
Syracuse University
SURFACE

Electrical Engineering and Computer Science L.C. Smith College of Engineering and Computer
Science

1-1-2001

Privacy-preserving cooperative statistical analysis
Wenliang Du
Syracuse University, Department of Electrical Engineering and Computer Science, wedu@ecs.syr.edu

Mikhail J. Atallah
Purdue University, Department of Computer Sciences and Center for Education and Research in Information Assurance and
Security, mja@cs.purdue.edu

Follow this and additional works at: http://surface.syr.edu/eecs
Part of the Computer Sciences Commons

This Working Paper is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE. It has
been accepted for inclusion in Electrical Engineering and Computer Science by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Du, Wenliang and Atallah, Mikhail J., "Privacy-preserving cooperative statistical analysis" (2001). Electrical Engineering and Computer
Science. Paper 14.
http://surface.syr.edu/eecs/14

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs/14?utm_source=surface.syr.edu%2Feecs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Privacy-Preserving Cooperative Statistical Analysis ∗†

Wenliang Du
Center for Systems Assurance

Department of Electrical Engineering and Computer Science
Syracuse University, 121 Link Hall, Syracuse, IN 13244

Email: wedu@ecs.syr.edu Tel: (315)-443-9180

Mikhail J. Atallah
Department of Computer Sciences and

Center for Education and Research in Information Assurance and Security
Purdue University, 1315 Recitation Building, West Lafayette, IN 47907

Email: mja@cs.purdue.edu

Abstract

The growth of the Internet opens up tremendous op-
portunities for cooperative computation, where the an-
swer depends on the private inputs of separate entities.
Sometimes these computations may occur between mu-
tually untrusted entities. The problem is trivial if the
context allows the conduct of these computations by
a trusted entity that would know the inputs from all
the participants; however if the context disallows this
then the techniques of secure multi-party computation
become very relevant and can provide useful solutions.

Statistic analysis is a widely used computation in
real life, but the known methods usually require one to
know the whole data set; little work has been conducted
to investigate how statistical analysis could be per-
formed in a cooperative environment, where the partic-
ipants want to conduct statistical analysis on the joint
data set, but each participant is concerned about the
confidentiality of its own data. In this paper we have
developed protocols for conducting the statistic analysis
in such kind of cooperative environment based on a data
perturbation technique and cryptography primitives.

∗Portions of this work were supported by Grant EIA-9903545
from the National Science Foundation, by sponsors of the Cen-
ter for Education and Research in Information Assurance and
Security at Purdue University, and by the Center for Computer
Application and Software Engineering (CASE) at Syracuse Uni-
versity.

†In Proceedings of the 17th Annual Computer Security Ap-

plications Conference, pages 102-110, New Orleans, Louisiana,
USA, December 10-14, 2001.

1 Introduction

The growth of the Internet opens up tremendous op-
portunities for cooperative computation, where the an-
swer depends on the private inputs of separate entities.
Sometimes these computations may occur between mu-
tually untrusted entities. The problem is trivial if the
context allows the conduct of these computations by
a trusted entity that would know the inputs from all
the participants; however if the context disallows this
then the techniques of secure multi-party computation
become very relevant and can provide useful solutions.

In this paper we investigate how various statistical
analysis problems could be solved in a cooperative envi-
ronment, where two parties need to conduct statistical
analysis on the joint data set. We call the new prob-
lems secure two-party statistical analysis problems.

Basic statistic analysis operations consist of com-
puting the mean value of a data set, the standard devi-
ation, the correlation coefficient between two different
features, the regression line and so on. If one knows the
full data set, one can use the standard equations de-
scribed in most of the fundamental statistics books to
conduct the analysis. However, in the cooperative envi-
ronment, one might need to conduct statistical analysis
without being able to know the full data set because of
the privacy constraints. The following examples illus-
trate this kind of situation:

• A school wants to investigate the relationship be-
tween people’s intelligence quotient (IQ) scores
and their annual salaries. The school has its
students’ IQ scores, but does not have students’

1

salary information; therefore the school needs to
cooperate with companies that hire the students,
but those companies are not willing to disclose the
salary information. On the other hand, the school
cannot give students’ IQ scores to their employers
either.

• Two retail companies A and B each have a data
set about their own customers’ buying behaviors.
Both companies want to conduct statistical anal-
ysis on their joint data set for mutual benefit.
Since these two companies are competitors in the
market, they do not want to disclose the detailed
customers’ information to the other company, but
they feel comfortable disclosing only the aggregate
information.

The standard statistical analysis methods cannot
easily extend to solve the above problems; we need
methods that support statistical analysis in a privacy-
preserving manner. The goal of this paper is to develop
protocols for this type of cooperative statistical analy-
sis.

