
Syracuse University
SURFACE

Electrical Engineering and Computer Science L.C. Smith College of Engineering and Computer
Science

1998

Enhancing spatial locality via data layout
optimizations
Mahmut Kandemir
Syracuse University

Alok Choudhary
Northwestern University

J. Ramanujam
Louisiana State University

N. Shenoy
Northwestern University

Follow this and additional works at: http://surface.syr.edu/eecs

Part of the Computer Engineering Commons

This Working Paper is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE. It has
been accepted for inclusion in Electrical Engineering and Computer Science by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Kandemir, Mahmut; Choudhary, Alok; Ramanujam, J.; and Shenoy, N., "Enhancing spatial locality via data layout optimizations"
(1998). Electrical Engineering and Computer Science. Paper 20.
http://surface.syr.edu/eecs/20

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs/20?utm_source=surface.syr.edu%2Feecs%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Enhancing Spatial Locality via Data Layout

Optimizations

M. Kandemir1, A.Choudhary2, J. Ramanujam3, N. Shenoy2, and P. Banerjee2

1 EECS Dept., Syracuse University, Syracuse, NY 13244
mtk@ece.nwu.edu

2 ECE Dept., Northwestern University, Evanston, IL 60208
{choudhar,nagaraj,banerjee}@ece.nwu.edu

3 ECE Dept., Louisiana State University, Baton Rouge, LA 70803
jxr@ee.lsu.edu

Abstract. This paper aims to improve locality of references by suitably
choosing array layouts. We use a new definition of spatial reuse vectors
that takes into account memory layout of arrays. This capability creates
two opportunities. First, it allows us to develop an array restructuring
framework based on a combination of hyperplane theory and reuse vec-
tors. Second, it allows us to observe the effect of different array layout
optimizations on spatial reuse vectors. Since the iteration space based lo-
cality optimizations also change the spatial reuse vectors, our approach
allows us to compare the iteration-space based and data-space based
approaches in terms of their effects on spatial reuse vectors. We illus-
trate the effectiveness of our technique using an example from the BLAS
library on the SGI Origin distributed shared-memory machine.

1 Introduction

In most computer systems, exploiting locality of reference is key to high levels of
performance. It is well-known that caching of data whether it is private or shared
improves memory latency as well as processor utilization. In fact, increasing the
cache hit rates is one of the most important factors in reducing the average
memory latency. Although cache hit rates in uniprocessors can be improved by
optimizing the organization of the cache such as carefully selecting the cache size,
line size and associativity, there are still tasks to be done from software. The
programmers and compiler writers often attempt to modify the access patterns
of a program so that the majority of accesses are made to the nearby memory.
Several efforts have been aimed at iteration space transformations and scheduling
techniques to improve locality [10,9,13]; these techniques improve data locality
indirectly as a result of modifying the iteration space traversal order.

In this paper, we focus on an alternative approach to the data locality opti-
mization problem. Unlike traditional compiler techniques, we focus directly on
the data space, and attempt to transform data layouts so that better locality is
obtained. We present a data restructuring technique which can improve cache
performance in uniprocessors as well as multiprocessor systems. Our technique is
based on the concept of reuse vectors [9,13] and uses linear algebra techniques to
help a compiler translate potential reuse in a given program into locality. In our

D. Pritchard, J. Reeve (Eds.): Euro-Par’98, LNCS 1470, pp. 422–434, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Enhancing Spatial Locality via Data Layout Optimizations 423

technique, we use data transformations expressed by linear full-rank transforma-
tion matrices. We also compare data transformations with linear loop transfor-
mations that can be expressed by non-singular transformation matrices. We are
particularly interested in optimizing spatial locality, that in turn causes better
utilization of the long cache lines which represents the current trend in cache
architecture.

This paper is organized as follows. In the next section, we outline the back-
ground and motivations for our work. Section 3 presents a memory layout repre-
sentation based on hyperplane theory from linear algebra. In Section 4, we give a
method to compute a reuse vector, for a given layout expressed by hyperplanes.
We also illustrate how this new definition of reuse vector can be employed to
guide data layout transformations. In Section 5, we present our preliminary re-
sults on the syr2k example from the BLAS library. In Section 6 we review the
related work and conclude the paper in Section 7.

