layer decides whether information 
compression is appropriate at that time. The 
AIDA architecture consists of a functional 
unit that aggregates and de-aggregates 
network packets. In addition, there is a control 
unit that adaptively controls timer settings and 
tunes the degree of aggregation. The 
transmission and control overhead is reduced 
by aggregation of multiple network units into 
a single AIDA aggregate. Figure 8 shows the 
AIDA architecture. 

 
 
 
 
      Network data packets 
 
 
 
 
 
 
 
 
 
      AIDA data aggregates 
 
 
 
                                                              Figure 8: AIDA architecture 
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Several versions of AIDA have been proposed 
ranging from aggregation decisions based on 
static thresholds to a dynamic online feedback 
control mechanism. In the fixed aggregation 
scheme, AIDA aggregates a fixed number of 
network units into an AIDA packet. In the on-
demand aggregation scheme, AIDA layer data 
aggregation takes place only when the MAC 
layer is available for transmission. The 
dynamic feedback scheme is a combination of 
on-demand and fixed aggregation where the 
degree of aggregation threshold is modified 
dynamically. This scheme tunes the degree of 
aggregation threshold and the sending rate to 
optimize the aggregation performance.  

The dynamic feedback scheme was 
compared with fixed data aggregation, on 
demand data aggregation and no data 
aggregation schemes. The simulation results 
show that dynamic feedback scheme is the 
best technique with better performance in 
terms of end-to-end delay, energy 
consumption and control overhead. The 
dynamic scheme obtains delay information 
that directly reflects the current traffic 
situation resulting in a better control model 
and better performance. The results show that 
AIDA reduces the end-to-end delay by 80% 
and transmission energy by 30-50% compared 
to the no aggregation scheme under heavy 
traffic conditions. From the study in [23], it 
can be concluded that AIDA can complement 
the benefits of application specific data 
aggregation schemes. 
 
5. HANDLING TRADE-OFFS IN DATA 
AGGREGATION 
The performance of data aggregation 
protocols are characterized by performance 
measures such as energy consumption, latency 
and data accuracy. There is usually a tradeoff 
between the different objectives. In this 
section, we describe approaches for handling 
the tradeoffs in data aggregation schemes. 
 
 

5.1 In-network aggregation tradeoffs 
Ignacio et al. [24] have investigated in-
network aggregation trade-offs for data 
aggregation in sensor networks. They have 
focused on sensor network applications such 
as environmental monitoring that generate 
data periodically. Timing models play a 
significant role in the accuracy and freshness 
of data aggregation. A new cascading 
timeouts data aggregation scheme has been 
proposed for periodic data aggregation. In this 
approach, the sink initially broadcasts a 
request to all nodes. The initial request 
triggers a tree establishment protocol. This 
sets up reverse paths from all nodes back to 
the sink. Each node waits for a certain period 
of time to receive data from their children 
after which it times out. The timeout of each 
node is set based on the position of the node in 
the data aggregation tree. A node’s timeout 
occurs before its parent’s timeout. This results 
in a cascading effect where data originating 
from leaves reaches nodes in the next tree 
level in time for aggregation. This is 
analogous to a “data wave” which reaches the 
sink. Timeout scheduling is a part of the tree 
setup protocol which is triggered by the initial 
request from the sink. The hop-count field in 
the request is utilized by the nodes to estimate 
their distance to the sink and schedule their 
timeouts.  

The performance of cascading timeouts 
has been compared with periodic simple 
aggregation and periodic per hop aggregation. 
In periodic simple aggregation, all nodes wait 
for a pre-defined time interval, aggregate data 
received in that period and generate a single 
packet. In per-hop aggregation, once all data 
packets are received from a node’s children, 
an aggregated packet is produced and 
transmitted to the next hop. The proposed 
energy efficiency metric computes the number 
of aggregation packets per round Np  given by 