There are two common ways of cooperation in prac-
tice. For example, suppose X and Y are two different
features of a sample, and they are both used for a sta-
tistical analysis. In a cooperative environment, some-
times both cooperating parties can observe both X and
Y features of the sample, while at some other time, one
party can only observe X feature of the sample, and the
other party can only observe Y feature of the same sam-
ple. The difficulties of cooperation in these situations
are different. Therefore, based on whether the two co-
operating parties could observe the same features of a
sample or not, we formalized two different models for
the secure two-party statistical analysis: the heteroge-
neous model and the homogeneous model. As we will
show later, the solutions to these two different models
are very different.

To conduct the statistical analysis in a cooperative
environment, data exchange between the two parties is
needed. However, to preserve the privacy of the data,
no party should send its data to the other party in
plain. In our solution, we use a data perturbation tech-
nique, namely we add random numbers to the original
data to disguise the original data. Conducting sta-
tistical analysis based on the perturbed data surely
produces a perturbed and therefore wrong result. In
this paper we have demonstrated various ways to re-
move, without compromising the privacy, the pertur-
bation from the result to produce a correct result. Our
techniques are based on several cryptography primi-
tives, such as 1-out-of-n Oblivious Transfer protocol
and homomorphic encryption schemes.

Most of the statistical analysis computation investi-
gated in this paper involve scalar product of two private
vectors, each of which comes from a different party;
therefore, we have studied the private scalar product
problem independently, and use the solution to build
the protocols for the statistical analysis problem. In
addition to being used in this paper, the private scalar
product protocol could also be used to solve many other
secure two-party problems, such as secure two-party
computational geometry problems discussed in [1]. We
will discuss the private scalar product problem inde-
pendently in the paper.

In this preliminary study, we assume that all parties
are semi-honest; informally speaking, a semi-honest
party is one who follows the protocol properly with the
exception that it keeps a record of all its intermediate
computations and might try to derive other parties’ pri-
vate inputs from the record. This semi-honest model
is one of the widely adopted models in the studies of
general secure multi-party computation problem.

Section 2 describes related work and some cryp-
tography primitives will be used in this paper. Sec-
tion 3 presents an important building block, the scalar
product protocol, which will be used later to solve se-
cure two-party statistical analysis problems. Section 4
presents the definitions of secure two-party statistical
analysis problems and their solutions. Finally section
5 concludes this paper and proposes several future re-
search directions.

2 Related Work

Secure Multi-Party Computation

The secure two-party statistical analysis problems
described in the previous section are actually special
cases of the general Secure Multi-party Computation
problem [13, 8, 5]. Generally speaking, a secure multi-
party computation problem deals with computing a
function on any input, in a distributed network where
each participant holds one of the inputs, ensuring that
no more information is revealed to a participant in the
computation than can be computed from that partici-
pant’s input and output. The history of the multi-party
computation problem is extensive since it was intro-
duced by Yao [13] and extended by Goldreich, Micali,
and Wigderson [8], and by many others.

In theory, the general secure multi-party computa-
tion problem is solvable using circuit evaluation proto-
col [13, 8, 5]. In the circuit evaluation protocol, each
functionality F is represented as a Boolean circuit, and
then the parties run a protocol for every gate in the
circuit. While this approach is appealing in its gener-

2

ality, the communication complexity of the protocol it
generates depends on the size of the circuit that ex-
presses the functionality F to be computed, and in ad-
dition, involves large constant factors in their complex-
ity. Therefore, as Goldreich points out in [5], using the
solutions derived by these general results for special
cases of multi-party computation can be impractical;
special solutions should be developed for special cases
for efficiency reasons. This is our motivation of seek-
ing special solutions to statistical analysis problems,
solutions that are more efficient than the general the-
oretical solutions.

1-out-of-N Oblivious Transfer

Goldreich’s circuit evaluation protocol uses the 1-
out-of-N Oblivious Transfer, and our protocols in this
paper also heavily depends on this protocol. An 1-out-
of-N Oblivious Transfer protocol [6, 4] refers to a pro-
tocol where at the beginning of the protocol one party,
Bob has N inputs X1, . . . , XN and at the end of the
protocol the other party, Alice, learns one of the inputs
Xi for some 1 ≤ i ≤ N of her choice, without learning
anything about the other inputs and without allowing
Bob to learn anything about i. An efficient 1-out-of-
N Oblivious Transfer protocol was proposed in [10] by
Naor and Pinkas. By combining this protocol with the
scheme by Cachin, Micali and Stadler [7], the 1-out-of-
N Oblivious Transfer protocol could be achieved with
polylogarithmic (in n) communication complexity.

Homomorphic Encryption Schemes

We need a public-key cryptosystems with a homo-
morphic property for some of our protocols: Ek(x) ∗
Ek(y) = Ek(x + y). Many such systems exist, and ex-
amples include the systems by Benaloh [3], Naccache
and Stern [9], Okamoto and Uchiyama [11], Paillier
[12], to mention a few. A useful property of homo-
morphic encryption schemes is that an “addition” op-
eration can be conducted based on the encrypted data
without decrypting them.