2 Background

We represent each iteration of a loop nest of depth n by a loop iteration vector
I = (i1, i2, ..., in) where ik is the value of the kth loop from the outermost. Each
reference to an m–dimensional array U in such a loop nest is assumed to be
an affine function of the iteration represented by I, i.e., I is mapped onto data
element AUI+oU . Here AU is an m×n matrix called the access matrix and the
m-vector oU is called the offset vector [13,9]. Consider the following example.

Example 1: do i = li, ui
do j = lj, uj

U(j+1,i-1) = V(i-1,j+1) + W(j-1,i+j+1) + X(j) + Y(i)
enddo

enddo

Here, for array U , AU =
(
0 1
1 0

)
, and oU =

(
1

−1

)
. Two references to an array

are said to belong to a uniformly generated reference (UGR) set if they have the
same access matrix [3].

We say that reuse exists during the execution of a loop nest if the same data
element or nearby data elements (e.g., the elements stored consecutively in a
column for a column-major array) are accessed more than once. Given a loop
nest, it is important to know where data reuse exists. A simple way of detecting
the loops which carry reuse is to derive a set of vectors called reuse vectors [13,9].
The objective here is first to use vectors to represent directions in which reuse
occurs, and then to transform the loop nest such that these vectors will have
some desired properties, i.e., forms.

Consider a reference with an access matrix AU and offset vector oU . Two
iterations I and J reference the same data element if AUI+oU = AUJ +oU ⇒
AU (J − I) = 0 ⇒ AUrU t = 0 ⇒ rU t ∈ Ker{AU} where rU t = J − I. In
this case we say that reference AU exhibits temporal reuse; that is, the same

424 M. Kandemir et al.

data element is used by more than one iteration; rU t is termed as temporal
reuse vector and Ker{AU} is referred as temporal reuse vector space [13]. As an
example, consider the reference X(j) in Example 1. The access matrix of this
reference is (0, 1). Therefore, rXt ∈ Ker{(0, 1)}; that is, rXt ∈ span{(1, 0)T}.
This means that there is a temporal reuse carried by the i loop. That is, for a
fixed j, successive iterations of the i loop access the same element of array X . For
concreteness, we say that (1, 0)T is the temporal reuse vector for that reference.
In general, the loop corresponding to the first non-zero element in a reuse vector
is said to carry the associated reuse. It should be noted that all references that
belong to a single UGR set have the same access matrix; therefore, they have
the same temporal reuse vector. The reuse vector for the reference Y (i) on the
other hand is (0, 1)T . Intuitively, a reuse vector such as (0, 1)T means that the
successive iterations of the innermost loop will access the same data element. In
a sense, this is a desired reuse vector form; because, the reuse is exploited in the
innermost loop where it is most useful. On the other hand, a reuse vector such as
(1, 0)T implies that the same data item is accessed in the successive iterations of
the outer loop. If the trip count of the innermost loop is very large then it might
be the case that between two uses the data item is flushed from cache. In that
case we say that reuse has not converted into locality. The main objective of the
compiler-based data reuse analysis can be cast as the problem of transforming
programs such that as many reuses as possible will be converted into locality. In
our terms, this means to transform programs such that the resulting codes will
have desired reuse vector forms.

