
Syracuse University
SURFACE
College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1995

Many-to-many Personalized Communication with
Bounded Traffic
Sanjay Ranka
Syracuse University, School of Computer and Information Science, ranka@top.cis.syr.edu

Ravi V. Shankar
Syracuse University, School of Computer and Information Science, rshankar@top.cis.syr.edu

Khaled A. Alsabti
Syracuse University, School of Computer and Information Science, kaalsabt@top.cis.syr.edu

Follow this and additional works at: http://surface.syr.edu/lcsmith_other

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for
inclusion in College of Engineering and Computer Science - Former Departments, Centers, Institutes and Projects by an authorized administrator of
SURFACE. For more information, please contact surface@syr.edu.

Recommended Citation
Ranka, Sanjay; Shankar, Ravi V.; and Alsabti, Khaled A., "Many-to-many Personalized Communication with Bounded Traffic" (1995).
College of Engineering and Computer Science - Former Departments, Centers, Institutes and Projects. Paper 15.
http://surface.syr.edu/lcsmith_other/15

http://surface.syr.edu?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith_other/15?utm_source=surface.syr.edu%2Flcsmith_other%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Many-to-many Personalized Communication with Bounded Tra�cSanjay Ranka Ravi V. Shankar Khaled A. AlsabtiSchool of Computer and Information ScienceSyracuse University, Syracuse, NY 13244-4100e-mail: ranka, rshankar, kaalsabt@top.cis.syr.eduAbstractThis paper presents solutions for the problemof many-to-many personalized communication, withbounded incoming and outgoing tra�c, on a dis-tributed memory parallel machine. We present atwo-stage algorithm that decomposes the many-to-many communication with possibly high variance inmessage size into two communications with low mes-sage size variance. The algorithm is determinis-tic and takes time 2t� (+ lower order terms) whent � O(p2 + p�=�). Here t is the maximum outgoingor incoming tra�c at any processor, � is the startupoverhead and � is the inverse of the data transferrate. Optimality is achieved when the tra�c is large,a condition that is usually satis�ed in practice oncoarse-grained architectures. The algorithm was im-plemented on the Connection Machine CM-5. Theimplementation used the low latency communicationprimitives (active messages) available on the CM-5,but the algorithmas such is architecture-independent.An alternate single-stage algorithm using distributedrandom scheduling for the CM-5 was implementedand the performance of the two algorithms were com-pared.1 Basic Communication PrimitivesCommunication between processors on a parallelmachine can generally be described as x-to-y commu-nication where x and y can be substituted by one,all, or many. \Communication" implies processorssending and receiving messages: x being one, all, andmany respectively, indicates that only one of the pprocessors sends data, that all processors send data,and that only some processors send data. Similarly,y being one, all, and many indicate that from eachof the senders, one, all, and many processors re-ceive data respectively. Communication can be fur-ther distinguished as a broadcast/accumulation or aspersonalized communication. For example, one-to-all

communication could be either a one-to-all broadcast(single-node broadcast) where a single processor sendsout the same message to all processors, or a one-to-all personalized communication (single-node scatter)where a single processor sends out di�erent messagesto each processor. This classi�cation is fairly stan-dard in the literature. See, for instance, [5]. Algo-rithms for performing broadcasts are comparativelyeasier than those for performing personalized com-munication. All further discussion in this paper dealswith personalized communication. We also restrictourselves to collective communication, where there aremultiple senders and multiple receivers.2 Collective Communication Parame-tersAny type of communication in a machine with pprocessors can be represented using a communicationmatrix, a p x p matrix M where the addresses of thesending and receiving processors are used as row andcolumn indices. The matrix entrymij denotes the sizeof the message being sent by processor Pi to processorPj. The rows of the matrix are called send vectors andthe columns are called receive vectors. The outgoingtra�c ri is the sum of the sizes of the messages beingsent by processor Pi, while the incoming tra�c cj isthe sum of the sizes of the messages being receivedby processor Pj. The outgoing tra�c bound r is themaximum outgoing tra�c at any processor, and theincoming tra�c bound c is the maximum incomingtra�c at any processor. The overall tra�c bound tis the maximum tra�c, incoming or outgoing, at anyprocessor.ri = Xj mij cj = Xi mijr = maxi ri c = maxj cj t = maximum(r; c)The fan-out fi is the number of messages sent by pro-cessor Pi, while the fan-in gj is the number of mes-