3 New Building Blocks

In this section, we introduce a secure two-party pro-
tocols: the scalar product protocol. This protocol
serves as an important building block in solving the
secure two-party statistical analysis problems consid-
ered later in the paper. This protocol is first presented
in [1].

3.1 Scalar Product Protocol

We use X ·Y to denote the scalar product of two vec-
tors X = (x1, . . . , xn) and Y = (y1, . . . , yn), X · Y =
∑n

k=1 xkyk. Our definition of the problem is slightly
different and more general: We assume that Alice has
the vector X and Bob has the vector Y , and the goal of
the protocol is for Alice (but not Bob) to get X ·Y + v

where v is random and known to Bob only (of course
without either side revealing to the other the private
data they start with). Our protocols can easily be mod-
ified to work for the version of the problem where the
random v is given ahead of time as part of Bob’s data
(the special case v = 0 puts us back in the usual scalar
product definition). The purpose of Bob’s random v is
as follows: If X · Y is a partial result that Alice is not
supposed to know, then giving her X · Y + v prevents
Alice from knowing the partial result (even though the
scalar product has in fact been performed); later, at the
end of the multiple-step protocol, the effect of v can be
effectively “subtracted out” by Bob without revealing
v to Alice (this should become clearer with example
protocols that we later give).

Problem 1. (Scalar Product Problem) Alice has a
vector X = (x1, . . . , xn) and Bob has a vector Y =
(y1, . . . , yn). Alice (but not Bob) is to get the result of
u = X · Y + v where v is a random scalar known to
Bob only.

We have developed two protocols, and we will
present both of them here.

3.1.1 Scalar Product Protocol 1

Consider the following naive solution: Alice sends p

vectors to Bob, only one of which is X (the others are
arbitrary). Then Bob computes the scalar products
between Y and each of these p vectors. At the end Alice
uses the 1-out-of-p oblivious transfer protocol to get
back from Bob the product of X and Y . Because of the
way oblivious transfer protocol works, Alice can decide
which scalar product to get, but Bob could not learn
which one Alice has chosen. There are many drawbacks
to this approach: If the value of X has certain public-
known properties, Bob might be able to differentiate X

from the other p− 1 vectors, but even if Bob is unable
to recognize X his chances of guessing it is 1 out of p,
unacceptable in many situations.

The above drawbacks can be fixed by dividing vector
X into m random vectors V1, . . . , Vm of which it is the
sum, i.e., X =

∑m

i=1 Vi. Alice and Bob can use the
above naive method to compute Vi · Y + ri, where ri

is a random number and
∑n

i=1 ri = v (see Figure 1).

3

As a result of the protocol, Alice gets Vi · Y + ri for
i = 1, . . . , m. Because of the randomness of Vi and
its position, Bob could not find out which one is Vi.
Certainly, there is 1 out p possibility that Bob can guess
the correct Vi, but since X is the sum of m such random
vectors, the chance that Bob guesses the correct X is 1
out pm, which could be very small if we chose pm large
enough.

After Alice gets Vi · Y + ri for i = 1, . . . , n, she can
compute

∑m

i=1(Vi · Y + ri) = X · Y + v. The detailed
protocol is described in the following:

Protocol 1. (Two-Party Scalar Product Protocol 1)

Inputs: Alice has a vector X = (x1, . . . , xn), and Bob
has a vector Y = (y1, . . . , yn).

Outputs: Alice (but not Bob) gets X · Y + v where
v is a random scalar known to Bob only.

1. Alice and Bob agree on two numbers p and m,
such that pm is large enough.

2. Alice generates m random vectors, V1, . . . , Vm,
such that X =

∑m

j=1 Vi.

3. Bob generates m random numbers r1, . . . , rm such
that v =

∑m

j=1 rj .

4. For each j = 1, . . . , m, Alice and Bob conduct the
following sub-steps:

(a) Alice generates a secret random number k,
1 ≤ k ≤ p.

(b) Alice sends (H1, . . . , Hp) to Bob, where Hk =
Vj , and the rest of Hi’s are random vectors.
Because k is a secret number known only to
Alice, Bob does not know the position of Vj .

(c) Bob computes Zj,i = Hi · Y + rj for i =
1, . . . , p.

(d) Using the 1-out-of-p Oblivious Transfer pro-
tocol, Alice gets Zj= Zj,k= Vj ·Y + rj , while
Bob learns nothing about k.

5. Alice computes u =
∑m

j=1 Zj = X · Y + v.

How is privacy achieved:

• If Bob chooses to guess, his chance of guessing the
correct X is 1 out of pm.

• The purpose of rj is to add randomness to Vj · Y ,
thus preventing Alice from deriving information
about Y .