In addition to temporal reuse, spatial reuse is very important in scientific
codes. Assuming a column-major memory layout for arrays, a spatial reuse occurs
when the same column of an array is accessed more than once. Consider Example
1 again. Assuming column-major memory layouts for all arrays, we note that
successive iterations of j loop will access elements in the same column of array
U . In that case, we say that array U has spatial reuse with respect to j loop.
Similarly, successive values of i loop access elements of the same column of array
V ; that is, array V has spatial reuse with respect to loop i. It should be noted
that spatial reuse is defined with respect to a given memory layout, which is
column-major in our case. The spatial reuse exhibited by array W however is
slightly more complicated to analyze. For this array, elements of a given column
c are accessed if and only if i + j = c − 1. In mathematical terms, in order for
two iteration vectors I and J access elements residing in the same column, they
should satisfy the condition AUsI = AUsJ where AUs is the matrix AU (for an
array U) with the first row deleted [13]. From this condition, since AUs represents
a linear mapping, AUs(J − I) = 0 ⇒ J − I ∈ Ker{AUs} ⇒ rU s ∈ Ker{AUs}
where rU s = J − I.

In this case, rU s is termed as the spatial reuse vector and Ker{AUs} is
referred as spatial reuse vector space [13]. When there is no confusion, we use
rU instead of rU s for the sake of clarity. The loop which corresponds to the first
non-zero element of the generator vector of Ker{AUs} is said to carry spatial
reuse. In Example 1, for array U , the spatial reuse is carried by j loop. In this

Enhancing Spatial Locality via Data Layout Optimizations 425

example, there exists a spatial reuse vector for each reference and these are
rU = (0, 1)T , rV = (1, 0)T , and rW = (1,−1)T . Recall that all these reuse
vectors are with respect to column-major memory layout. It is possible that
a reference may have more than one spatial reuse vector. In that case, these
individual reuse vectors constitute a matrix called spatial reuse matrix, which
will be denoted in this paper by RU for an array U or for a reference to an array
U when there is no confusion. Individual spatial reuse matrices from individual
references to possibly different arrays constitute a combined reuse matrix [9].
The order of the vectors in the combined reuse matrix might be important. Like
Li [9], we assume that they are prioritized from left to right according to the
frequency of occurrence.

An important attribute of a reuse vector is its height which is defined as
the number of dimensions from the first non-zero entry to the last entry. One
way of increasing cache locality is to introduce more leading zeros in the reuse
vector, called height reduction [9]. In this context, the best possible spatial reuse
vector is r = (0, 0, · · · , 0, 1)T meaning that the spatial reuse will be carried by
the innermost loop in the nest.

We emphasize the fact that temporal reuse can only be manipulated by iter-
ation space (loop) transformations. Data space transformations cannot directly
affect the temporal reuse exhibited by a reference. Since, in this paper we are
interested only in data layout transformations, we consider only spatial reuse
vectors. In addition, we only focus on self-spatial reuses [13].

3 Hyperplanes: An Abstraction for Array Layouts

This section reviews our work [6] on representing memory layouts of multi-
dimensional arrays using hyperplanes. In an m-dimensional data space, a hy-
perplane can be defined as a set of tuples {(a1, a2, ..., am) | g1a1 + g2a2 + ... +
gmam= c} where g1, g2,...,gm are rational numbers called hyperplane coefficients
and c is a rational number called hyperplane constant [12]. For convenience, we
use a row vector gT = (g1, g2, ..., gm) to denote an hyperplane family (with dif-
ferent values of c) whereas g corresponds to the column vector representation.

In a two-dimensional data space, we can think of a hyperplane family as
parallel lines for a fixed coefficient set and different values of c. An important
property of the hyperplanes is that two data points (in our case, array elements)
d1 and d2 belong to the same hyperplane g if

gT d1 = gT d2. (1)

For example, a hyperplane vector such as (0, 1)T indicates that two array ele-
ments belong to the same hyperplane as long as they have the same value for
the column index (i.e. the second dimension); the value for the row index does
not matter.

We note that a hyperplane family can be used to partially define memory
layout of an array. For example, in two-dimensional array case, a hyperplane
family represented by (0, 1) indicates that the array in question is divided into

426 M. Kandemir et al.

columns such that each column corresponds to a hyperplane with a different
c value (hyperplane constant). The data elements that have the same c value
(that is, the elements which make up a column) are stored in memory consec-
utively (ordered by their column indices). We assume in a broader sense that
two data elements which lie along an hyperplane with a specific c value have
spatial locality. Another way of saying this is that two elements d1 and d2 have
spatial locality if they satisfy equation (1). Notice that this definition of spatial
locality is coarse and does not hold in array boundaries; but it is suitable for our
purposes.