P0 P1 P2 P3 P4 P5 P6 P7P0 3 1 2 1 2 1 10P1 1 2 2 1 1 3 10P2 4 1 2 2 1 10P3 2 3 1 4 10P4 3 4 2 1 10P5 1 2 1 2 4 10P6 2 1 7 10P7 1 1 4 1 3 1010 10 10 10 10 10 10 10Figure 1: A matrix illustrating all-to-many communi-cation with equal tra�cP0 P1 P2 P3 P4 P5 P6 P7P0 3 1 1 1 6P1 1 2 2 1 3 9P2 4 1 2 2 1 10P3 2 3 1 4 10P4 3 4 2 1 10P5 1 2 1 2 4 10P6 0P7 1 1 4 1 710 8 9 10 0 10 5 10Figure 2: A matrix illustrating many-to-many com-munication with bounded tra�csages received by processor Pj. The fan-out bound fis the maximumfan-out at any processor, and the fan-in bound g is the maximum fan-in at any processor.The overall fan-in/fan-out bound h is the maximumnumber of messages, being sent or received, at anyprocessor.fi = Xj sgn(mij) gj = Xi sgn(mij)f = maxi fi g = maxj gj h = maximum(f; g)The sgn function returns +1,0,-1 depending onwhether its argument is positive, zero, or negative.The relation between the parameters just de�nedand the di�erent kinds of collective communicationis as follows. If fi = p for all i (0 � i < p), thecommunication is all-to-all. This also implies thatgj = p for all j (0 � j < p). If fi > 0 for all i, thecommunication is all-to-many. If fi = 0 or fi = p foreach i, and gj > 0 for each j, the communication ismany-to-all. The general case, where fi � 0 for all iis many-to-many communication.

Collective communication can be further classi�edbased on the sizes of the messages being sent and re-ceived. Messages could be uniform (of the same size)or non-uniform (of di�erent sizes). The variance inmessage size is an important factor that a�ects theperformance of an algorithm for collective communi-cation. Most algorithms presented in the literaturedeal only with all-to-all communication with uniformmessage sizes. In many-to-many communication withbounded tra�c t, message size could vary between 0and t. Collective communication with bounded tra�cis illustrated in the communication matrices shown in�gures 1 and 2. The entry beyond the right marginof row Pi is the outgoing tra�c ri, while the entrybelow column Pj gives the incoming tra�c cj. Figure1 illustrates the case of equal incoming and outgoingtra�c at each processor, a special case which will beconsidered in the description of the algorithms.Many-to-many communicationwith an overall traf-�c bound of t, cannot be done in time less than O(t).The various algorithms presented in this paper takeO(t) time and are optimal under speci�ed conditions.Many-to-many communication with bounded incom-ing and outgoing tra�c appears in a wide variety ofparallel algorithms such as matrix transpose on a rect-angular grid, in the �nal phase of sorting algorithmslike sample sort, in transformations between any twodistributions (like block, cyclic, and block-cyclic) thatdistribute data equally among all processors, etc. Weare using them for performing dynamic permutations[9] and for dealing with highly irregular data accessesinvolving hot-spots [10] on coarse-grained parallel ma-chines. A detailed version [8] of this paper extendsthe many-to-many personalized communication algo-rithm to deal with di�ering incoming and outgoingtra�c bounds.3 CM-5 System OverviewThe Connection machine Model CM-5 [11] is asynchronized MIMD distributed-memory parallel ma-chine available in con�gurations of 32 to 1024 pro-cessing nodes. Each node contains a 33 MHz SPARCmicroprocessor with 32 megabytes of memory, and israted at 22 Mips and 5 M
ops. Four optional
oating-point vector units can be added to each node, and thisincreases the node's peak performance to 128 Mipsand 128 M
ops.The CM-5 interconnection network has three com-ponents: a data network, a control network, and adiagnostic network. The data network has a fat-treetopology and provides high-performance data commu-nication between the system components. The net-