The communication complexity of the above pro-
tocols is O(mp). We can improve it to O(m + p)
by using the following scheme: Alice sends V1, . . . , Vm

and H1, . . . , Hp altogether to Bob then doing m-out-
of-(m + p) oblivious transfer. The probability of Bob
guessing correct X is now 1 out C(m, m + p), which
could be small enough if we choose an appropriate value
for p.

3.1.2 Scalar Product Protocol 2

Our next solution does not rely on 1-out-of-n Obliv-
ious Transfer cryptography primitive as the previous
one does, but is instead based on a homomorphic pub-
lic key system. In the following discussion, we define
π(X) as another vector whose elements are random
permutation of those of vector X .

We begin with two observations. First, a property
of the scalar product X ·Y is that π(X) ·π(Y) = X ·Y ,
regardless of what π is. Secondly, if Bob sends a vector
π(V) to Alice, where π and V are known only to Bob,
Alice’s chance of guessing the position of any single
element of the vector V is 1 out of n (n is the size of
the vector); Alice’s chance of guessing the positions of
all of the elements of the vector V is 1 out of n!.

A naive solution would be to let Alice get both π(X)
and π(Y) but not π. Let us ignore for the time being
the drawback that Alice gets the items of Y in per-
muted order, and let us worry about not revealing π

to Alice: Letting Alice know π(X) allows her to easily
figure out the permutation function π from knowing
both X and π(X). In order to avoid this problem, we
want to let Alice know only π(X +Rb) instead of π(X),
where Rb is a random vector known only to Bob. Be-
cause of the randomness of X+Rb, to guess the correct
π, Alice’s chance is only 1 out of n!. Therefore to get
the final scalar product, Bob only needs to send π(Y)
and the result of Rb ·Y to Alice, who can compute the
result of the scalar product by using

X · Y = π(X + Rb) · π(Y) − Rb · Y

Now we turn our attention to the drawback that
giving Alice π(Y) reveals too much about Y (for ex-
ample, if Alice is only interested in a single element of
the vector Y , her chance of guessing the right one is
an unacceptably low 1 out of n). One way to fix this
is to divide Y to m random pieces, V1, . . . , Vm, with
Y = V1 + . . . + Vm; then Bob generates π random per-
mutations π1, . . . , πm (one for each “piece” Vi of Y) and
lets Alice know πi(Vi) and πi(X +Rb) for i = 1, . . . , m.
Now in order to guess the correct value of a single el-
ement of Y , Alice has to guess the correct position of
Vi in each one of the m rounds; the possibility of a
successful guessing becomes 1 out of nm.

4

private vector: yprivate vector: x
random number: v = r1 + r2 + r3 + r4

x = v1+v2+v3+v4

v3v2 v4v1

v1 y+r1, v2 y+r2,

v3 y+r3,

v4

v1

v2

v3

v4 y+r4

Alice gets: x y + r1) + (v2 y + r2) + (v3 y + r3) + (v4 y + r4)y + v = (v1

Alice Bob

hiding v1,v2,v3,v4
among random vectors

1-out-of-n
Oblivious Transfer

Figure 1. Scalar Product Protocol 1

Now, let us consider the unanswered question: how
could Alice get π(X + Rb) without learning π or Rb?
We do this with a technique based on a homomor-
phic public key system, that was used in [2] in a dif-
ferent context (to compute the minimum value in a
vector that is the difference of Alice’s private vector
and Bob’s private vector). Recall that an encryption
scheme is homomorphic if Ek(x)∗Ek(y) = Ek(x+y). A
good property of homomorphic encryption schemes is
that “addition” operation can be conducted based on
the encrypted data without decrypting them. Based
on the homomorphic public key system, we have the
following Permutation Protocol (where, for a vector
Z = (z1, . . . , zn), we define E(Z) = (E(z1), . . . , E(zn)),
D(Z) = (D(z1), . . . , D(zn))):

Protocol 2. (Permutation Protocol)

Inputs: Alice has a vector X . Bob has a permuta-
tion π and a vector R.

Output: Alice gets π(X + R).

1. Alice generates a key pair for a homomorphic pub-
lic key system and sends the public key to Bob.
The corresponding encryption and decryption is
denoted as E(·) and D(·).

2. Alice encrypts X = (x1, . . . , xn) using her public
key and sends E(X) = (E(x1), . . . , E(xn)) to Bob.

3. Bob computes E(R), then computes E(X) ∗
E(R) = E(X + R); Bob then permutes E(X + R)
using the random permutation function π, thus
getting π(E(X + R)); Bob sends the result of
π(E(X + R)) to Alice.

4. Alice computes D(π(E(X + R))) = π(D(E(X +
R))) = π(X + R).

Based on Secure Two-Party Permutation Protocol,
we have developed the following scalar product proto-
col:

Protocol 3. (Secure Two-Party Scalar Product Pro-
tocol 2)

Inputs: Alice has a secret vector X , Bob has a
secret vector Y .

