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Figure 3: Partitions of S. z is the shaded area.
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3.13 DEFINITION. Let Z,5 € Z. Then N (Z) YN (7) := ~ (~ N(T)A ~ N(7)).
Thus NE)YN (@) = ~ NEIANT)) = ~N@T Ny*) = N((T*NF*)*). Hence C

is closed under V.

THEOREM. C:=(C,¥Y,A,~,0,1)is a Boolean algebra, the algebra of normal forms.
proof: T is a pseudocomplemented lattice. Let K := {z*|z € Z}. Then K :=
(K,U,N,*,0,1), where zUy = (z* N y*)*, is a Boolean algebra (see [6], Theorem
1.6.4.). Obviously, C = K.

3.14 Having defined a normal form for elements of the reduced semantic domain
and an algebra of normal forms, the discussion can turn to the definition of a lexicon.

DEFINITION. A wvocabulary, V, is a set of lexical items. A lexicon for V relative to
basis B is a map vg: V — C.

The definition of the map vg is addressed in the next section.

Let and, or and not denote operations on elements of V, intended as logical conjunc-
tion, disjunction and negation, respectively. Then vg can be extended to expressions
over V generated by these operations by defining:

vg(e; and e3) := vg(e;)Avga(es)

vg(e1 or ez2) := vp(e1)Yvs(ez)

vg(not ;) :=~ vg(e;)

where e; and e; are expressions over V. The images under this extension are the
meanings that intuition dictates.

This suggests that an inverse lexicon, vz', mapping meanings in C to sets of expres-
sions over V might be defined. The inverse function is significant for translation and
language generation. However, it presents some problems since vz® is in general only
a partial function. The inverse lexicon will be addressed a subsequent paper.

3.15 Finally, entailment, synonymy and contradiction or anomaly relative to the
lexicon can be defined for lexical items. (Cf 2.8.) Let e;,e; be Boolean expressions
over V. e, entailse, :& vg(ey and e;) = vg(ey). e; and ey are synonymous :<> vg(e;) =
vp(ez). ey contradicts e; or e, is anomalous in conjuction with e, :< vg(e; and e;) = 0.

Observe that consistency with common usage requires the definition: e; contradicts e
iff vg(e; and e3) = 0. Therefore anomaly must be a kind of contradiction. The distinc-
tion between anomalous contradiction and nonanomalous contradiction is addressed
in Section 4.
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4 LEXICON CONSTRUCTION

Construction of a lexicon has two parts: (i) computation of an extended basis B, and
(ii) computation of the map vg: V — C.

4.1 The computation of an extended basis assumes a set of distinguishing semantic
properties, D, adequate to distinguish between meanings to the desired degree of pre-
cision. These properties are provided by empirical linguistic analysis. The analysis
may relate to a single language, to a group of languages or to all languages. The
analysis may be fixed once for all or it may evolve. The lexicon construction is indif-
ferent to these matters. The construction produces an unambiguous representation
for meaning based on the input provided.

Computation of the map vg assumes a definition or classification of the lexical items
of V in terms of the distinguishing properties. Since vg is a map from lexical items
to normal forms of meaning, this computation must determine the normal forms.

A suitable linguistic analysis is the “componential analysis of meaning” described by
Eugene Nida [9]. According to Nida, componential analysis consists of the following
four linguistic procedures.

(i) Naming. A referent is designated for the lexical item. The referent may be an
object, an event, or a condition, including the effect on an audience.

(ii) Paraphrasing. The lexical item is explicated in terms of already known meanings.
(iii) Defining. Using the results of naming and paraphrasing, those properties are
extracted that relate a meaning to and differentiate it from other meanings. These
properties, which Nida calls “diagnostic components of meaning”, are the elements
of D.

(iv) Classifying. The lexical items are placed in classes determined by the diagnostic
components.

The results of the third and fourth procedures constitute the input to the computation
of the extended basis B and the map vg, respectively.

It seems that these four procedures also describe the process by which a child ac-
quires semantic knowledge. In the child the process is incremental. The linguist on
the other hand carries out the procedures on large classes of related meanings, i.e.,
semantic domains. When considering machine acquisition of semantic knowledge,
both possibilities should be kept in mind.

To prevent misunderstanding about the set D, it should be emphasized that the
elements of D are semantic constructs. They are denoted by English words and
phrases. Nonetheless, they are not to be identified with those words and phrases.
The words and phrases are simply convenient mnemonics for codes. Of course, it
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may happen that a word w is in both D and V, and that the meaning of w € V is
w € D (more precisely, the code denoted by w € D). This should cause no confusion
if the nature of D is properly understood.