work has a peak bandwidth of about 5 megabytes persecond for node-to-node communication. However, ifthe destination is within the same same cluster of4 or 16 nodes in the fat-tree, a peak bandwidth of20 megabytes per second and 10 megabytes per sec-ond, respectively, can be achieved [11]. The controlnetwork handles operations requiring the cooperationof many or all processors. This includes broadcast-ing, combining, and global operations. The diagnosticnetwork helps in the detection and isolation of errorsthroughout the system. Both, the control networkand the diagnostic network, have a binary tree topol-ogy.Our implementations were performed on a 32-nodeCM-5 using active messages for low latency communi-cation. Each 20-byte active message packet can carryup to 16 bytes of payload. Sending and receiving asingle-packet active message on the CM-5 takes 1.6�s and 1.7 �s respectively [4]. We used the CMMDmessage passing library and CMAML (the CMMD ac-tive messages layer) [12]. Two other implementationsof active messages on the CM-5 exist: the originalCMAM library [4] from UC Berkeley and the Stratalibrary from MIT [2].The time taken to send a message from one node onthe CM-5 to another can be modeled as O(� + �M),where � is the overhead, � is the transfer rate and Mis the size of the message. As mentioned earlier, thevalue of � depends on whether the destination belongsto a speci�c subgroup and whether other nodes aresending messages. For our complexity analysis we willassume that � and � are constant, independent of thecongestion and distance between two nodes.4 Collective Communication with LowMessage Size VarianceThe simplest version of collective communicationinvolves all processors exchanging messages of thesame size s. This is all-to-all personalized commu-nication with uniform messages. Under these condi-tions, a linear permutation algorithm [1] can be usedto perform the communication. A linear permutationalgorithm goes through p� 1 iterations, and in itera-tion k processor Pi (0 � i < p,0 < k < p) exchangesdata with processor Pi � k (� is the bitwise exclusiveOR operator). The time complexity of linear permu-tation is O(sp).A slightly modi�ed linear permutation algorithmcan be used when the messages are not uniform butexhibit only a small variation in size. Here, processorsno longer send messages of exactly the same length.

Linear PermutationFor all processors Pi, 0 � i � p� 1, in parallel doGenerate receive vector recvl from the send vec-tors sendl in all the processors;for k = 1 to p� 1 doj = i � k;if sendlj > 0 then Pi sends a message ofsize sendlj to Pjif recvlj > 0 then Pi receives a message ofsize recvlj from PjBarrier synchronize with all processors;endforFigure 3: Modi�ed Linear Permutation AlgorithmInstead they exchange send and receive vectors, andexchange only messages of the required lengths. Thealgorithm is shown in �gure 3, where sendlj is thesize of the message sent to processor Pj (from Pi) andrecvlj is the size of the message received from proces-sor Pj (by Pi). The implicit synchronization in the lin-ear permutation algorithm is replaced by an explicitbarrier synchronization, and the algorithm retains thedeterministic time complexity of O(sp) where s is theupper bound on the sizes of the messages exchanged.The barrier also prevents the communication networkfrom getting congested and this has been shown toimprove performance [3].5 Collective Communication withHigh Message Size VarianceDealing with communication in which messagesizes show a large variation is a di�cult problem. Alinear permutation algorithm could take as much asO(tp) time. Sorting messages by size is not guar-anteed to improve performance either. We use adistributed random scheduling algorithm using spinlocks to deal with such a situation. The distributedscheduling algorithm [13] was chosen over other graphbased techniques because its low overhead enablesscheduling to be done dynamically.The algorithm is presented in �gure 4. Each pro-cessor maintains a status bit that indicates whetherthe processor is busy or free. Processors which havemessages to send perform a test-and-set operation todetermine whether the intended destination is free.

Distributed Random SchedulingFor all processors Pi, 0 � i � p� 1, in parallel doGenerate receive vector recvl from the send vec-tors sendl in all the processors;Pre-allocate receiving bu�ers according to re-ceive vector recvl;RepeatSelect a destination node from send vectorsendl, use active messages to test-and-set destination node's busy lock;If the destination node is free to receivemessage,Send message to the destination node;Upon completion, reset destinationnode's busy lock to free;Reset the corresponding entry in sendvector sendl;Until send vector sendl is emptyWait until all incoming messages arrive at theirproper bu�ers.Figure 4: Distributed Random Scheduling AlgorithmIf the destination is free, its status bit is set to busy,and data is transferred as a single message. If the des-tination is busy, the sending processor tries anotherintended destination using the same procedure. Thetest-and-set inquiry operation is shown in �gure 5.We re-implemented the distributed scheduling al-gorithm using active messages on the CM-5. Twoimprovements were incorporated into the new imple-mentation, which also replaced the interrupts in theearlier implementationwith polling. First, a busy des-tination processor when replying to the sender of aninquiry gives a measure of how busy it is. The sendernotes down this measure and makes sure that the des-tination will not be disturbed for this measure of time.If the sender receives busy signals from all the in-tended destinations, it goes to sleep for the amountof time indicated by the minimum of the measuresreturned by the destinations. The second improve-ment allowed busy destination processors to give thego-ahead for a new message transfer when the currentmessage transfer is about to get over.