Np  =  �
∈Ni

id
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where di is the depth of node i and N is the set 
of nodes in the tree.  In addition, data 
accuracy, data freshness, and overhead were 
also used as the performance metrics. Data 
freshness is equal to the difference between 
the time a data item is generated and the time 
it is received at the sink.   
           Simulations were performed comparing 
no aggregation, periodic, periodic per hop and 
cascading timeouts. The results show that no 
aggregation and cascading timeouts achieve 
the highest percentage of fresh data. 
Interestingly, the sink placement has 
significant impact on data freshness. Placing 
the sink in the center of the field yields fresher 
data. All data aggregation schemes compared 
exhibit similar energy efficiency. A new 
metric called weighted accuracy has been used 
to compute the data item’s age. The weighted 
accuracy Wa is defined as 

 
Wa  =  i

Ei
i wr�

∈

 

 
where E is the set of ages of readings, r i  is the 
number of readings of age i per period and w 
is the weight. Older readings are assigned an 
exponentially decaying weight. No 
aggregation and cascading timeouts exhibit 
the best weighted accuracy. The results show 
that cascading timeout maintains the same 
freshness and accuracy achieved by no 
aggregation with significant energy savings. 
However, the approach needs to be 
generalized to scenarios involving non-
periodic data generation and applications 
where the aggregated data packet length is 
different from the length of the data packet 
generated.  
 
5.2  Energy, accuracy, and latency tradeoffs 
Boulis et al. [25] have studied the energy-
accuracy tradeoffs for periodic data 
aggregation problems in sensor networks. 
They have considered a problem in which the 
sensors provide periodic estimates of the 
environment. A distributed estimation 

algorithm has been developed which uses the 
“max” aggregation function. Some of the 
unique features of the proposed estimation 
algorithm include: 

a) Scalability with the network 
architecture 

b) Time synchronization between the 
nodes is not required 

c) All nodes have an estimate of the 
global aggregated value 

The key idea of their approach is a threshold 
based scheme where the sensors compare their 
fused estimates to a threshold to make a 
decision regarding transmission. However, in 
the absence of prior information about the 
physical environment, setting the threshold is 
a non-trivial task. The threshold can be used 
as a tuning parameter to characterize the 
tradeoff between accuracy and energy 
consumption. The estimation algorithm was 
simulated on a 45m×45m network. The 
results indicate that the energy consumption 
varies from 5% to 67% of the total initial 
energy of all sensors in the network depending 
upon the chosen threshold. The main 
advantage of the proposed approach is that it 
does not depend on a hierarchical tree 
structure for performing data aggregation. 
Instead, every node has the global information 
about the aggregated data. The main 
disadvantage of the approach is that the 
functionality of the fusion algorithm depends 
on the aggregation function. Hence the fusion 
algorithm is not applicable for a wide range of 
aggregation functions such as “average”, 
“count”  or “min” . 

Yu et al. [26] have also studied the 
energy-latency tradeoffs for data aggregation 
in sensor networks. The main goal of their 
approach is to minimize the overall energy 
consumption of the network subject to a 
latency constraint. The non-monotonic energy 
model used in [26] is based on Quadrature 
Amplitude Modulation (QAM) scheme. The 
transmission time τ for transmitting a packet 
of size l bits is defined as  
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Rg

l

×
=τ  where g is the modulation level 

(number of bits per symbol) and R is the 
symbol rate. The transmission energy is a 
nonlinear function of the transmission time. 
The principle of this energy model is that the 
transmission energy does not monotonically 
decrease as the transmission time increases.  

The offline packet-scheduling scheme 
proposed in [26] assumes that the structure of 
the aggregation tree is known a priori. The 
packet-scheduling scheme is an iterative 
numerical optimization algorithm that 
optimizes the overall energy dissipation of the 
sensors in the aggregation tree. There is no 
guarantee on the convergence speed of the 
iterative algorithm. A pseudo-polynomial time 
approximation algorithm has been developed 
based on dynamic programming. The main 
drawback of the algorithm is that each node 
has to wait for information from all child 
nodes before performing data aggregation. 
This might increase the associated latency. 
Simulations were performed with 200 nodes 
randomly deployed in a unit square. The 
algorithms proposed in [26] were compared 
with a baseline approach in which all the 
sensors transmit packets with the highest 
speed and then shutdown their radio. The 
results show that the proposed algorithms can 
achieve 20% to 90% energy savings compared 
to the baseline approach.  
 