The computation of basis B requires specification of D sufficient to form a poset as
follows. The elements of the poset are the terms in elements of D and the operator
N. For dy,d; € D, dy N d; denotes the intersection of the extensions of d; and d;
d, = d, is the assertion that the extensions of d; and d, are identical. One can also
view N as logical conjunction and = as logical equivalence of properties. The partial
order < is defined r < y :& x Ny = z. The zero element 0 denotes the empty set
and may be viewed as logical impossibility. The specification of D by the empirical
data must be sufficient to identify equal terms: e.g., zNy=zorzNy =0.

The set A of atoms of the poset is defined to contain those terms a such that 0 < a.
For any term z, the set of atoms dominated by z is defined A(z) := {a € Ala < z}.
The rank of z is defined r(z) := |A(z)|-

As a practical matter, the specification of D should be given in a form that is simple
and compatable with the algorithm used to compute B. The design of an optimal in-
put data representation and an efficient algorithm will not be addressed here. Rather
an arbitrary presentation of the data (convenient for manual processing) will be used.
The computation of B will only be illustrated. Two examples will be used.

D will be specified by a tree H in which a path represents logical conjunction of the
nodes on that path. Each path from the root to a leaf represents an atom. Logically
equivalent terms are represented by the structurally simplest equivalent term.

4.2 The first example is taken from Nida [9], where it is used as an illustration of
componential analysis. The vocabulary V is a set of names for rigid fasteners; for
convenience, however, numerical codes will be used in place of the longer names. The
names and their numerical codes are listed in Table 1. The set D of distinguishing
properties is given in Table 2 along with abbreviations. The tree H for this example is
shown in Figure 4. The atoms are in one-to-one correspondence with the leaves of H.
An atom is given by the conjunction of labels of the nodes on a path from the root to a
leaf. For example, the leftmost leaf is associated with atom TNTTNSLNPNRDNS M.
This tree asserts that each atom is a logically possible conjunction of distinguishing
properties and that the atoms span the universe S of meanings relating to rigid
fasteners. There are a total of 40 atoms.

The first step in the construction of the basis identifies all partitions of the unit
element, RF. An element r is partitioned by the set {z,,...,2,} C D if r(zNz,;) +
v+ r(zNzy) =r(z), r(zNak) #0and r(z Nz Nz)) =0for 1 < kI < m and
k # 1.° Therefore, partitions of RF are: {T,NT}, {P, NP}, {RD,SQ}, {SM, LG},

9More precisely, z is partitioned by the restriction of {z1,...,z,} to z (see 2.9). No confusion
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common nail

finishing nail

slot head wood screw, partial threads

slot head wood screw, full threads

phillips head wood screw, full threads
phillips head wood screw, partial threads
machine bolt, square head, full threads
machine bolt, square head, partial threads
carriage bolt, full threads

carriage bolt, partial threads

11 rivet

Table 1: Rigid fastners and their abbreviations.

T
NT
P
NP
TT
NTT
RD
5Q
SM
LG
SL
PH

threaded

not threaded
pointed

not pointed
threads to top
threads not to top
round head
square head
small head
large head
slot drive
phillips drive

Table 2: Distinguishing properties for rigid fasteners and their abbreviations.
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Figure 4: Relations between distinguishing properties for rigid fastners
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SM LG SM LG
RD 4 4 4 4
T
SQ 4 4 4 4
RD 1 1 1 1
NT
SQ 1 1 1 1

Figure 5: First-level basis for RF with ranks of atoms shown.

{TT,NTT,NT}, {SL,PH,NT}.

When these partitions are examined further for independence, it is found that {T, NT'}
®{P,NP}® {RD,SQ} ® {SM, LG} is a partition of RF and hence these four par-
titions are independent. Therefore, they comprise the first-level basis. This is dia-
grammed in Figure 5. This figure represents a four-dimensional cube drawn in two
dimensions.

Next, each atom of the first-level basis is considered, in turn, as the unit element.
Partitions of some these atoms are identified. For example, the atom TNPNRDNSM
is partitioned by {T'T, NTT} and {SL,PH}. Since {TT,NTT} ® {SL,PH} is a
partition of TN PN RD N SM, these two partitions are independent and therefore

will result, however, from this more convenient though less precise language.
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SL PH

TT 1 1

NTT 1 1

Figure 6: Second-level basis for atoms of rank 4 (each atom has rank 1).

form a basis for TN PN RD N SM, shown in Figure 6. A similar result is obtained
for the remaining first level atoms of rank 4. This completes the system of bases and
gives a definition of B.

Finally, the definitions of members of V in terms of the distinguishing properties
are given in tabular form in Table 3. These definitions are sufficient to immediately
define vg. The lexicon representation for 4 (slot head wood screw with full threads)

is vs(4) = [TN PNRDNSM|N[TTNSL)JU [[TNPNRDNLG|N[TT N SL]).

Now suppose it were desired to define a new vocabulary element, “wood screw”,
meaning any of the types 3, 4, 5 or 6. Then wood screw would be represented in the
lexicon as [T'N PN RD). It follows immediately from the lexicon representations that
4 entails wood screw since vg(4) C vg(wood screw).

