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Abstract

Random number generators are used in many applications, from slot machines to simula-
tions of nuclear reactors. For many computational science applications, such as Monte
Carlo simulation, it is crucial that the generators have good randomness properties.
This is particularly true for large-scale simulations done on high-performance parallel
computers. Good random number generators are hard to find, and many widely-used
techniques have been shown to be inadequate. Finding high-quality, efficient algorithms
for random number generation on parallel computers is even more difficult. Here we
present a review of the most commonly-used random number generators for parallel
computers, and evaluate each generator based on theoretical knowledge and empirical
tests. In conclusion, we provide recommendations for using random number generators
on parallel computers.



Outline

This review is organized as follows:

A brief summary of the findings of this review is first presented, giving an overview of the
use of parallel random number generators and a list of recommended algorithms.

Section 1 is an introduction to random number generators and their use in computer sim-
ulations on parallel computers.

Section 2 is a summary of the methods used to test and evaluate random number generators,
on both sequential and parallel computers.

Section 3 gives an overview of the main algorithms used to implement random number
generators on sequential computers, provides examples of software implementations of the
algorithms, and states any known problems with the algorithms or implementations.

Section 4 gives a description of the most common methods used to parallelize the sequen-
tial algorithms, provides examples of software implementing these algorithms, and states
any known problems with the algorithms or implementations on current high-performance
computers.

Section 5 provides an overview our findings and gives recommendations for the use of random
number generators on parallel computers.

Section 6 is a glossary of terms related to random number generators.

Finally, a list of the references cited in this article is provided.



Summary

Random number generators use iterative deterministic algorithms for producing a sequence
of pseudo-random numbers that approximate a truly random sequence. Ideally the sequence
should be uniformly distributed, uncorrelated, reproduceable, portable, easily changed by
adjusting an initial seed value, easily split into many independent subsequences, have a
large period of repetition, pass all empirical tests for randomness, and be generated rapidly
using limited computer memory.

Parallel random number generators should in addition have no correlations between
the sequences on different processors, produce the same sequence for different numbers of
processors, and not require any data communication between processors.

Developing random number generators that satisfy all of these requirements is a very
difficult problem, particularly for parallel computers.

The main algorithms used for sequential random number generators are the following:

e Linear congruential generators — these work well if the parameters are properly
chosen, the modulus is a prime number, and the state used is at least 48 bits, and
preferably 64 bits. Do not use 32-bit versions.

e Lagged Fibonacci generators — implementations using multiplication are the best,
addition or subtraction can be used if speed is a major concern, XOR should not
be used. The lags used must satisfy certain requirements, and should be as large
as possible, with the largest lag being at least 127 for multiplication and 1279 for
addition, and preferably much larger. Care must be taken in initializing the seed
tables, to ensure the entries are random and uncorrelated.

e Shift register generators — these are not recommended since they have compara-
tively poor randomness properties.

e Combined generators — combinations of two linear congruential generators, or a
lagged Fibonacci generator and a linear congruential or other generator, work well in
practice if two good generators are used.

The main techniques used for parallelizing random number generators involve distributing
the sequences of random numbers produced by a sequential generator among the processors
in the following different ways:

e Leapfrog — The sequence is partitioned among the processors in a cyclic fashion, like
a deck of cards dealt to card players.

e Sequence splitting — The sequence is partitioned among processors in a block fash-
ion, by splitting it into non-overlapping contiguous sections.

e Independent sequences — For some generators, the initial seeds can be chosen in
such a way as to produce long period independent subsequences on each processor.



Random number generators, particularly for parallel computers, should not be trusted.
It is strongly recommended that all simulations be done with two or more different genera-
tors, and the results compared to check whether the random number generator is introducing
a bias.

On a sequential computer, good generators to use are:

e a multiplicative lagged Fibonacci generator with a lag of at least 127, and preferably
1279 or more;

e a 48-bit or preferably 64-bit linear congruential generator, that performs well in the
Spectral Test and has a prime modulus;

e a 32-bit (or more) combined linear congruential generator, with well-chosen parame-
ters, such as those recommended by L’Ecuyer;

e if speed is really crucial, an additive lagged Fibonacci generator with a lag of at least
1279 and preferably much greater, and possibly combined with another generator, as
in RANMAR, or using 3 or more lags rather than 2.

All of the parallel random number generators covered in this review have some limitations
or possible problems. Recommended generators to use on a parallel computer are:

e Combined linear congruential generators using sequence splitting;

e Lagged Fibonacci generators using independent sequences, with careful initialization
to ensure the seed tables on each processor are random and uncorrelated.
If you do not require the same results for different numbers of processors, a multi-
plicative or additive generator with a large lag can be used, with different lag tables
on each physical processor.
Otherwise a different lag table is used on each abstract processor, requiring a small lag
due to memory constraints, in which case we recommend using multiplication rather
than addition.

Some software implementing these recommended generators is available from the National

HPCC Software Exchange (NHSE).

More work needs to be done on developing better random number generators for parallel
computers, and subjecting these generators to more thorough empirical testing.



1 Introduction

Random number generators are widely used for simulations in computational science and
engineering. Randomness is often present in the formulation of the problem, for example
random noise or perturbations, and quantum processes. In addition, many algorithms are
probabilistic, for example Monte Carlo simulation and stochastic optimization techniques
such as simulated annealing or genetic algorithms. Random number generators are also
used in many other applications, from slot machines to cryptography.