5.3 Capacity-energy tradeoffs 
Duarte-Melo et al. [27] have studied the 
transport capacity of data gathering sensor 
networks with different communication 
organizations. The hierarchical and flat 
organizations of sensor networks were 
compared in terms of capacity and energy 
consumption. They have discussed the 

tradeoffs between capacity and energy 
consumption for data aggregation applications 
in which every sensor sends an equal amount 
of original data to the sink.  In the flat 
architecture, nodes communicate with the sink 
via multi-hop routes by using peer nodes as 
relays. In the hierarchical structure, nodes are 
organized into clusters where the cluster heads 
serve as simple relays for transmitting the 
data.  For a hierarchical network, where 
cluster heads have the same transmission 
capacity as the sources, the minimum 
requirement on the number of clusters has 
been obtained for achieving the upper bound 
on the throughput. The main finding of their 
study is that higher throughput can be 
achieved by using clustering at the cost of the 
extra nodes functioning as cluster heads. 
          Simulation results reveal some 
interesting relations between the organization 
of the network, capacity and energy 
consumption. The flat (multi-hop) network 
consumes less energy if the area of the 
network is large while the hierarchical 
network consumes less energy if the area is 
small. Hence small networks should be 
organized into clusters which reduces the 
energy consumption and increases the 
capacity. The tradeoff between capacity and 
energy consumption becomes evident in large 
networks. If the capacity of the flat network is 
enough for the desired application, then it is 
beneficial to use flat (multi-hop) networks to 
reduce energy consumption. If the application 
requires a higher capacity, then a hierarchical 
network should be employed at the cost of 
increase in energy consumption. Table 4 
summarizes the advantages and limitations of 
different approaches which characterize the 
trade offs between energy efficiency, latency, 
capacity and accuracy. 
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Table 4: Summary of different approaches which characterize the tradeoffs involved in data aggregation 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

Approach  Scenario 

Trade offs 

Advantages Limitations 

A cascading timeouts 
data aggregation scheme 
in which a node’s timeout 
is based on its position in 
the aggregation tree [24]. 
 

Periodic data 
 aggregation  
 

Energy efficiency, 
data freshness and 
accuracy 

Minimal control 
overhead and does 
not require clock 
synchronization 
among sensors. 

The approach needs 
to be generalized for 
non-periodic data 
aggregation 
scenarios.  

A threshold based 
distributed estimation 
algorithm [25]. 

Periodic data 
aggregation 

Energy efficiency and 
accuracy 

The aggregation 
scheme does not 
depend upon the 
tree structure.  

The fusion 
algorithm is not 
applicable for a 
wide range of 
aggregation 
functions. 

Iterative numerical 
optimization algorithm 
that minimizes the energy 
dissipation of sensors in 
the aggregation tree [26]. 
 

Real time event 
monitoring 
applications 

Energy efficiency and 
latency 

About 20-90% 
energy savings are 
obtained compared 
to a classic radio 
shut down 
technique. 

There is no 
guarantee on the 
convergence speed 
of the iterative 
algorithm. 

Study of capacity and 
energy consumption of 
flat and hierarchical 
networks [27]. 

Applications 
which involve 
many to one 
communications 
such as detection 
in cluster based 
networks 

Energy efficiency and 
capacity 

The study helps the 
system designer to 
choose a particular 
network 
architecture 
depending on the 
capacity and energy 
constraints.  

The idealized disk 
shaped model used 
for sensor 
communication 
range is   unrealistic 
and does not 
consider wireless 
channel fading.  
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6. SECURITY ISSUES IN DATA 
AGGREGATION 