In higher dimensions, we need more than one hyperplane. We refer the in-
terested reader to [6] for an in-depth discussion of hyperplane based layout rep-
resentation. In the remainder of this paper, for the sake of simplicity we mainly
focus on two-dimensional arrays. Our results easily extend to higher dimensional
arrays.

4 Reuse Vectors under Different Layouts

4.1 Determining Spatial Reuse Vectors

The definition of the spatial reuse vector presented earlier is based on the as-
sumption that the memory layout for all arrays is column-major. In this section,
we give a definition of spatial reuse vector under a given memory layout. We
start with the following theorem. The reader is referred to [7] for the proofs of
all the theorems in this paper.

Theorem 1. Let g represent a memory layout for an array U , and rU the
spatial reuse vector associated with a reference represented by the access matrix
AU . Then, the following equality holds between g, rU and AU :

gT AUrU = 0 (2)

If the memory layout of an array is represented by a matrix L (as in three- or
higher dimensional cases), then the equation (2) should be satisfied for each row
of L. This theorem gives us the relation between memory layouts and spatial
reuse vectors and is very important. Notice that for a given gT , in general, from
gT AUrU = 0, the spatial reuse vector rU can always be found as

rU ∈ Ker{gT AU} (3)

Let us consider the following example assuming row-major memory layout for
all arrays:

Example 2: do i = li, ui
do j = lj, uj

do k = lk, uk
U(i+k,j+k) = V(i+j,i+k,j+k) + W(k,j,i)

enddo
enddo

enddo

Enhancing Spatial Locality via Data Layout Optimizations 427

The access matrices for this loop nest are AU =
(
1 0 1
0 1 1

)
, AV =

1 1 0

1 0 1
0 1 1

 , and

AW =

0 0 1

0 1 0
1 0 0

 . The row-major layout for 2-dimensional arrays is represented

by gT = (1, 0) and by L =
(
1 0 0
0 1 0

)
for 3-dimensional arrays. Using relation (3),

we find the following reuse matrices: RU =

0 1

1 0
0 −1

 , RV =

 1

−1
−1

 , and RW =

1

0
0

 . Most of the previous research has concentrated on optimizing rU given

a fixed memory layout. For instance, if an array is stored in column-major order
in memory, i.e., gT = (0, 1), from equation (2) gT AUrU = 0 ⇒ AUsrU = 0; this
is the definition of spatial reuse vector used previously [9,13].

4.2 Reproducing the Effects of Iteration Space Transformations

In this subsection, we show how to reproduce the effect of a linear loop trans-
formation by using linear data transformations instead. Li [9] shows that an
iteration space transformation T transforms a reuse vector rU into rU

′ = TrU .
In this paper, we treat temporal locality as a special case of spatial locality. That
is, accessing the same element can be considered accessing the same column (for
a column-major layout).

Theorem 2. Given a ‘single’ loop nest, if a reference is optimized for spatial
locality using an iteration space transformation matrix T , the same effect can be
obtained by a corresponding data transformation matrix M .

Consider the following matrix-multiplication example assuming column-major
layout:

Example 3: do i = li, ui
do j = lj, uj

do k = lk, uk
C(i,j) = C(i,j) + A(i,k) * B(k,j)

enddo
enddo

enddo

The spatial reuse matrices are RC =

1 0

0 0
0 1

 , RA =

1 0

0 1
0 0

 , and RB =

1 0

0 0
0 1

 . By taking into account the frequency of occurrence of each vector,

428 M. Kandemir et al.

we can write a combined reuse matrix as R =

1 0 0

0 0 1
0 1 0

 . Here the leftmost

column has the highest priority whereas the rightmost column has the lowest.
In this case, Li’s algorithm [9] finds the following matrix to optimize the locality