Since “random” numbers are in practice computed using deterministic algorithms, these
are more accurately called pseudo-random number generators. In some simulations, the
quality of the pseudo-random numbers (how closely they resemble truly random sequences)
is not that important. However in many of the problems for which random numbers are most
heavily used, such as Monte Carlo simulation, the quality of the random number generator is
crucial. This is especially true in large-scale simulations on parallel supercomputers, which
consume huge quantities of random numbers, and require parallel algorithms for random
number generation.

As noted in a number of previous review articles [1, 2, 3, 4, 5, 6, 7], random number
generators provided by computer vendors or recommended in some papers and computer
science texts have often been of poor quality. Even generators that perform well in standard
statistical tests for randomness have sometimes proven to be unreliable for certain applica-
tions, particularly in Monte Carlo simulations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The many
problems caused in the past by inadequate random number generators on sequential and
vector computers are likely to be repeated in a new generation of simulations using parallel
computers, unless parallel random number generators are very carefully studied and tested,
and the best algorithms made readily available to users.

The aim of this review is to provide up-to-date information and recommendations con-
cerning the use of random number generators on parallel computers. A summary of the
current state-of-the-art in the development of random number generators for parallel com-
puters is presented, along with the results of theoretical evaluations and empirical tests
of these generators. For each of the common algorithms used in parallel random number
generators, we give examples of software implementations of the algorithm, and state any
known problems with the algorithm or the implementation of the generator on current
high-performance computers.

Since this review is aimed primarily at users who may not be interested in the theoretical
details of the various algorithms for generating random numbers, many of the technical
details have been omitted in order to keep the presentation as simple as possible. More
detailed information can be found in a number of other reviews [1, 2, 3, 4, 5, 6, 7].



2 Testing and Evaluation of Random Number Generators

2.1 Requirements for Sequential Random Number Generators

Ideally a pseudo-random number generator would produce a stream of numbers that

1. are uniformly distributed,

2. are uncorrelated,

never repeats itself,

satisfy any statistical test for randomness,

are reproduceable (for debugging purposes),

are portable (the same on any computer),

can be changed by adjusting an initial “seed” value,

can easily be split into many independent subsequences,
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can be generated rapidly using limited computer memory.

In practice it is impossible to satisfy all these requirements exactly. Since a computer
uses finite precision arithmetic to store the state of the generator, after a certain period the
state must match that of a previous iteration, after which the generator will repeat itself.
Also, since the numbers must be reproduceable, they are not truly random, but generated
by a deterministic iterative process, and therefore cannot be completely uncorrelated.

For practical purposes, we require that the period of repetition of the sequence be much
larger than the number of pseudo-random numbers that might be used in any application,
and that the correlations be small enough that they do not noticeably affect the outcome of
a computation. The first requirement can be determined fairly easily, knowing the power of
the computer to be used. The second is extremely difficult to ascertain, and will generally
be application-dependent.

It has often been the case that the speed of random number generators has been overly
emphasized, to the detriment of the quality of the generators. A fast generator requires
a minimal number of very simple operations, and it is this simplicity that often leads to
problems with the quality of such generators. For most applications the speed of a random
number generator is not even a concern, since the amount of time spent generating the
random numbers is insignificant compared to the rest of the calculation. Users who yearn
for super-fast random number generators usually have applications that spend most of
their time generating random numbers, and require a huge number of them. These types
of applications are often the ones that are most sensitive to the quality of the generator,
in which case it would seem prudent to sacrifice a little speed for much better randomness
properties. In using a random number generator, it’s usually better to be slow than sorry.

The speed of a random number generator can usually be increased by allowing the
routine to return an array of values, rather than a single value. This is clearly advantageous
for a vector or parallel implementation, however it is also usually true for a sequential
implementation, since it amortizes the cost of the function call to the random number
generator.



2.2 Tests for Sequential Random Number Generators

Over the years many widely-used methods for generating pseudo-random numbers have
been shown to be inadequate, either by theoretical arguments, or empirical tests, or both.
In some cases theoretical arguments can show that there are correlations in the sequence
of numbers, however in many cases the problems only show up in empirical tests that
statistically compare the results produced by the random number generators with results
expected from a truly random sequence of numbers. Many standard tests of this kind are
available [1, 2, 18].

In addition to standard statistical tests, it is useful to apply application-specific tests
that are more relevant to some of the various applications for which random numbers are
used. As with the statistical tests, these tests generally compare the results obtained using a
pseudo-random number generator with known exact results that would occur if the numbers
were truly random. Tests of this kind include Monte Carlo simulation [19, 20] of exactly
solvable systems such as the two dimensional Ising model [10, 21, 13, 15, 16, 17], simulations
of percolation models [22], and random walks [14, 22, 17]. Generators that pass standard
statistical tests have sometimes been found to fail these application-specific tests. It is
therefore important to use as wide a variety of empirical tests as possible. Any application
can in principle be used to test random number generators, by comparing results obtained
with two different generators [8, 9, 10].

2.3 Requirements for Parallel Random Number Generators

In addition to the requirements for an ideal sequential random number generator given in
Section 2.1, a random number generator for a parallel computer should ideally have the
following additional properties:

1. The generator should work for any number of processors.

2. The sequences of random numbers generated on each processor should all satisfy the
requirements of a good sequential generator, e.g. they should be uniformly distributed,
uncorrelated, and have a large enough period.