Px Py Pz

inquiry

return status

if OK

resetelseinquiry

send message

busy lock

test-and-set
busy lockFigure 5: The inquiry operation in DistributedScheduling6 Two-stage Algorithm for BoundedTra�c Collective CommunicationWe have developed a two-stage algorithm that de-composes collective communication with high mes-sage size variance, into two collective communicationstages with low message size variance. In the generalcase, the fan-out and fan-in at each processor is lessthan or equal to p and the tra�c bound is t. Resultsare given separately for the equal tra�c case, wherethe incoming tra�c and the outgoing tra�c at eachprocessor is exactly equal to the overall tra�c boundt. Each processor takes on three roles in this two-stage algorithm. First, each processor Pi for whichthe fan-out fi is non-zero acts as a source processor,sending out data during the �rst stage. Second, eachprocessor participates as an intermediary, receivingdata during the �rst stage, and sending data duringthe second stage. Third, each processor Pj for whichthe fan-in fj is non-zero acts as a destination pro-cessor, receiving data during the second stage. Theorganization of data in the source, intermediate anddestination processors is shown in �gure 6.6.1 The First StageLocal pre-processingIn source processor Pi (0 � i < p) let ai0,ai1,...,ai(p�1)be the number of elements being sent to destinationprocessors P0,P1,...,Pp�1 respectively. In stage 1, eachof the aij elements is divided into p parts (each of sizeeither daij=pe or baij=pc) to be sent to processors P0to Pp�1. 1 At the end of stage 1, processor Pk acting1In reality, this is only p � 1 messages, since one of themessages is to be sent to the sending processor itself. Ourimplementations take this into account, but this paper, for thesake of simplicity, continues to refer to p as the number ofmessages being sent out.

P
0

P
1

P
2

P
3

i0
a a

i2 i3
aa

i1

P
0

P
0

P
0

P
1

P
1

P
1

P
2

P
2

P
2

P
3

P
3

P
3

P
0

P
1

P
2

P
3

P
0

P
2

P
3

P
1

P
0

P
1

P
2

P
3

P
0

P
2

P
3

P
1

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
2

P
3

P
0

P
1

P
0

P
3

P
2

P
1

P
0

P
3

P
2

After local pre-processing

 in stage 1

destination

processor

to intermediate

intended final
destination

processor
from source

destination
intended final

1 t/p + 1p

processor

1 p t/p + p

from source
processor

from intermediate

processor

to intermediate

Intended final

 At start

 in stage 2

After local pre-processing

After stage 1 communication

After stage 2 communication

(in source processor Pi)

(in destination processor Pk)

(in intermediate processor Pj)

Figure 6: Organization of Data in the Two-stage Al-gorithmas an intermediary could receive messages of size upto t=p+ p, sincep�1Xi=0 daik=pe � p�1Xi=0 aik=p+ p � ck=p+ p � t=p+ pThe lower bound for the message size is 0, unless weare dealing with the equal tra�c case, when the lowerbound becomes t=p� p, sincep�1Xi=0 baik=pc � p�1Xi=0 aik=p� p � ck=p� p � t=p� pOur goal is to achieve communication with low vari-ance in message sizes for both stages. A simple changein the algorithm, as described below, can achieve thebalance we desire for the �rst stage.At any processor Pi, when dividing the aij elementsinto p messages for sending, the last aij mod p ele-ments are assigned to the p messages in a round robinfashion. This ensures that each intermediate proces-sor Pk receives messages of size no more than dt=pe.In the equal tra�c case, the message sizes can varyby only one element since the smallest message size isbt=pc.Figure 7 gives the details of algorithmused for localpre-processing in stage 1. The overall time requiredis O(p2).