Output: Alice gets X ·Y + v where v is a random
scalar known to Bob only.

1. Bob’s set up:

(a) Bob divides Y to m random pieces, s.t. Y =
V1 + . . . + Vm.

(b) Bob generates m random vectors R1, . . . , Rm,
let v =

∑m

i=1 Vi · Ri.

(c) Bob generates m random permutations
π1, . . . , πm.

2. For each i = 1, ..., m, Alice and Bob do the follow-
ing:

(a) Using Secure Two-Party Permutation Proto-
col, Alice gets πi(X + Ri) without learning
either πi or Ri.

(b) Bob sends πi(Vi) to Alice.

(c) Alice computes Zi = πi(Vi) · πi(X + Ri) =
Vi · X + Vi · Ri

3. Alice computes u =
∑m

i=1 Zi =
∑m

i=1 Vi · X +
∑m

i=1 Vi · Ri = X · Y + v

5

How is privacy achieved:

• The purpose of Ri is to prevent Alice from learning
πi.

• The purpose of πi is to prevent Alice from learning
Vi. Although Alice learns a random permutation
of the Vi, she does not learn more because of the
randomness of Vi. Without πi, Alice could learn
each single value of Vi.

• If Alice chooses to guess, in order to successfully
guess all of the elements in Y , her chance is (1

n!
)m.

• Alice’s chance of successfully guessing just one el-
ements of Y is 1 out of nm. For example, in order
to guess the kth element of Y , Alice has to guess
the the corresponding elements in πi(Vi) for all
i = 1, . . . , m. Because for each single i, the possi-
bility is 1 out of n, the total possibility is 1 out of
nm.

• A drawback of this protocol is that the informa-
tion about

∑n

i=1 yi is disclosed because the ran-
dom permutation does not help to hide this infor-
mation.

3.1.3 Implementation Issues

During the implementation, we need to consider the
padding issues because most of the encryption scheme
require padding if the size of a number is smaller than
the expected size. For the security reason, A fixed
padding cannot be used because it makes brute force
attack possible. However, if random padding is used,
how could Alice in Protocol 2 get the value of x + y

(x is Alice’s number and y is Bob’s number) without
knowing how Bob pads his number y? We describe a
padding scheme in the following:

Let p be the required size of a block for the en-
cryption, and |x| ≤ 1

3
p and |y| ≤ 1

3
p. When en-

crypting x, the encrypter randomly chooses a num-
ber r1 such that |r1| = 2

3
p − 3. The encryption is

conducted on 0x00r1. When encrypting y, we choose
a number r2 such that |r2| = 2

3
p − 3. The encryp-

tion is conducted on 0y00r2. In this way the en-
cryption is a randomized one which can resist brute
force searching. On the other hand the homomorphic
property is conditionally guaranteed, because we have
E(0x00r1)E(0y00r2)= E((x + y)0(r1 + r2)) and x + y

can be easily obtained from the decryption without
knowing either r1 or r2. Although this scheme does not
have the property of E(x1) . . . E(xn)= E(x1+. . .+xn),
it does not affect our protocols.

3.1.4 Complexity Analysis

In the following discussion, we assume that d is the
number of bits needed to represent any number in the
inputs,

The communication cost of Protocol 3 is 4m ∗ n ∗ d,
where m is a security parameter (so that µ′ = nm is
large enough). The communication cost of Protocol 1
is p∗ t∗n∗d, where p ≥ 2 and t are security parameters
such that µ′′ = pt is large enough. Setting µ′ = µ′′ = µ

for the sake of comparison, the communication cost of
Protocol 3 is 4 logµ nd

log n
and the communication cost

of Protocol 1 is p log µ

log p
nd. When n is large, Protocol 3

is more efficient than Protocol 1.
The communication cost of the circuit evaluation

protocol is c ∗n ∗ d2, where c is the number of bits sent
over the network in the 1-out-of-n Oblivious Transfer
protocol. Although the value of c depends on the spe-
cific implementation of the protocol, it is reasonable
to assume c = d; therefore the communication cost be-
comes n∗d3, which is significantly more expensive than
our scalar product protocols.

4 Secure Two-Party Statistical Analy-

sis Problems and Protocols

4.1 Statistical Analysis Background

Without loss of generality, throughout this paper,
we will use a data set D of size n that only con-
sists of two different features x and y, where D =
{(x1, y1), . . . , (xn, yn)}.

As a preliminary study on the topic of secure two-
party statistical analysis, we only focus on several basic
statistical analysis, which are reviewed in the the fol-
lowing:

• Mean Value: x̄ = 1
n

∑n

i=1 xi.