3. There should be no correlations between the sequences on different processors.

4. The same sequence of random numbers should be produced for different numbers
of processors, and for the special case of a single processor. This is beneficial for
debugging purposes, and is a requirement for some parallel languages such as High
Performance Fortran (HPF) [53] (which provides a random number generator as an
intrinsic function, as does Fortran 90).

5. The algorithm should be efficient, which in practice means there should be no data
movement between processors. Thus, after the generator is initialized, each processor
should generate its sequence independently of the other processors.

As with the ideal sequential generator, in practice it is not feasible to meet all these
requirements. Our goal is to find a parallel random number generator that measures up
to these ideals as well as possible. For example, we may not be able to say for sure that



there are no correlations between sequences on different processors, but we can at least
ensure that there is no overlap between the sequences, and if possible try to minimize any
correlations.

Note that we will use the word “processor” to refer to a single abstract processor, which
may correspond to a physical processor, a process, a thread of control within a process, or
an array element within a data parallel language such as HPF.

2.4 Tests for Parallel Random Number Generators

An obvious requirement for a good parallel random number generator is that the sequential
generator on which it is based should have acceptable randomness properties. Unfortunately,
many of the widely-used parallel generators fail even this first requirement.

There has been quite a lot of research on developing algorithms for parallel random
number generators, but very little work has been done on developing and applying methods
for testing such generators. Not many rigorous mathematical results are known about the
properties of parallel random number generators, so stringent and varied empirical tests are
vital.

The many standard statistical tests for checking the randomness properties of sequential
generators can be applied to parallel generators, by testing the random number streams on
each processor, and from all processors combined. This is the usual approach in testing
parallel generators. However, new techniques are necessary to test algorithms for generating
random numbers on parallel computers, for example to look for correlations between random
number streams on different processors [25, 26]. Thus far, very little work has been done
in this area.

A good empirical test of parallel random number generators is to use them with parallel
implementations of the Monte Carlo algorithms used for simulating the two dimensional
Ising model, which have proven to be very effective at testing sequential generators. Such
tests have been done for a number of parallel generators [23, 24].

3 Random Number Generators

In this section we introduce the most common algorithms used in random number generators
— the linear congruential, lagged Fibonacci, and shift register generators, and techniques
which combine two or more of these generators. More detailed information can be found in
a number of other review articles [1, 2, 3, 4, 5, 6, 7].

3.1 Linear Congruential Generators

Probably the most commonly-used random number generators are linear congruential gen-
erators (LCGs) [37, 1, 3, 5]. The standard C and Unix generators RAND (32-bit precision),
DRAND48 and RANF (48-bit precision) are of this type. LCGs produce a sequence X; of
random integers using the relation

Xi=(a*xX;_1+¢) mod M, (1)



where a is known as the multiplier, M is the modulus, and ¢ is an additive constant that
may be set to zero. The parameters (a,c, M) must be chosen carefully to ensure a large
period and good uniformity and randomness properties. The maximum period is M for
suitably chosen parameters (M — 1 if ¢ = 0) [1]. Standard random number generators
return a floating point number z; in the interval [0,1), which can be obtained by dividing
X; by M.

LCGs work very well for most applications but are known to have some major defects.
The main problem is that the least significant bits of the numbers produced are correlated,
and a “scatter-plot” of ordered tuples (z;,2;11, ...) of random floating point numbers
plotted in the unit hypercube shows regular lattice structure [2, 27, 32, 33, 7]. This problem
becomes worse in higher dimensions, which may affect some high-dimensional simulations.
The problem of lattice structure can be quantified using the Spectral Test [1]. Examples
of LCGs with good parameters that perform well in the Spectral Test are given in Refs. [1,
40, 15, 41].

Another problem is that many commonly-used LCGs (including DRAND48 and RANF) use
a modulus M that is a power of 2, since it is fast and convenient to implement this on a
computer. However this approach produces highly correlated low-order bits [1, 4, 7], as well
as long-range correlations for intervals that are a power of 2 [8 11, 34, 35, 36]. This can
cause problems for certain types of simulations, for example when using a hypercubic grid
with a size that is a power of 2, or for applications that expect the lower-order bits to be
random. To avoid these problems, it is best to use a modulus that is prime rather than a
power of 2, however for many applications requiring single-precision floating point pseudo-
random numbers (for which the low-order bits are irrelevant), DRAND48 and RANF are quite
adequate, and are often useful for checking the results obtained using other generators.

The effects of these regularities can be decreased by increasing the precision of the
generators [2], for example by using 64-bit rather than 32-bit numbers. However there
are practical limits to this approach — if M is greater than machine precision, then much
slower multi-precision arithmetic must be used, so in practice the precision cannot be made
arbitrarily large. This means that 48-bit and 64-bit LCGs can be quite slow on 32-bit
computers, however many high-performance computers now use 64-bit processors, which
should become standard in the near future. In that case, the speed of these generators is
not a problem for most applications.

Note that for 32-bit integers the period of these generators is at most 2°%, or of order
10°. On current processors capable of 10% floating point operations per second, this period
can be exhausted in seconds, so higher precision (48-bit or more) generators should be used.
For long simulations on high-performance computers, even 48-bit generators may have too
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small a period.

Despite their known problems, large precision LCGs with well-chosen parameters appear
to work very well for all known applications, at least on sequential computers. However we
will see later that there are problems with implementations of LCGs on parallel computers
if the modulus is a power of 2.