Security in data transmission and aggregation 
is an important issue to be considered while 
designing sensor networks. In many 
applications, sensors are deployed in open 
environments and are susceptible to physical 
attacks which might compromise the sensor’s 
cryptographic keys. Secure aggregation of 
information is a challenging task if the data 
aggregators and sensors are malicious.  In 
this subsection, we describe some recent 
work which solve the secure data aggregation 
problem and also discuss some of the main 
issues involved in implementing security in 
sensor networks.  
 Girao et al. [28] have analyzed the 
two main practical issues involved in 
implementing data encryption at the sensors 
viz., the size of the encrypted message and 
the execution time for encryption at the 
sensors. Privacy homomorphisms (PH) are 
encryption functions which allow a set of 
operations to be performed on encrypted data 
without the knowledge of decryption 
functions.  In [28], PH has been used to 
analyze the feasibility of security 
implementation in sensors. PH  uses a 
positive integer 2≥d  for computing the 
secret key. The size of the encrypted data 
increases by a factor of d compared to the 
original data. Hence in the light of 
minimizing packet overhead, d should be 
chosen in the range of 2-4 as suggested in 
[28]. Execution times for encryption 
operation at the sensors increase with d. For 
instance when d=2, the execution time for 
encryption of one byte of data is 3481 clock 
cycles on a MICA2 mote which increases to 
4277 clock cycles when d=4 as reported in 
[28]. MICA2 motes cannot handle the 
computation for 4≥d . Hence, the tradeoff 
between security and computation 
complexity should be considered when  
 

 
 
 
implementing data encryption schemes on 
sensors.  
 The other main aspect of security in 
sensor networks is the establishment of secret 
keys between the sensor and the base station. 
Perrig et al. [29] have proposed security 
protocols for sensor networks which address 
the key establishment problem. In the 
approach proposed in [29], all nodes trust the 
base station at the network creation time and 
each node is given a master key which is 
shared with the base station. To achieve 
authentication between a sensor and base 
station, a message authentication code 
(MAC) is used. The keys for encrypting the 
data and computing the MAC are derived 
from the master key using a pseudo random 
function. All keys derived using this 
procedure are computationally independent. 
Hence, if an attacker hacks the key, it would 
not help in determining the master key or any 
other key. In scenarios where a key is 
compromised, a new key can be derived 
without transmitting confidential 
information.  

Przydatek et al. [30] have proposed a 
framework for secure data aggregation in 
large sensor networks. They have presented 
secure protocols for the computation of 
median, maximum, minimum and average of 
sensor measurements and estimation of 
network size.  The following issues have 
been addressed for secure data aggregation. 

a) Some sensor nodes may be 
compromised and transmit wrong 
data values to the aggregator that 
corrupts the aggregation result. 

b) The aggregator may be compromised 
and report malicious aggregate values 
to the home server or sink.  

c) Estimation errors introduced by the 
sampling techniques used by the 
aggregator to compute the result. 
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The proposed approach called aggregate-
commit-prove involves the construction of 
efficient random sampling mechanisms and 
interactive proofs enabling the end user to 
verify the authenticity of the information 
provided by the aggregator. The three main 
steps involved in aggregate-commit-prove are: 

a) Computation of result:  The aggregator 
gathers the data from sensors and 
locally computes the aggregation 
result. 

b) Committing to the gathered data: In 
this stage, the aggregator commits to 
the collected data. This is 
accomplished by Merkle hash tree 
construction. In this approach, the 
aggregator computes a binary hash tree 
starting from the leaf nodes. Each 
internal node in the hash tree is 
computed as the hash value of the 
concatenation of the two child nodes. 
The root of the tree is denoted as the 
commitment of the gathered data. The 
Merkel hash tree is a commitment to 
all the leaf nodes. Given an authentic 
root node, a verifier can authenticate 
any leaf node by verifying that the leaf 
value is used to derive the root node.  

c) Server-aggregator communication: 
The aggregator communicates the 
aggregated result and commitment to 
the server. The aggregator uses 
interactive proof protocols to prove the 
correctness of the reported results to 
the server. This protocol enables the 
home server to check the authenticity 
of the committed data and conclude if 
the aggregator is malicious.   

The proposed framework enables secure data 
aggregation. However, simulations and 
experimental study are necessary to 
demonstrate the effectiveness of the approach. 
Although some discussion is included about 
the extension of the approach for hierarchical 

networks, a more detailed analysis is needed. 
In particular, functions such as median may 
not support hierarchical aggregation.   