• Correlation Coefficient between x and y: Correla-
tion coefficient measures the strength of a linear
relationship between x and y, namely the degree
to which larger x values go with larger y values and
smaller x values go with smaller y values. Corre-
lation coefficient r is computed using the following
equation:

r =

∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

=

∑n

i=1 xiyi − nx̄ȳ
√

(
∑n

i=1 x2
i − nx̄2)(

∑n

i=1 y2
i − nȳ2)

6

• Linear Regression Line: The purpose of linear re-
gression is to find the line that comes closest to
your data. More precisely, the linear regression
program finds values for the slope and intercept
that define the line that minimizes the sum of the
square of the vertical distances between the points
and the line. The linear regression line is repre-
sented by the following equation: y = bx+(ȳ−bx̄),
where

b =

∑n

i=1 xiyi − nx̄ȳ
∑n

i=1 x2
i − nx̄2

4.2 Two Models of Cooperation

There are many ways two parties could cooperate
in performing statistical analysis; Figure 2 describes
two ways of cooperation that are common in practice.
The first one is the heterogeneous cooperation model
(Figure 2.b). In this model, each party holds different
features of a data set. For example, if the whole data
set consists of employees’ salaries and ages, in a hetero-
geneous model, Alice could hold the salary information
while Bob holds the age information.

The second way of cooperation is the homogeneous
cooperation model (Figure 2.c). In this model, both
party hold the same features, but each party holds
a different subset of the data set. For instance, in a
homogeneous model, Alice could hold department A’s
employee information while Bob holds department B’s
employee information.

Both of the above cooperation models are quite com-
mon in practice. In this paper, we have formally de-
fined secure two-party statistical analysis problems cor-
responding to these cooperation models, and have de-
veloped protocols for those problems.

4.3 Heterogeneous Model

Problem 2. (Secure Two-Party Statistical Analysis
Problem in Heterogeneous Model) Alice has a data
set D1 = (x1, . . . , xn), and Bob has another data set
D2 = (y1, . . . , yn), where xi is the value of variable x,
and yi is the corresponding value of variable y. Alice
and Bob want to find out the following:

1. correlation coefficient r between x and y.

2. regression line y = bx + (ȳ − bx̄).

Correlation Coefficient Let u =
√

∑n

i=1(xi − x̄)2,

and v =
√

∑n

i=1(yi − ȳ)2. To compute the correlation
coefficient r, we have the following equations:

r =

∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

=

n
∑

i=1

(xi − x̄)

u

(yi − ȳ)

v

= (
x1 − x̄

u
, . . . ,

xn − x̄

u
) · (

y1 − ȳ

v
, . . . ,

yn − ȳ

v
)

This indicates that the task of computing the corre-
lation coefficient is reduced to a secure two-party scalar
product problem. It can be computed using Scalar
Product Protocol (Protocol 1 or 3).

Linear Regression Line Let w =
∑n

i=1 x2
i −nx̄2. Be-

cause computing w only requires the value of variable
x, it can be calculated by Alice alone. Therefore, we
can use the following equations to compute the slope
of the linear regression line:

b =

∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1 x2
i − nx̄2

= (
x1 − x̄

w
, . . . ,

xn − x̄

w
) · (y1 − ȳ, . . . , yn − ȳ)

This indicates that the task of computing b is also
reduced to a secure two-party scalar product problem,
and thus can be solved using Scalar Product Proto-
col (Protocol 1 or 3). The details of the protocol are
described in the following:

Protocol 4. (Secure Two-Party Statistical Analysis
Protocol in Heterogeneous Model))
Inputs: Alice has a data set D1 = (x1, . . . , xn), and
Bob has another data set D2 = (y1, . . . , yn).
Outputs: Alice and Bob gets r and b.

1. Alice computes x̄, u =
√

∑n

i=1(xi − x̄)2, and w =
∑n

i=1 x2
i − nx̄2.

2. Bob computes ȳ and v =
√

∑n

i=1(yi − ȳ)2.

3. Alice and Bob use Scalar Product Protocol (Pro-
tocol 1 or 3) to compute

r = (
x1 − x̄

u
, . . . ,

xn − x̄

u
) · (

y1 − ȳ

v
, . . . ,

yn − ȳ

v
)

b = (
x1 − x̄

w
, . . . ,

xn − x̄

w
) · (y1 − ȳ, . . . , yn − ȳ)

4.4 Homogeneous Model

Problem 3. (Secure Two-Party Statistical Analysis
Problem in Homogeneous Model) Alice has a data set
D1 = ((x1, y1), . . . , (xk, yk)), and Bob has another data

7

Alice Bob

x_1

x_2

x_n y_n

y_2

y_1

Alice Bob

y_1x_1

x_2 y_2

x_k y_k

x_{k+1}

x_{k+2}

x_n

y_{k+1}

y_{k+2}

y_n
x_n

x_2

y_1

y_2

y_n

(a) No Cooperation Situation (c) Homogeneous Cooperation Model(b) Heterogeneous Cooperation Model

x_1

Figure 2. Two Models of Cooperation

set D2 = ((xk+1, yk+1), . . . , (xn, yn)), where xi is the
value of variable x, and yi is the corresponding value
of variable y. Alice and Bob want to find out the fol-
lowing:

1. mean value x̄ (resp., ȳ).