Multiple recursive generators (MRG) [1, 5, 6, 41], generalize LCGs by using a recurrence
of the form

X; = (alXi_1 +asX; o+ ... +ap X+ b) mod M (2)

for a given value of k. Choosing k& > 1 will increase the time taken to generate each number,



but will greatly improve the period and randomness properties of the generator [6, 41]. Some
practical implementations have been provided for k = 2 [41].

3.2 Lagged Fibonnaci Generators

Lagged Fibonacci generators (LFGs) [1, 5, 2] are becoming increasingly popular, since they
offer a simple method for obtaining very long periods, and they can be very fast. The
standard C and Unix generator RANDOM is of this type. The sequence is defined by

Xi=Xip 0 Xiy (3)

which we will denote by F(p, ¢, ®), where p and ¢ are the lags, p > ¢, and © is any binary
arithmetic operation, such as addition or subtraction modulo M, multiplication modulo M,
or the bitwise exclusive OR function (XOR). The arithmetic operations are done modulo any
large integer value M, or modulo 1 if the X'’s are represented as floating point numbers in
the interval [0,1), as can be done if the operation is addition or subtraction. Multiplication
must be done on the set of odd integers. The modulus function is not required when using
XOR. This method requires storing the p previous values in the sequence in an array called
a lag table.

As with the LCGs, it is important that the parameters (p, ¢, M) be carefully chosen in
order to provide good randomness properties and the largest possible period. If M is taken
to be 2° (i.e. the X’s have b-bit precision), the maximal period is obtained if the lags are
the exponents of a primitive polynomial [1, 28]. In that case the period is 2 — 1 for XOR,
(2P —1)2°~1 for addition and subtraction, and (27 —1)2°~2 for multiplication [28, 7, 1, 2, 31].
Tables of suitable lags are available in the literature [1, 28, 30, 29, 31]. An advantage of
this generator is that the period can be made arbitrarily large by just increasing the lag
p. This also improves the randomness properties [2, 15], since smaller lags mean higher
correlations between the numbers in the sequence. The low-order bits can have particularly
poor randomness properties if small lags are used.

Empirical tests have shown that the randomness properties of LFGs are best when
multiplication is used, with addition (or subtraction) being next best, and XOR being by
far the worst [2, 15, 16, 17]. This is intuitively reasonable in that multiplication mixes the
bits in two numbers much more than addition, which is in turn much better than XOR.

LFGs using addition (or subtraction) are the most popular because they are very simple
and very fast. All the computation can be done in floating point, which avoids a costly
integer to floating point conversion, and large periods can be obtained on 32-bit processors
without having to use slow multi-precision arithmetic. FEach pseudo-random number can
be generated with just a single floating point addition and a modulus operation.

Great care needs be taken in choosing the lags for this type of generator. Many im-
plementations use (or recommend in the documentation) lags that are much too small to
give adequate randomness properties, even though it has been known for many years that
additive LFGs fail some standard statistical tests for very small lags (such as p = 17) [2],
and that increasing the lag improves the randomness properties of the generator. More
recently, it was shown that even lags on the order of hundreds can give incorrect results in a
number of tests based on common applications such as Monte Carlo simulation, percolation
and random walks [14, 22, 15, 16, 17]. Unfortunately this information seems not to have



percolated through the mathematical and computational science community, and it is still
extremely rare to see a lag of greater than 1000 recommended for an additive LFG. We
recommend using (p,q) of at least (1279,1063), and preferably much larger values. The
standard Unix generator RANDOM is an additive LFG with a default lag of 31, which is much
too small, however it is possible to initialize it with a larger lag.

Setting a minimum acceptable lag is obviously a moving target, since computers are
continually becoming faster, allowing for more stringent randomness tests that use more
random numbers. The recommendations given here are based on the results of the current
set of application-specific tests mentioned above, using currently available computers. These
values may not be adequate for future applications that use Teraflop computers. In any
simulation, the largest feasible lag should be used, and the results should always be checked
using a different generator.

Small lags were necessary in the past because of limited computer memory, however on
current high-performance computers (and even personal computers), the additional memory
requirement of a lag table with a few thousand entries can easily be handled. However we
will see later that memory constraints may be a problem in implementing this algorithm
on parallel computers for some applications. The choice of the lag may affect the speed of
the generator, depending on the type of computer used. For example, if vector processors
are used, a larger lag may improve performance, since the vector lengths are longer. If a
scalar processor with limited cache memory is used, having a very large lag may cause cache
misses and reduce the performance.

Multiplicative LFGs have seen little use, which is somewhat surprising considering their
excellent randomness properties and extremely long period. Although slower than additive
LFGs, they are just as fast as 32-bit LCGs, and much faster than LCGs that require
multiple-precision arithmetic. Multiplicative LFGs can also be used with much smaller lags
than for additive LFGs. Many different tests are failed by additive LCGs with small lags
(less than 100) [2, 13, 14, 15, 16, 17], however no currently published results in any test
show failure of a multiplicative LFG for a lag as small as 17. However we recommend using
a lag of at least 100, to ensure a large period and better randomness properties.

One of the obstacles in implementing multiplicative LFGs is handling the possible over-
flow of the multiplication. In most languages a portable implementation would require
multiple precision arithmetic, which would be quite slow. However if the C programming
language is used, and the X'’s are specified to be of type unsigned int, then the language
specification for the multiplication of two unsigned int values in C guarantees that the
result will be correct modulo M = 2° if b is the word size (the number of bits in X), without
having to worry about overflow or the use of multiple precision arithmetic. Many Fortran
compilers allow the calling of subroutines written in C.