T =

0 1 0

0 0 1
1 0 0

 . The new reuse matrix is R′ = TR =

0 0 1

0 1 0
1 0 0

 . Notice that the

reuse vector of highest priority is optimized very well, i.e., its height is reduced
to 1. The transformed program is as follows:

do u = lu, uu
do v = lv, uv

do w = lw, uw
C(w,u) = C(w,u) + A(w,v) * B(v,u)

enddo
enddo

enddo
In the optimized program, the references C(w, u) and A(w, v) have spatial

locality in the innermost loop (w–loop) whereas the reference B(v, u) has tempo-
ral locality in the innermost loop. Since, in this paper, we treat temporal locality
in a loop as a special case of spatial locality, we conclude that in this program
all three references have spatial locality in the innermost loop.

Next we show how to obtain the effect of this transformation with data lay-
out transformations. Notice that after the transformation T , the final spatial

reuse matrices for individual references are RC
′ =

0 0

0 1
1 0

 , RA

′ =

0 1

0 0
1 0

 , and

RB
′ =

0 0

0 1
1 0

 . Now, from each reuse matrix, we choose the most frequently

used reuse vector (considering all reuse vectors in all reuse matrices), and use
it as a target reuse vector for the associated array. In this example, the target
reuse vector happens to be (0, 0, 1)T for all references.

For array C: gT ACrC
′ = 0 ⇒ (g1, g2)

(
1 0 0
0 1 0

)(0
0
1

)
= 0 ⇒ (g1, g2)

T ∈ Ker{(0, 0)}

For array A: gT AArA
′ = 0 ⇒ (g1, g2)

(
1 0 0
0 0 1

)(0
0
1

)
= 0 ⇒ (g1, g2)

T ∈ Ker{(0, 1)}

For array B: gT ABrB
′ = 0 ⇒ (g1, g2)

(
0 0 1
0 1 0

)(0
0
1

)
= 0 ⇒ (g1, g2)

T ∈ Ker{(1, 0)}

Thus, the array C can have any layout (say row-major), the array A should be
row-major, and the array B should be column-major. Notice that if we assign

Enhancing Spatial Locality via Data Layout Optimizations 429

these layouts, then we have spatial locality for all the references with respect to
the innermost loop, a result that has also been obtained by the loop transfor-
mation T given earlier.

From the previous discussion, we can conclude that given a single loop nest
where each array has one UGR set [3], it is always possible to obtain the locality
effect of a linear loop transformation by corresponding linear data transforma-
tions.

4.3 Optimizing for the Best Locality

So far, we have shown that under certain conditions, it is possible to reproduce
the effect of a loop transformation by data transformations. By studying the
effect of a loop transformation on a spatial reuse vector, we can find a corre-
sponding data transformation which can generate the same effect. Now, we go
one step further, and prove a stronger result.

Theorem 3. Given a loop nest where each array has one UGR set, then it is
always possible to optimize the array layouts such that each reference will have
spatial locality with respect to the innermost loop.

Consider the following example with a column-major layout for all arrays.

Example 4: do i = li, ui
do j = lj, uj

do k = lk, uk
U(i,j,k) = U(i-1,j,k+1) + U(i,j,k-1) + V(j+1,k+1,i-1)

enddo
enddo

enddo
Ignoring the temporal reuses, the spatial reuse matrices for individual arrays

are RU = (1, 0, 0)T and RV = (0, 1, 0)T . Therefore, the combined reuse matrix

is R =

1 0

0 1
0 0

 . Notice that the first column occurs more frequently (three

times to be exact). The best iteration space transformation from the locality

point of view (using Li’s approach [9]) is T =

0 0 1

0 1 0
1 0 0

 which would generate

R′ = TR =

0 0

0 1
1 0

 . Unfortunately, due to the data dependence involving array

U , this transformation is not legal. In search for a second best transformation,
we have two options:

For the first option, T1 =

0 1 0

1 0 0
0 0 1

 which gives R′ = T1R =

0 1

1 0
0 0

.