2. correlation coefficient r between x and y.

3. regression line y = bx + (ȳ − bx̄).

Let us first consider the above problem under the
following privacy constraint:

Privacy Constraint A: Alice does not
want to disclose the information about D1

other than the aggregate information in-
cluding

∑k

i=1 xi,
∑k

i=1 x2
i ,

∑k

i=1 yi,
∑k

i=1 y2
i ,

and
∑k

i=1 xiyi. Accordingly, Bob does not
want to disclose the information about D2

other than the aggregate information in-
cluding

∑n

i=k+1 xi,
∑n

i=k+1 x2
i ,

∑n

i=k+1 yi,
∑n

i=k+1 y2
i , and

∑n

i=k+1 xiyi.

Under Privacy Constraint A, computing mean value
is trivial because both parties know

∑n

i=1 xi and
∑n

i=1 yi. After getting x̄ and ȳ, computing the correla-
tion coefficient and the linear regression line is straight-
forward according to the following equations:

r =
(
∑k

i=1 xi · yi +
∑n

i=k+1 xi · yi) − n ∗ x̄ȳ
√

(
∑k

i=1 x2
i +

∑n

i=k+1 x2
i) − nx̄2

·
1

√

(
∑k

i=1 y2
i +

∑n

i=k+1 y2
i) − nȳ2

b =
(
∑k

i=1 xi · yi +
∑n

i=k+1 xi · yi) − n ∗ x̄ȳ

(
∑k

i=1 x2
i +

∑n

i=k+1 x2
i) − nx̄2

Now let us consider the same problem under a more
strict privacy constraint:

Privacy Constraint B: Alice and Bob do
not want to disclose too much information
about their data; more specifically, they do
not want to disclose any more information
than what can be derived from x̄, ȳ, r and b.
This implies that Alice can disclose

∑k

i=1 xi

and
∑k

i=1 yi to Bob, and Bob can disclose
∑n

i=k+1 xi and
∑n

i=k+1 yi to Alice because
those can be derived from x̄ and ȳ.

Under this privacy constraint, computing the mean
value is still trivial, but computing the correlation co-
efficient r and the linear regression line is not. In what
follows, we demonstrate how to compute r (the linear
regression line can be computed similarly).

Let a1 =
∑k

i=1 xi ·yi−kx̄ȳ, b1 =
∑n

i=k+1 xi ·yi−(n−

k)x̄ȳ, a2 =
∑k

i=1 x2
i −kx̄2, b2 =

∑n

i=k+1 x2
i −(n−k)x̄2,

a3 =
∑k

i=1 y2
i − kȳ2, and b3 =

∑n

i=k+1 y2
i − (n − k)ȳ2.

Note that ai is only known to Alice, and bi is only
known to Bob. We have

r2 =
(a1 + b1)

2

(a2 + b2)(a3 + b3)

=
(a2

1 + 2a1b1 + b2
1)

(a2a3 + b2a3 + a2b3 + b2b3)

By using Scalar Product Protocol, we can let Alice
learn u1 and u2, and let Bob learn v1 and v2, where
u1 + v1 = a2

1 + 2a1b1 + b2
1 and u2 + v2 = a2a3 + b2a3 +

a2b3+b2b3. Now the question becomes how to compute
u1+v1

u2+v2

.

Problem 4. (Division Problem) Alice has u1 and u2;
Bob has v1 and v2. Alice and Bob want to compute
z = u1+v1

u2+v2

. Alice should not learn v1 or v2; Bob should
not learn u1 or u2.

In the following protocol, we first let Bob gener-
ate two random numbers r1 and r2; then we let Al-
ice (only Alice) get the result of z1 = r1(u1 + v1),

8

z2 = r2(u2 + v2), and r = r2

r1

. Therefore, Alice can

compute z = rz1

z2

= u1+v1

u2+v2

. If r1 and r2 are both real
numbers, Alice could not learn v1 (resp., v2) from z1

(resp., z2).

Protocol 5. (Division Protocol)
Input: Alice has u1 and u2; Bob has v1 and v2.
Output: Alice and Bob both gets the result of z =
u1+v1

u2+v2

1. Bob generates two random numbers r1 and r2, and
sends r = r2

r1

to Alice.

2. Alice and Bob use Scalar Product Protocol on
(u1, 1) and (r1, r1v1) to get z1 = r1(u1 + v1).

3. Alice and Bob use Scalar Product Protocol on
(u2, 1) and (r2, r2v2) to get z2 = r2(u2 + v2).

4. Alice computes z = r z1

z2

= u1+v1

u2+v2

, and sends it to
Bob.