The randomness properties of LFGs can be improved (without sacrificing too much in
speed) by using multiple lags (or “taps”) [39, 28, 22, 14, 15, 17], i.e. by combining three or
more previous elements of the sequence, rather than two. This type of generator has not
vet been widely used or studied, however it seems likely that a 3- or 4-lag additive LFG
would be a very fast and effective random number generator.

10



3.3 Shift Register Generators

Shift register (or Tausworthe) generators [1, 2, 38, 21, 39] are generally used in a form where
they can be considered as a special case of a lagged Fibonacci generator using XOR. XOR
gives by far the worst randomness properties of any operation for an LFG [1, 2, 15], so these
generators are not recommended.

Despite their serious drawbacks, shift register generators have been very popular in the
past, mainly because they were comparatively fast. However on modern processors addition
is not markedly slower than XOR, so there is little reason to use these generators.

3.4 Combined Generators

Combining two different generators has been shown (both theoretically and empirically) to
produce an improved quality generator in many circumstances [2, 32, 6, 42].

Based on an algorithm introduced by Wichmann and Hill [43], L’Ecuyer [32] has shown
how to additively combine two different 32-bit LCGs to produce a generator that passes all
known statistical tests and has a long period of around 10'®, thus overcoming the major
drawbacks of standard 32-bit LCGs. This has been implemented in a program known as
RANECU [32, 5]. Combining two LCGs in this way is effectively a more efficient way of
implementing an LCG with a much larger modulus [44]. Recently L’Ecuyer et al. [41]
have implemented combined 48-bit and 64-bit LCGs and MRGs, with even larger periods
and better randomness properties. A combined 32-bit LCG is substantially slower than a
standard 32-bit LCG, although it is more appropriate to compare it to a 64-bit LCG (which
has the same period), in which case the performance is similar, at least on a 32-bit machine
where multiple-precision arithmetic is required for the 64-bit LCG.

Other proposed combined generators include algorithms combining an LFG with an
LCG [2], or an LFG with a simple Weyl (or arithmetic sequence) generator, which is the
basis for the RANMAR generator [5, 45] commonly used in computational physics applications.
The addition of the Weyl generator greatly improves the randomness properties over the
single additive LF'G, but RANMAR still fails some Monte Carlo tests [15], since the lag used
(p=97) is much too small. If you are using this generator, you should greatly increase the
lags, to at least (1279,1063).

4 Parallel Random Number Generators

Many different parallel random number generators have been proposed, but most of them
use the same basic concept, which is to parallelize a sequential generator by taking the
elements of the sequence of pseudo-random numbers it generates and distributing them
among the processors in some way. There are three basic ways to do this:

1. Leapfrog — The sequence is partitioned in turn among the processors like a deck of
cards dealt to card players.

2. Sequence splitting — The sequence is partitioned by splitting it into non-overlapping
contiguous sections.
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3. Independent sequences — For some generators, the initial seeds can be chosen in
such a way as to produce long period independent subsequences on each processor.

The first two techniques are closely analogous to the cyclic and block methods for data
distribution in a data parallel language [53], while the third technique is loosely analogous
to a scattered data distribution [49].

Finding a good parallel random number generator has proven to be a very challenging
problem, and is still the subject of much research and debate. One of the reasons good
parallel random number generators are so hard to create is that any small correlations that
exist in the sequential generator may be amplified by the method used to distribute the
sequence among the processors, producing stronger correlations in the subsequences on each
processor. Inter-processor correlations may also be introduced. Also, the method used to
initialize a parallel random number generator (i.e. to specify the seeds for each processor)
is at least as important as the algorithm used for generating the random numbers, since any
correlations between the seeds on different processors could produce strong inter-processor
correlations.

In this section we describe some of the most common parallel random number generators.
More information is available in other review articles [4, 46] and in the references given in
this section.

4.1 The Leapfrog Method

Ideally we would like a parallel random number generator to produce the same sequence of
random numbers for different numbers of processors. A simple way to achieve this goal is
for processor P of an N processor machine to generate the sub-sequence

Xp, XpyN, Xpan, .-+,

so that the sequence is spread across processors in the same way as a deck of cards is dealt
in turn to players in a card game. This is known as the leapfrog technique, since each
processor leapfrogs by N in the sequence [47, 48, 49, 50, 4]. In order to use this method
we need to be able to easily jump ahead in the sequence. This can be done quite easily
for linear congruential generators, and merely involves replacing the multiplier ¢ and the
additive constant ¢ by new values A = a” and C = c(a” — 1)/(a — 1) (both modulo M)
[47, 48, 49, 50]. Jumping ahead in the sequence can also be done for combined LCGs
[6, 51] and shift-register generators [52], but is not practical for LFGs using addition or
multiplication, since the computations are much more complex, making it too slow for
practical use.

A 48-bit LCG using the leapfrog technique has been used on vector machines such as the
CRAY and CYBER-205 [47, 4, 8], and for the intrinsic random number generator function
used in IBM’s XL HPF High Performance Fortran release (which offers the option of a
32-bit or a 48-bit LCG - beware that the totally inadequate 32-bit LCG is the default!)
[61].

A potentially serious problem with the leapfrog method for LCGs is that although the
multiplier @ may be chosen to perform well in the Spectral Test, there is no guarantee that
A = oV will also have good spectral properties, particularly since N will in general be
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arbitrary. This method could work well in situations for which N is fixed (for example, if
an application is always run on the same number of processors), since it would be possible
to choose a multiplier so that both @ and ¢’ do well in the Spectral Test. However it is not
possible to choose a multiplier for which " has good spectral properties for any value of
N, so this algorithm is not recommended as a general-purpose generator.