In the transformed nest, the spatial locality for array U is exploited in the second

430 M. Kandemir et al.

for each array U ∈ U
compute the access matrix AU representing U
i = n
while (p(i) = 1)

i = i − 1
end while
r = ei

compute N = Ker{(AUr)
T }

use the elements of the basis set of N as rows of the layout matrix for U
end for each

Fig. 1. Algorithm for optimizing spatial locality.

innermost loop (v–loop); and the spatial locality for array V is exploited in the
outermost loop (u–loop).

For the second option, T2 =

1 0 0

0 0 1
0 1 0

 which gives R′ = T2R =

1 0

0 0
0 1

.

In the transformed nest, the spatial locality for array U is exploited in the
outermost loop (u–loop); and the spatial locality for array V is exploited in the
innermost loop (w–loop). We note that while T1 improves the spatial locality of
U slightly, T2 improves the spatial locality for V .

It is easy to see that data layout transformations can easily reproduce the
effects of T1 and T2 (see [7]). However, neither T1 nor T2 (nor their data transfor-
mation counterparts) is able to optimize the spatial locality for both arrays in the
innermost loop. The reason for the failure of the iteration space transformations
is the data dependences which prevent the most desired loop permutation.

We now show that how a different data layout transformation can optimize
the same nest. We use the best possible spatial reuse vector as the desired (or
target) vector for both the arrays. In other words, rU

′ = rV
′ = (0, 0, 1)T . For ar-

ray U , gT AUrU
′ = 0 ⇒ (g1, g2, g3)

1 0 0

0 1 0
0 0 1

0

0
1

 = 0; therefore, (g1, g2, g3)T ∈

Ker{(0, 0, 1)} meaning that the array U should have a memory layout such that
the last dimension should be the fastest changing dimension. The row-major

layout is such a memory layout with the layout matrix LU =
(
1 0 0
0 1 0

)
. For

array V , gT AV rV
′ = 0 ⇒ (g1, g2, g3)

0 1 0

0 0 1
1 0 0

0

0
1

 = 0; thus, (g1, g2, g3)T ∈

Ker{(0, 1, 0)}meaning that the memory layout of array V must be such that the
second dimension is the fastest changing dimension. An example layout matrix

which satisfies that is LV =
(
1 0 0
0 0 1

)
.

Enhancing Spatial Locality via Data Layout Optimizations 431

c-
c-

c
c-

c-
r

c-
r-c c-
r-r

r-c
-c

r-c
-r

r-r
-c

r-r
-r

lo
pt

do
pt

10

20

30

40

50

60

70

tim
e

(s
ec

.)
processors = 1

c-
c-

c
c-

c-
r

c-
r-c c-
r-r

r-c
-c

r-c
-r

r-r
-c

r-r
-r

lo
pt

do
pt

5

10

15

20

25

tim
e

(s
ec

.)

processors = 4

c-
c-

c
c-

c-
r

c-
r-c c-
r-r

r-c
-c

r-c
-r

r-r
-c

r-r
-r

lo
pt

do
pt

5

10

15

tim
e

(s
ec

.)

processors = 8

Fig. 2. Execution times (in sec.) of syr2k with different layouts on SGI Origin.

In this case, for all the references the spatial reuse will be exploited in the
innermost loop. This example clearly shows that the data transformations may
be effective in some cases where the iteration space transformations fail.

4.4 Optimizing for Shared-Memory Multiprocessors

In a shared-memory multiprocessor case, we should take into account the issues
related to parallelism as well. As a rule, to prevent a common form of false
sharing, a loop which carries spatial reuse should not be parallelized [9]. False
sharing occurs when two processors access the same coherence unit (at least one
of them writes) without sharing a data element [4].