Protocol 6. (Secure Two-Party Statistical Analysis
Protocol in Homogeneous Model)
Inputs: Alice has a data set D1 =
((x1, y1), . . . , (xk, yk)), Bob has another data set D2

= ((xk+1, yk+1), . . . , (xn, yn)),
Outputs: Alice and Bob both get x̄, ȳ, r and b.

1. Alice sends
∑k

i=1 xi and
∑k

i=1 yi to Bob.

2. Bob sends
∑n

i=k+1 xi and
∑n

i=k+1 yi to Alice.

3. Alice and Bob both compute x̄ and ȳ.

4. Alice computes a1 =
∑k

i=1 xi · yi − kx̄ȳ, a2 =
∑k

i=1 x2
i − kx̄2, and a3 =

∑k

i=1 y2
i − kȳ2.

5. Bob computes b1 =
∑n

i=k+1 xi · yi − (n − k)x̄ȳ,
b2 =

∑n

i=k+1 x2
i −(n−k)x̄2, and b3 =

∑n

i=k+1 y2
i −

(n − k)ȳ2.

6. Using Scalar Product Protocol, Alice gets u1 and
u2, while Bob gets v1 and v2, where u1+v1 = a2

1 +
2a1b1 + b2

1 and u2 + v2 = a2a3 + b2a3 +a2b3 + b2b3.

7. Using Division Protocol, Alice and Bob gets r2 =
u1+v1

u2+v2

and b = a1+b1
a2+b2

.

5 Summary and Future Work

In this paper, we have studied the problem of how to
conduct the statistical analysis in a cooperative envi-
ronment where neither of the cooperating parties wants
to disclose its private data to the other party. Our pre-
liminary work has shown that this problem, the secure
two-party statistical analysis problem, could be solved

in a way more efficient than the general circuit evalua-
tion approach.

Apart from those basic statistical analysis compu-
tations studied in this paper, many other types of sta-
tistical analysis are also used in practice. A future
direction would be to study more complicated statisti-
cal analysis computations, such as nonlinear regression,
variance analysis and so on. Furthermore, we could
also study, under the same secure two-party context,
various data analysis computations other than the sta-
tistical analysis. Data mining is a very interesting and
more complicated data analysis computation that is
worth of study.

6 Acknowledgement

We thanks anonymous reviewers for their valuable
comments.

References

[1] Mikhail J. Atallah and Wenliang Du. Secure multi-
party computational geometry. In WADS2001: Sev-

enth International Workshop on Algorithms and Data

Structures, pages 165–179, Providence, Rhode Island,
USA, August 8-10 2001.

[2] Wenliang Du, Mikhail J. Atallah and Florian Ker-
schbaum. Protocols for secure remote database access
with approximate matching. Technical report, 2001.

[3] J. Benaloh. Dense probabilistic encryption. In Pro-

ceedings of the Workshop on Selected Areas of Cryp-

tography, pages 120–128, Kingston, ON, May 1994.

[4] G. Brassard, C. Crépeau and J. Robert. All-or-nothing
disclosure of secrets. In Advances in Cryptology -

Crypto86, Lecture Notes in Computer Science, volume
234-238, 1987.

[5] O. Goldreich. Secure multi-party com-
putation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded/public html/
foc.html, 1998.

[6] S. Even, O. Goldreich and A. Lempel. A randomized
protocol for signing contracts. Communications of the

ACM, 28:637–647, 1985.

[7] C. Cachin, S. Micali and M. Stadler. Computation-
ally private information retrieval with polylogarith-
mic communication. Advances in Cryptology: EU-

ROCRYPT ’99, Lecture Notes in Computer Science,
1592:402–414, 1999.

[8] O. Goldreich, S. Micali and A. Wigderson. How to play
any mental game. In Proceedings of the 19th annual

ACM symposium on Theory of computing, pages 218–
229, 1987.

9

[9] D. Naccache and J. Stern. A new cryptosystem based
on higher residues. In Proceedings of the 5th ACM

Conference on Computer and Communications Secu-

rity, pages 59–66, 1998.

[10] M. Naor and B. Pinkas. Oblivious transfer and poly-
nomial evaluation (extended abstract). In Proceedings

of the 31th ACM Symposium on Theory of Computing,
pages 245–254, Atanta, GA, USA, May 1-4 1999.

[11] T. Okamoto and S. Uchiyama. An efficient public-key
cryptosystem. In Advances in Cryptology – EURO-

CRYPT 98, pages 308–318, 1998.

[12] P. Paillier. Public-key cryptosystems based on compos-
ite degree residue classes. In Advances in Cryptology –

EUROCRYPT 99, pages 223–238, 1999.

[13] A.C. Yao. How to generate and exchange secrets. In
Proceedings 27th IEEE Symposium on Foundations of

Computer Science, pages 162–167, 1986.

10

	Syracuse University
	SURFACE
	1-1-2001

	Privacy-preserving cooperative statistical analysis
	Wenliang Du
	Mikhail J. Atallah
	Recommended Citation