There is another potential problem with this type of generator. As mentioned in Sec-
tion 3.1, linear congruential generators using a modulus that is a power of 2 are known to
have correlations between elements in the sequence that are a power of 2 apart. For many
parallel computers the number of physical processors is a power of 2, and this is also often
the case for the number of abstract processors, i.e. the size of the arrays used in a simu-
lation. This means that the pseudo-random numbers generated on a given processor may
be more strongly correlated than the sequence on a single processor. In fact the leapfrog
linear congruential algorithm used on the CRAY and CYBER-205, which has a power of
2 modulus, has produced spurious results in some Monte Carlo calculations [8, 11]. This
problem can be avoided by using a prime modulus.

For these reasons, we do not recommend the leapfrog method, although it may be
adequate for many applications. If you do use this type of generator, at least be sure that
the LCG is 48-bit or higher (32-bit or higher for a combined LCG) and preferably has a
prime modulus.

4.2 Sequence Splitting

Another method for parallelizing random number generators is to split the sequence into
non-overlapping contiguous sections, each generated by a different processor [4, 6, 7]. For
example, one could divide the period of the generator by the number of processors, and
jump ahead in the sequence by this amount for each processor. Alternatively, the length of
each section of numbers could be chosen much larger than could possibly be used by any
processor. If the length of the sections is L, then processor P would generate the sequence

Xpr, Xpr+1, XPry2, - -

This method also requires the ability to quickly jump ahead in the sequence by a given
amount. It is therefore restricted primarily to the same type of generators as the leapfrog
method, however in this case it is also possible to use additive lagged Fibonacci generators.
Although jumping ahead using additive LFGs is too slow to do every time a number is
generated (which is required for leapfrog), it may be fast enough to be feasible for sequence
splitting, which only needs to be done once, in the initialization of the generator. A parallel
generator of this type has been implemented by Brent [7], who presents an initialization
method that takes O(rlogn) time to jump ahead n for a lag ». An implementation using
sequence splitting of a combined linear congruential generator has been given by L’Ecuyer
and Coté [51].

A possible problem with this method is that although the sequences on each processor are
disjoint (i.e. there is no overlap), this does not necessarily mean that they are uncorrelated.
In fact it is known that linear congruential generators with modulus a power of 2 have
long-range correlations that may cause problems, since the sequences on each processor
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are separated by a fixed number of iterations (L). Other generators may also have subtle
long-range correlations that could be amplified by using sequence splitting.

A disadvantage of this type of generator is that it does not produce the same sequence
for different numbers of processors. However in a data parallel programming model (for
example, as used by High Performance Fortran [53]) it is possible to split the sequence
among “abstract processors”, or distributed data elements, such that the sequences will be
the same for any number of physical processors. For a combined LCG, this requires only
two integer values per array element to store the state of the generator, which should not
be too great a memory requirement. This method appears capable of providing a very good
parallel random number generator, particularly for data parallel languages such as HPF

[54].

4.3 Independent Sequences

The previous two methods were restricted to generators for which arbitrary elements of
the sequence could be quickly and easily computed. This means they are impractical for
LFGs using multiplication, which is unfortunate since these are among the best sequential
generators available.

There is, however, an even simpler way to parallelize a lagged Fibonacci generator,
which is to run the same sequential generator on each processor, but with different initial
lag tables (or seed tables) [55, 56]. In fact this technique is no different to what is done on a
sequential computer, when a simulation needs to be run many times using different random
numbers. In that case, the user just chooses different seeds for each run, in order to get
different random number streams.

This method is similar to sequence splitting, in that each processor generates a different,
contiguous section of the sequence. However in this case the starting point in the sequence
is chosen at random for each processor, rather than computed in advance using a regular
increment. This has the advantage of avoiding (or at least reducing) possible long-range
correlations, but only if the seed tables on each processor are random and independent.

The initialization of the seed tables on each processor is a critical part of this algorithm.
Any correlations within the seed tables or between different seed tables could have dire
consequences. This leads to the Catch-22 situation of requiring an excellent parallel random
number generator in order to provide a good enough initialization routine to implement an
excellent parallel random number generator. However this is not as difficult as it seems
— the initialization could be done by a combined LCG, or even by a different LFG (using
different lags and perhaps a different operation).

A potential disadvantage of this method is that since the initial seeds are chosen at
random, there is no guarantee that the sequences generated on different processors will not
overlap. However using a large lag eliminates this problem to all practical purposes, since the
period of these generators is so enormous that the probability of overlap will be completely
negligible (assuming that the initial lag tables are not correlated). In fact, the likelihood of
overlap is even less than might be expected, due to a useful property of lagged Fibonacci
generators. Any LCG produces a single periodic sequence of numbers, with the different
seeds just providing different starting points in the sequence. However, LFGs have many
disjoint full-period cycles [31, 63], so two different seed tables may produce two completely
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different non-overlapping periodic sequences of numbers. In fact, since the number of such
disjoint cycles is 2=D(=1) for guitably chosen parameters [31, 63], then the probability of
different processors producing the same cycle should be completely negligible (for example,
values of p = 127 and b = 32 give roughly 10'%° disjoint cycles!). Of course this assumes
that the initial seed tables are really random, and do not have any correlations that might
negate this argument.