We assume that the parallelism decisions are made by a previous pass in
the compilation process, and the information for a loop nest is available to our
algorithm as a form of vector p where p(i) (the ith element) is one if the loop i
is parallelized otherwise it is zero. Our memory layout determination algorithm
is given in Figure 1. In the figure, U is the set of all arrays referenced in the
nest. The symbol n denotes the number of loops in the nest, and ei is a vector
will all zero entries except for the ith entry which is 1. The algorithm assumes
that there is no conflict (in terms of layout requirements) between references to a
particular array. If there is a conflict, then a conflict resolution scheme should be
applied [6]. For each array, a subset of all possible spatial reuse vectors starting
with the best possible vector are tried. The sequence of trials correspond to
en,...,e2,e1. A vector is rejected as target spatial reuse vector if the associated
loop is parallelized. Otherwise ei with the largest i is selected as target reuse
vector. Once a spatial reuse vector is chosen, the remainder of the algorithm
involves only computation of a null set and a set of basis vectors for it. Since
optimizing compilers for shared-memory multiprocessors are quite successful in
parallelizing the outermost loops, the algorithm terminates quickly; and the
spatial locality in the innermost loops is exploited without incurring severe false
sharing.

5 Experimental Results

We conducted experiments on an SGI Origin, which is a distributed-shared-
memory machine that uses 195MHz R10000 processors, and has 32KB L1 data

432 M. Kandemir et al.

cache and 4MB L2 unified cache. We used the syr2k code (in C) from BLAS
to show that our data layout transformation framework can handle complicated
access patterns. Assuming a column-major memory layout, all the arrays have
poor locality. The version that is optimized by loop transformations (from [9],
assuming column-major layouts) optimizes spatial locality for all the arrays, but
has two drawbacks: First, the loop bounds and array subscript expressions are
very complicated, and second, the temporal locality for array C in the original
program has been converted to spatial locality. Our framework, on the other
hand, decides suitable memory layouts. Figure 2 shows the performances for
eight possible (permutation-based) layouts on an SGI Origin using 1024× 1024
double matrices. The legend x-y-z means that the memory layouts for C, A
and B are x, y and z respectively, where c means column-major and r means
row-major. The layout optimized version –obtained by our framework– (marked
dopt) and the loop optimized version (marked lopt) are also shown as the last
two bars. Notice that our framework optimizes the performance substantially,
and no dimension re-indexing (permutation-based layout transformation) can
obtain this performance.

6 Related Work

The compiler work in optimizing loop nests for locality can be divided into two
groups: (1) iteration space based optimizations and (2) data layout optimiza-
tions.

In the first group, Wolf and Lam [13] present definitions of different types
of reuses and propose an algorithm to maximize locality by evaluating a subset
of legal loop transformations. In contrast, Li [9] uses the concept of ‘reuse dis-
tance’. His algorithm constructs a combined reuse matrix and tries to reduce its
‘height’ using techniques from linear algebra. McKinley et al. [10] offer a uni-
fied optimization technique consisting of loop permutation, loop fusion and loop
distribution. Our work on locality is different from those mentioned. First, we
focus on data space transformations instead of iteration space transformations.
Second, we use a new definition of spatial reuse vector whereas the reuse vectors
used in [9] and [13] are oriented for a uniform memory layout.

In the second group, O’Boyle and Knijnenburg [11] focus on restructuring the
code given a data transformation matrix and show its usefulness in optimizing
spatial locality; in contrast, we concentrate more on the problem of determining
suitable layouts by taking into account false sharing as well. Anderson et al. [1]
propose a data transformation technique—comprised of permutations and strip-
mining—that restructures the data in the shared memory space such that the
data for each processor are stored in nearby locations. In contrast, we focus on a
larger space of data transformations. Cierniak and Li [2] and Kandemir et al. [5]
propose optimization techniques that combine loop and data transformations
in a unified framework, but restrict the transformation space. Even in the re-
stricted space, they perform sort of exhaustive search. Jeremiassen and Eggers
[4] use data transformations to reduce false sharing. Our framework also con-

Enhancing Spatial Locality via Data Layout Optimizations 433

siders reducing a common form of false sharing as well. Leung and Zahorjan [8]
present an array restructuring framework to optimize locality in uniprocessors.
Our work differs from theirs in several points: (1) our technique is based on
explicit representation of memory layouts which is central to a unified loop and
data transformation framework such as ours; (2) our technique finds optimal
memory layouts in a single step rather than first determining a transformation
matrix and then refining it for minimizing memory space using Fourier-Motzkin
elimination; and (3) we explicitly take false sharing into account for multipro-
cessors.