procedure Stg1lpp(sendl, send_msg_start, send_msg_len)/* This is code that runs in every processor.* sendl[0..P-1] is the send vector* index j gives destination proc #, index k gives intermediate proc #** send_msg_start[0..P-1][0..P-1] gives the index of the element from the* input array marking the start of each of the P parts of the P* messages sent out from this source processor;** send_msg_len[0..P-1][0..P] gives the length of those parts; in* particular, the entry send_msg_len[0..P-1][0] gives the total* length of messages to each intermediate processor*/beginfor j := 0 to P-1 dofor k := 0 to P-1 dosend_msg_len[k][j+1] := sendl[j] div P;/* (sendl[j] div P) is the # of elements originally meant forprocessor j now being sent to every intermediate processor */k := 0;for j := 0 to P-1 dofor x := 1 to (sendl[j] mod P) do/* (sendl[j] mod P) is # of elements meant for destination procj that could not be divided equally among the intermediate procs */beginsend_msg_len[k][j+1] := send_msg_len[k][j+1] + 1;k := (k+1) mod P;end;data_ptr := 0;for j := 0 to P-1 dofor k := 0 to P-1 dobeginsend_msg_start[k][j] := data_ptr;data_ptr := data_ptr + send_msg_len[k][j+1];send_msg_len[k][0] := send_msg_len[k][0] + send_msg_len[k][j+1];/* send_msg_len[k][0] is current message size for interm. proc k */endend; Figure 7: Local Pre-Processing in Stage 1procedure Stg2pp (send_msg_start, send_msg_len)/* send_msg_start[0..P-1][0..P-1] gives the index of the element from the* input array marking the start of each of the P parts of the P* messages sent out from this intermediate processor;** send_msg_len[0..P-1][0..P] gives the length of those parts; in* particular, the entry send_msg_len[0..P-1][0] gives the total* length of messages to each destination processor*/begin/* initializing the total length of each message */for i := 0 to P-1 dosend_msg_len[i][0] := 0;for i := 0 to P-1 dobeginstart := (T/P)*i + 1 + P; /* start position of current message */for j := 0 to P-1 do /* T is the traffic bound */begintotal := data_int[start*i+j+1]; /* length of current sub-message */send_msg_start[j][i] := start;start := start + total;send_msg_len[j][0] := send_msg_len[j][0] + total;send_msg_len[j][i] := total;endendend; Figure 8: Local Pre-Processing in Stage 2

CommunicationIn an initial version of the implementation, localreshu�ing was done at the source processors in orderto get all the data elements being sent to the sameintermediate processor into contiguous memory loca-tions. Such reshu�ing gets prohibitively expensivewhen t is large. Our current implementation requiresthat the communication routines take as argumentspointers to p memory locations in the source proces-sor and p associated lengths for each message beingsent, as shown in �gure 6. Note that this does not in-crease the communication startup latency by a factorof p.In the equal tra�c case, since the communicationis balanced with message lengths di�ering by just oneelement, modi�ed linear permutation works best. Inthe general case, distributed scheduling for the �rststage's communication may perform better but lin-ear permuation gives an upper bound on the timetaken for communication. A maximum of p mes-sages of length under dt=pe may need to be sent. Inaddition, each of these messages has to be paddedwith p lengths (and the sum of these p lengths, see�gure 6) to help the intermediate processor deter-mine the destination processor for each message por-tion. With linear permutation, the communicationtime required is O(p(� + �(t=p + p))). If t=p < p,padding with p lengths can be replaced by paddingwith t=p lengths, making the communication time re-quired O(p(� + �t=p)).6.2 The Second StageLocal pre-processingAt the intermediate processors, each of which receivesp messages, local pre-processing is done as prepara-tion for the second stage. An initial implementationperformed reshu�ing. Our current implementationsets up a two arrays of size p containing pointers andlengths for each message sent out in the second stage.Since a maximum of p messages could be sent out,this takes O(p2) time. Figure 8 gives the steps usedfor local pre-processing in stage 2.CommunicationMessages sent out in stage 2 could be of size up tot=p+ p. In the general case, the lower bound on mes-sage size is 0, but in the equal tra�c case, message sizecannot be lower than t=p� p. Lowering the variancein message size, as was done in stage 1, is not as easyany more. The total size of the messages received at