This type of generator is quite popular, and has been implemented for a number of
parallel computers and parallel languages. The Connection Machine Scientific Software Li-
brary (CMSSL) routine FAST_RNG [57] uses an additive LEG with the seeds being initialized
by a different parallel random number generator (CMF_RANDOM, described in Section 4.4).
The interface to this routine allows the user to specify the lag, so in principle the routine
can be very good, although the CMSSL documentation suggests using a lag of 17, which is
much too small to ensure adequate randomness properties.

The Maspar (or DECmpp) uses p_random, a parallel version of RANDOM, the standard
Unix LFG random [60]. The initial implementation of this generator gave extremely poor
quality pseudo-random numbers (the lower order bits were not even uniformly distributed),
due to a poor initialization of the seed tables on each processor, which left them highly
correlated. This was greatly improved in a later release, although the newer version still
failed a Monte Carlo Ising model test [23, 24], presumably because the new method for
initializing the generator is still introducing some correlations between the seed tables on
each processor.

As with sequence splitting, just because the sequences on each processor do not overlap,
does not necessarily mean they are uncorrelated. However in this case, if each processor does
indeed generate part of a disjoint full-period cycle, there are some theoretical arguments
for why any correlations between processors might be expected to be small [63].

Mascagni et al. have proposed a method for initializing the lag tables on each processor
which guarantees that each processor will generate a sequence from a different full-period
cycle [63]. It has been suggested that this method be established as a standard parallel
random number generator [64, 65], and it has been used for the intrinsic random number
generator in the Portland Group PGHPF High Performance Fortran [62]. The method used
for seeding the lag tables is similar in complexity to jumping ahead in the sequence, so the
initialization time increases with the size of the largest lag, and the current implementation
is restricted to additive LFGs with lags ranging from 17 to 127 [63]. Improved techniques
may be needed to make the initialization fast enough to be practical with the much larger
lags required for acceptable randomness properties. Note however that although an ini-
tialization time of say, one minute, would be unacceptable for a general-purpose random
number generator, for specific applications such as large-scale Monte Carlo simulations,
which usually require many hours of running time, it would be perfectly adequate.

A deficiency of the independent sequence method is that, like sequence splitting, it
does not produce the same sequence for different numbers of processors. However, as with
sequence splitting, this can be achieved by assigning a separate generator (i.e. a different lag
table) to every abstract, rather than physical, processor. This method is used in the CMSSL
VP_RNG generator [57], and the PGHPF implementation mentioned above. A major problem
with this method is that each abstract processor needs to have its own lag table, which
becomes an exorbitant memory requirement if the lag is large enough to ensure adequate
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randomness properties. Both the CMSSL and PGHPFE implementations use a lag of 17,
which is too small. It might be possible to overcome this problem by using a multiplicative,
rather than additive, lagged Fibonacci generator, for which a lag as small as 17 is enough
to pass all current empirical tests [2, 15].

Of course, if the user is willing to forgo the luxury of generating the same sequence for
any number of processors, then memory is not a problem, and the independent sequence
method for large-lag additive or multiplicative LFGs is one of the best methods currently
available for generating random numbers on parallel computers, as long as the initialization
of the lag tables is done properly.

4.4 Other Methods

The cellular automata generator [58] is a generalization of the shift register generator, based
on cellular automata rules. A parallel version called CMF_RANDQOM is provided by Thinking
Machines [59]. Both the sequential and parallel versions of this generator have passed many
of the standard statistical tests [58, 59], however CMF_RANDOM failed a Monte Carlo Ising
model test [23, 24] and therefore cannot be recommended. This generator is also much
slower than those provided in the CMSSL, so it is not often used for large-scale simulations.

There are a number of other methods used for implementing parallel random number
generators, including using a different generator for each processor. These methods are not
covered here, since they are not widely used.

5 Conclusions and Recommendations

The main recommendation we would give to someone who needs to use a random number
generator on a parallel computer is very simple — never trust a parallel random number
generator. In particular, never trust the default random number generator provided with
the system you are using. We would offer the same advice for sequential random number
generators. Many people (including this author) would have spared themselves a lot of
tribulation and saved a lot of time if they had followed this simple tenet in the past.

There are very sound reasons for adopting such a skeptical stance. Developing a good,
efficient algorithm for generating pseudo-random numbers on a computer is a very difficult
problem, especially for parallel computers. The theoretical understanding of random num-
ber generators is rather limited, and no amount of empirical testing can ever determine how
well a given generator will perform for a new application. There is a long and inglorious
history of various random number generators being proposed, studied, tested, approved,
advocated, widely used, and then being found to perform poorly in certain circumstances
or for certain applications. Unfortunately, many generators have been (and continue to be)
advocated, made available in software libraries, and widely used, even after they have been
shown to be flawed.

If a generator is shown to fail a certain empirical test, that does not necessarily mean
that it will also perform poorly for your application, or the results you spent many months
gathering using that generator are now invalid. However, to avoid this possibility, it is
strongly recommended that for any computation requiring random numbers, at least two
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very different random number generators should be used and the results compared, in order
to check that the random number generator is not introducing a bias.
On a sequential computer, good generators to use are:

e a multiplicative lagged Fibonacci generator with a lag of at least 127, and preferably
1279 or more;

e a 48-bit or preferably 64-bit linear congruential generator that performs will in the
Spectral Test and has a prime modulus;

e a 32-bit (or more) combined linear congruential generator, with well-chosen parame-
ters, such as those recommended by L’Ecuyer;

e if speed is an issue (but note the comment on this in Section 2.1), use an additive
lagged Fibonacci generator with a lag of at least 1279 and preferably much greater,
possibly combined with another generator, as in RANMAR, or using 3 or more lags.