7 Conclusions

In this paper, we have presented a definition of reuse vector under a given
memory layout. For this, we have represented the memory layout of a multi-
dimensional array using hyperplane families. Then we have presented a relation
between layout representation and spatial reuse vector. We have shown that this
relation can be exploited at least in two ways. For a given layout and reference,
we can find the spatial reuse vector or for a given desired spatial reuse vector,
we can determine the target layout. This second usage allows us to develop a
data layout reorganization framework based on the existing compiler technology.
Given a loop nest, our framework can optimize the memory layouts of arrays by
considering the best possible reuse vectors.

References

1. J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transforma-
tions for multiprocessors. Proc. 5th SIGPLAN Symp. Prin. & Prac. Para. Prog.,
Jul. 1995. 432

2. M. Cierniak, and W. Li. Unifying data and control transformations for distributed
shared memory machines. Proc. SIGPLAN ’95 Conf. Prog. Lang. Des.& Impl.,
Jun. 1995. 432

3. D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformations, J. Para. & Dist. Comp., 5:587–
616, 1988. 423, 429

4. T. Jeremiassen, and S. Eggers. Reducing false sharing on shared memory mul-
tiprocessors through compile time data transformations. Proc. 5th SIGPLAN
Symp. Prin. & Prac. Para. Prog., Jul. 1995. 431, 432

5. M. Kandemir, J. Ramanujam, and A. Choudhary. Compiler algorithms for opti-
mizing locality and parallelism on shared and distributed memory machines. Proc.
1997 International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 236–247, Nov. 1997. 432

6. M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam. A data
layout optimization technique based on hyperplanes. TR CPDC-TR-97-04, North-
western Univ. 425, 426, 431

7. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Optimizing spa-
tial locality in loop nests using linear algebra. Proc. 7th Workshop Compilers for
Parallel Computers, 1998. 426, 430

434 M. Kandemir et al.

8. S-T. Leung, and J. Zahorjan. Optimizing data locality by array restructuring.
Technical Report, CSE Dept., University of Washington, TR 95-09-01, Sep. 1995.
433

9. W. Li. Compiling for NUMA parallel machines. Ph.D. dissertation, Cornell Uni-
versity, 1993. 422, 423, 425, 427, 428, 429, 431, 432

10. K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with loop transfor-
mations. ACM Transactions on Programming Languages and Systems, 1996. 422,
432

11. M. ’Boyle, and P. Knijnenburg. Non-singular data transformations: Definition,
validity, applications. Proc. 6th Workshop on Compilers for Parallel Computers,
pp. 287–297, 1996. 432

12. J. Ramanujam, and P. Sadayappan. Compile-time techniques for data distribution
in distributed memory machines. In IEEE Trans. Para. & Dist. Sys., 2(4):472–482,
Oct. 1991. 425

13. M. Wolf, and M. Lam. A data locality optimizing algorithm. In Proc. ACM SIG-
PLAN 91 Conf. Programming Language Design and Implementation, pp. 30–44,
June 1991. 422, 423, 424, 425, 427, 432

	Syracuse University
	SURFACE
	1998

	Enhancing spatial locality via data layout optimizations
	Mahmut Kandemir
	Alok Choudhary
	J. Ramanujam
	N. Shenoy
	Recommended Citation

	Enhancing Spatial Locality via Data Layout Optimizations
	Introduction
	Background
	Hyperplanes: An Abstraction for Array Layouts
	Reuse Vectors under Different Layouts
	Determining Spatial Reuse Vectors
	Reproducing the Effects of Iteration Space Transformations
	Optimizing for the Best Locality
	Optimizing for Shared-Memory Multiprocessors

	Experimental Results
	Related Work
	Conclusions