a destination processor is upper bounded by t + p2.In practice, a random reshu�ing of messages at thesource processor, as explained below, could reduce themean length of messages reaching a destination pro-cessor. The upper bound on the communication timerequired in stage 2 is O(p(� + �(t=p+ p))).6.3 Modifying stage 1 to ease stage 2The main purpose of the �rst stage was to spreadout data leaving the source processors evenly amongthe intermediate processors. The intended interme-diate processor numbers for the p messages leavinga source processor can be shu�ed randomly withingroups of messages of size dt=pe and bt=pc, withouta�ecting the algorithm. This would still preserve theupper bound derived earlier for total number of dataelements sent or received in the �rst stage. The stage1 communication now needs to include an extra arrayof length p tagged on to each outgoing message. Thisarray gives the permutation that was performed lo-cally before the send and is needed at the destinationprocessors since the p parts of a message reaching adestination processor must be put back together inorder to complete the collective communication. Thisrandom reshu�ing of messages reduces the expectedlength of the messages in stage 2 (see [8] for details).6.4 Analysis of time complexity:The local pre-processing needed for the two-stagealgorithm takes O(p2) time. The two communicationstages take O(p(� + �(t=p+ p))) time. Thus the two-stage algorithm has a deterministic time complexityof O(p� + �(t + p2)). The algorithm takes time O(t)and is optimal when t � O(p2 + p�=�). In the casewhere every aij is a multiple of p, that is, if the mes-sage sent by any source processor to any destinationprocessor is a multiple of p, optimality is achievedwhen t � O(p�=�). The last condition is included toensure that the startup overhead does not dominatethe communication time.An algorithm for many-to-many communicationbased on sorting can provide a better time complexityin the general case. Since the destination processorsare numbers from a �xed range, local sorting done us-ing a radix-sort takes just O(t) time. Data movementbetween processors can be achieved using an adapta-tion of rotate-sort [6]. Such a combination was usedto perform �xed permutations in [7]. The rotate-sortand radix-sort combination performs many-to-manycommunication in O(t) time when t � O(p�=�). Theconstants associated with this complexity are, how-ever, much higher than the constants in the two-stage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50000 100000 150000 200000 250000 300000

one_stage_old
one_stage_new
two_stage

Traffic (in words)

T
im

e
ta

ke
n

(s
ec

)

k =32, l = 1/32Figure 9: One of the good performances of the two-stage algorithmalgorithm's time complexity.7 Performance ResultsThe two-stage algorithm and the single-stage al-gorithm were implemented on the CM-5 using theCMMD message passing library with CMAML activemessage routines. Communicationmatrices were gen-erated such that message sizes were non-uniformwhilethe tra�c was bounded. Three parameters were usedto control the kind of matrix that was generated. Thefan-out parameter k speci�ed the number of proces-sors that each processor communicates with (k � p).The sum of the messages being sent out and receivedat each processor was �xed at t, the tra�c parameter.A parameter l was used to control the non-uniformityof messages sent out by the processors. It was used asfollows: Of the k processors receiving messages froma single processor, the fraction lt of the tra�c reached(1� l)k processors, while the remaining (1� l)t tra�creached lk processors.Sample values of k and l were chosen to highlighta best-case and a worst-case performance of the two-stage algorithmamong the trials that were conducted.Figure 9 illustrates the best case in which the two-stage algorithm performed as well as the single-stagealgorithms, even out-performing the single-stage algo-rithm without the improvements. In this trial k and lwere �xed at 32 and 1/32 respectively, which indicatesthat 1 out of 32 processors received 31/32 of the totaltra�c, while the other 31 processors received in total1/32 of the tra�c. It was a trial in which the messageswere highly non-uniform in size. Figure 10 illustratesa worst case for the two-stage algorithm. Both thesingle-stage algorithms out-performed the two-stageone. In this trial k and l were �xed at 2 and 1/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50000 100000 150000 200000 250000 300000

one_stage_old
one_stage_new
two_stage

T
im

e
ta

ke
n

(s
ec

)