All of the parallel random number generators covered in this review have some lim-
itations or possible problems. There has also been very little empirical testing done on
parallel random number generators, and few theoretical results are known. It is therefore
much more difficult to recommend good parallel random number generators, but with that
caveat, we will recommend:

e A combined linear congruential generator using sequence splitting;

o A lagged Fibonacci generator, although great care must be exercised in the initial-
ization procedure, to ensure that the seed tables on each processor are random and
uncorrelated.

If your application does not require the same results for different numbers of proces-
sors, we recommend using a large-lag multiplicative (or additive) generator with a
different (randomly initialized) lag table on each physical processor. This could be
combined with another generator, as in RANMAR.

Otherwise a small lag must be used due to memory constraints, as with the PGTHPF and
VP_RNG generators, however we recommend using multiplication rather than addition.

Many of the past problems with random number generators have been caused in part
by the rapid pace of improvement in computers. 32-bit LCGs were perfectly adequate for
many years, but the speed of modern processors has rendered them obsolete. This has
been noted in the documentation for most (but unfortunately not all) implementations of
these generators, which are kept only for backward compatibility. Shift register generators
became very popular because XOR was so much faster than addition and multiplication
on processors available at that time, but that is no longer the case, and their relatively
poor randomness properties now far outweigh their slight performance advantage. Early
implementations of lagged Fibonacci generators used very small lags, even though larger
lags were known to give better results, because of worries about memory constraints that
are no longer a problem on current computers (except for data parallel implementations).
Many comments on the quality of various generators have been made based on statistical
tests performed many years ago, using samples of random numbers that are so small as to be
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almost irrelevant to the results of simulations done on current (and future) high-performance
computers.

The improvement in computer performance continues unabated, of course, and it is
crucial that the implementation and testing of random number generators keeps pace with
these changes. By the year 2000 supercomputers will have Teraflop (10'? floating point
operations per second) performance, and a Teraflop-year of computation (3 x 10'® flops)
will become realizable for such problems as Monte Carlo simulation of lattice gauge theory
and condensed matter physics [66]. Such large-scale Monte Carlo simulations will easily
exhaust the period (of roughly 10'®) of 64-bit LCGs or 32-bit combined LCGs. It will
therefore be necessary in the near future to move to very long period generators such as
large-lag LFGs or combined 64-bit LCGs or MRGs (which have periods large enough for a
Petaflop-age-of-the-universe computation!).

Since faster computers and better algorithms are improving the precision of computer
simulations at a rapid pace, it is important to continue to search for better random number
generators, and to make more precise and varied tests of the randomness properties of these
generators. This is particularly true for parallel computers, where satisfactory algorithms
are still lacking.

5.1 Recommended Random Number Generator Software

The following random number generator software is recommended for parallel computers.
Software catalog entries for each of these programs are available at the National HPCC
Software Exchange (NHSE).

e Combined linear congruential generators with parameters recommended by L’Ecuyer,
parallelized using sequence splitting.

— RANECU from CERNLIB

e Lagged Fibonacci generator using multiplication, parallelized using independent se-
quences.

— FIBMULT from Syracuse University

e Lagged Fibonacci generator using addition, parallelized using independent sequences.
Be sure to use the largest possible lag.

— Scalable Parallel Random Number Generator (SPRNG) Library from NCSA
— FIBADD from Syracuse University
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6 Glossary

combined generator
A random number generator that combines results from two or more different generators
into a single resultant value.

independent sequences

A method of parallelizing a random number generator by choosing initial seeds for each
processor in such a way as to produce long period independent (i.e. non-overlapping)
subsequences on each processor.

lags
The distances to the previous elements of the sequence that are used to generate the next
element. The largest lag is usually referred to as the lag of the generator.

lag table
The array of prior elements of the sequence that must be stored to produce the next element
in a lagged Fibonacci generator.

lagged Fibonacci generator (LFQG)

A random number generator that combines previous elements in the sequence to generate the
next element, using a simple binary arithmetic operation such as multiplication, addition,
subtraction, or exclusive OR.

leapfrog
A method of parallelizing a random number generator by partitioning the sequence of

numbers among the processors in a cyclic fashion, like a deck of cards dealt to card players.

linear congruential generator (LCG)
A random number generator that uses a simple linear function of the current element in
the sequence to produce the next element.

modulus
The maximum value allowed by a random number generator.

multiplier
The constant used to multiply the current value to get the next value for a linear congruential
generator.

multiple recursive generator
A generalization of the linear congruential generator, for which any linear combination of
previous elements in the sequence can be used to generate the next element.

period
The length of the cyclic sequences produced by a random number generator.

seed
A number chosen by the user to initialize a random number generator.

seed table
The initial values of the lag table for a lagged Fibonacci generator.
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sequence splitting
A method of parallelizing a random number generator by partitioning the sequence of
numbers in a block fashion, splitting it into non-overlapping contiguous sections.

shift register generator
A random number generator that uses a simple combination of the bits of previous elements
in the sequence to produce the next element.

state

The numbers that are required to be stored in order to implement the iterative procedure
used in a random number generator. These are the values that must be stored at the end
of each run of the program in order for a subsequent run to start at the same point in the
sequence of random numbers.

uniform distribution
The probability of a number falling in a particular interval is proportional only to the size
of the interval.
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