Cam et al. [31] have developed an 
energy efficient and secure pattern based data 
aggregation protocol (ESPDA) for sensor 
networks. They have demonstrated the 
advantages of ESPDA compared to 
conventional data aggregation techniques with 
respect to energy, bandwidth efficiency and 
security. In ESPDA, the sensor nodes send the 
pattern codes to the cluster head for data 
aggregation. The sensor data is transmitted to 
the sink in an encrypted form without being 
decrypted anywhere in the transmission path. 
ESPDA aims at achieving energy efficient 
data aggregation with secure data 
communication. Each sensor node executes 
the pattern generation (PG) algorithm to 
generate the pattern code. The cluster head 
uses a pattern comparison algorithm to 
analyze the patterns.   

The characteristics of sensed data are 
compared with the intervals defined in the 
lookup table of the PG algorithm and a 
corresponding critical value is assigned. The 
critical values of all parameters of the data are 
combined to generate the pattern code. The 
main disadvantage of the PG algorithm is that 
it requires application specific aspects such as 
environmental parameters, type of sensed data 
and threshold levels as input. The pattern seed 
is periodically changed to prevent data 
manipulation by the intruders. This technique 
enforces security and data freshness. The 
sensor nodes that correspond to the unique 
pattern set, transmit the actual data. 
Symmetric key cryptographic algorithms are 
used to guarantee security in sensor networks. 
ESPDA is more secure since the cluster head 
does not decrypt the data. The bandwidth 
occupancy rate (ratio of bandwidth occupancy 
to total available bandwidth) was used as the 
performance measure. The simulation results 
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show that at 100% redundancy, the bandwidth 
occupancy rate of ESPDA is close to zero. 
The bandwidth occupancy rate increases with 
decrease in redundancy reaching a 100% 
when the redundancy is close to zero. ESPDA 
outperforms conventional data aggregation in 
terms of bandwidth occupancy. In 
conventional data aggregation where all 
sensor nodes transmit the actual data to the 
cluster head, the bandwidth occupancy is more 
than 50% of the total bandwidth. However, the 
performance of the protocol in terms of data 
security and total energy consumption has not 
been analyzed. It is intuitive that ESPDA 
improves the energy efficiency by reducing 
the number of packets transmitted in a data 
gathering round. Extensive simulations on 
different network sizes are necessary to 
substantiate the results. Nevertheless, to the 
best of our knowledge, ESPDA is the first 
attempt to combine energy efficiency with 
security for data aggregation.  
   
 
7. CONCLUSIONS 
We have presented a comprehensive survey of 
data aggregation algorithms in wireless sensor 
networks. All of them focus on optimizing 
important performance measures such as 
network lifetime, data latency, data accuracy 
and energy consumption. Efficient 
organization, routing and data aggregation tree 
construction are the three main focus areas of 
data aggregation algorithms. We have 
described the main features, the advantages 
and disadvantages of each data aggregation 
algorithm. We have also discussed special 
features of data aggregation such as security 
and source coding.  The trade-offs between 
energy efficiency, data accuracy and latency 
have been highlighted. Most of the existing 

work has mainly focused on the development 
of an efficient routing mechanism for data 
aggregation. However, the performance of the 
data aggregation protocol is strongly coupled 
with the infrastructure of the network. There 
has not been significant research on exploring 
the impact of heterogeneity and mode of 
communication (single hop versus multi-hop) 
on the performance of the data aggregation 
protocols. Although, many of the data 
aggregation techniques presented look 
promising, there is significant scope for future 
research.  Combining aspects such as security, 
data latency and system lifetime in the context 
of data aggregation is worth exploring. A 
systematic study of the relation between 
energy efficiency and system lifetime is an 
avenue of future research.  Analytical results 
on the bounds for lifetime of sensor networks 
is another area worth exploring. Existing work 
has provided bounds on lifetime for networks 
with specific network topologies and source 
behaviors. It would be interesting to extend 
this work to more general network topologies 
such as  cluster based sensor networks.  

Security is another important issue in 
data aggregation applications and has been 
largely unexplored. Integrating security as an 
essential component of data aggregation 
protocols is an interesting problem for future 
research. Data aggregation in dynamic 
environments presents several challenges and 
is worth exploring in the future. Another 
interesting domain of research is the 
application of source coding theory for data 
gathering networks. The sensor data are 
usually highly correlated and energy 
efficiency can be achieved by joint source 
coding and data compression. Although some 
research has been pursued in this direction 
[20], there is significant scope for future work. 
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