Traffic (in words)

k=2, l=1/2Figure 10: One of the bad performances of the two-stage algorithmrespectively. This indicates that only 2 processors re-ceive data from a single processor, and both of themreceive exactly the same amount of tra�c. It was atrial in which the messages were uniform in size. Thetwo-stage algorithm's performance remained roughlyclose to its best-case performance, but the single-stagealgorithm's performance improved considerably.Although the single-stage algorithms were consis-tent in performing better than the two stage algo-rithm, they exhibited a much larger variance in thetime taken. The two-stage algorithm timings werewithin a factor of 1.5 times the single-stage read-ings. It should be noted that the two-stage algorithmis fairly architecture-independent, while the single-stage algorithm (particularly the one with the im-provements) is architecture-dependent. The latter isalso highly dependent on the availability of low la-tency communication primitives.8 ConclusionsWe have presented a variety of solutions for theproblem of many-to-many personalized communica-tion with bounded tra�c on a distributed memoryparallel machine. A two-stage algorithm that takestime O(t) when t � O(p2 + p�=�) was presented. Analgorithm using sorting can improve the result to O(t)time for t � O(p�=�), but the associated constantsmake this algorithm less desirable for implementa-tion. A single-stage algorithm using distributed ran-dom scheduling was implemented and compared withan implementation of the two-stage algorithm. Thedistributed scheduling algorithm performed better onthe CM-5, but this result is not expected to applyto other architectures. Besides, the single-stage algo-rithm is not deterministic, and that makes it di�cult

to ascertain its time complexity.We have shown that many-to-many personalizedcommunication with non-uniform messages can beperformed using two stages of all-to-all personalizedcommunication with uniform messages. Thus, theperformance of the two-stage algorithm is roughly halfthat of an all-to-all personalized communication withthe same amount of tra�c. The latter problem hasbeen widely investigated in the literature for a vari-ety of interconnection networks (meshes, hypercubes,etc), message passing strategies (wormhole routing,store-and-forward routing, etc), single-port vs. multi-port communication. This makes the two-stage de-composition method useful for a wide variety of ar-chitectures. We are currently investigating the per-formance of these algorithms on other parallel archi-tectures (Intel Paragon, iPSC 860, and the IBM SP1).References[1] Shahid H. Bokhari. Complete Exchange on theiPSC/860. ICASE Technical Report No. 91-4,NASA Langley Research Center, January 1991.[2] Eric A. Brewer and Robert Blumofe, Strata: AMulti-Layer Communications Library, MIT Lab-oratory of Computer Science Technical Report,February 1994.[3] Eric A. Brewer, Bradley C. Kuszmaul, How toGet Good Performance from the CM-5 Data Net-work, Proceedings of the 8th International Par-allel Processing Symposium, April 1994.[4] T. von Eicken, D.E. Culler, S.C. Goldstein,K.E.Schauser. Active Messages: a mechanismfor integrated communication and computation.Proceedings of the ISCA '92, Gold Coast, Aus-tralia, May 1992.[5] Vipin Kumar, Ananth Grama, Anshul Gupta,George Karypis. Introduction to Parallel Com-puting: Design and Analysis of Algorithms,Benjamin-Cummings, 1994.[6] J. Marberg, E.Gafni. Sorting in Constant Num-ber of Row and Column Phases on a Mesh. Al-gorithmica, Vol.3, pp.561-572, 1988.[7] Victor K. Prasanna, Cho-Li Wang, ScalableData Parallel Object Recognition using Geomet-ric Hashing on the CM-5. Scalable High Perfor-mance Computing Conference, SHPCC, 1994.

[8] Ravi V. Shankar, Khaled A. Alsabti, SanjayRanka. The Transportation Primitive, CIS Tech-nical Report, Syracuse University, August 1994.[9] Ravi V. Shankar, Sanjay Ranka. Random DataAccesses on a Coarse-Grained Parallel Machine -I. One-to-one Mappings, CIS Technical Report,Syracuse University, October 1994.[10] Ravi V. Shankar, Sanjay Ranka. Random DataAccesses on a Coarse-Grained Parallel Machine- II. One-to-many and Many-to-one Mappings,CIS Technical Report, Syracuse University, Oc-tober 1994.[11] Thinking Machines Corporation. The Connec-tion Machine CM-5 Technical Summary, Octo-ber 1991.[12] Thinking Machines Corporation. CMMD Refer-ence Manual Version 3.0, October 1991.[13] Jhy-chun Wang, Tseng-Hui Lin, Sanjay Ranka.Distributed Scheduling of Unstructured Collec-tive Communication on the CM-5. Hawaii Inter-national Conference on System Sciences, 1993.

	Syracuse University
	SURFACE
	1995

	Many-to-many Personalized Communication with Bounded Traffic
	Sanjay Ranka
	Ravi V. Shankar
	Khaled A. Alsabti
	Recommended Citation

	tmp.1286816405.pdf.IH5MY