4.3 Intheexample above, the partitions {{ P, NP},{RD, SQ},{SM,LG},{SL, PH,
NT}} could as well have been chosen as the first-level basis. In general, given a par-
ticular universe, a basis is not uniquely determined. Various criteria might be used to
select a basis. For example, certain distinguishing properties might be recognized as

related in a “meaningful” way and preferred as elements in the same partition. This
criterion was used implicitly in selecting {T, NT'} rather that {SL, PH,NT}.

A quantitative criterion is the extent to which a particular basis subdivides the uni-
verse (in a sense, the “information content” of the basis). A basis that achieves a
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1 2 3 4 5 6 7 8 9 10 11
T|No No Yes Yes Yes Yes Yes Yes Yes Yes No
PlYes Yes Yes Yes Yes Yes No No No No No

TT|— — No Yes Yes No Yes No Yes No —

RD/SQ{RD RD RD RD RD RD SQ SQ RD RD RD

SM/LG|LG SM E E E E E E E E E

SL/IPH|— — SL SL PH PH E E E E —

Table 3: Definitions of rigid fasteners. Note: “—” means the property is not appli-
cable; “E” means both values of the property are applicable.

greater subdivision would be preferred. A precise definition of this notion is developed
below.

Consider a universe of N entities. With no basis (i.e., subdivision) at all, to find
an entity satisfying a particular description, it might be necessary to examine N —1
entities. The extent to which a particular basis improves upon this worst case will
be taken as a figure of merit for that basis. Specifically, if the maximum number of
steps required to find the entity with the basis is n, then n/(N — 1) will be taken
as the figure of merit for the basis. The smaller the figure of merit, the better the
basis. For example, suppose the universe is subdivided into two (equal for simplicity)
blocks determined by the presence or absence of some property. To find the entity
requires that one block be checked for appropriateness and then the -’2! — 1 entities of
the appropriate block be examined. Thus 1+ % — 1 steps are required, resulting in a
figure of merit m{,v_—l)- Similarly, a partition of four equal blocks results in a figure of
merit =3+ & -1) = 7(%‘_&1); two independent partitions, each of two equal blocks,

Ni4

yields a figure of merit 25(2+ § ~1) = g

Obviously, one of the worst bases is the unit basis consisting only of the unit partition:
a single block of N entities. The figure of merit for the unit basis is 1. Just as bad is
the zero basis consisting only of the zero partition: N blocks of one entity each. For
the zero basis also the figure of merit is 1. One of the best is the basis of [log,N]
binary partitions, with a figure of merit equal to %%%1

In general the figure of merit is defined: M := 55 [Tierp (1Jil=1) + Tatomaen dﬁl(r(a)

—1)] where dﬁl is taken to be the relative frequency with which atom a is accessed,

assuming all entities in the universe are accessed with equal frequency. It appears
that 2% < M < 1.
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Returning to the example, bases for RF' are found to be

B = {{TaNT}a {P’NP}a{RD, SQ}){SM’LG}}

B' = {{TT,NTT,NT},{P,NP},{RD,SQ},{SM,LG}}

B" = {{SL, PH,NT},{P, NP},{RD, 5Q},{SM, LG}

Their figures of merit are M(B) = 0.164, M(B’) = 0.149, and M(B") = 0.149 while
M, ;o = (logsN)/(N — 1) = 0.136. Thus, by the second criterion B’ or B” would be
selected as the first-level basis. The first criterion would lead to selection of B’ over
B".

4.4 A second somewhat larger example, also taken from Nida [9], deals with English
verbs of motion. The distinguishing properties are listed in Table 4. The index of a
property in this list will be used as an abbreviation for that property. For example,
“continuous contact with the surface by one then another limb or set of limbs” will
be abbreviated “E3a”.

As in the first example, additional information about the distinguishing properties is
presented in the form of a tree. See Figure 7. Because of the large size, some subtrees
are indicated by a triangle containing a label. The details of the subtree are shown
in the tree whose root carries that label. Identical subtrees are only detailed once.
The rank of a node is given in a small circle adjacent to the node.

Partitions of the unit element are easily found to be { Ala, A1}, Alc, A2, A3}, {B1, B2,
B3} and {G1,G2,G3}. The bases that can be formed from these are

B = {{Ala, A1), Alc, A2, A3}} and

B' = {{B1, B2, B3},{G1,G2,G3}}.

The figures of merit for these bases are 0.862 and 0.135, respectively. Therefore, B’
is chosen as the first-level basis.

Continuing in this manner, the extended basis shown in Figure 8 is computed.

The vocabulary and definitions of vocabulary elements in terms of the distinguishing
properties are shown in Table 5. Minor deviations from Nida’s data are indicated.
These data immediately determine vg. For example,

vg(climb) = [B1 N G3] N [Ale] N [C2N D1 N E3a] N [F1] and

vg(fall) = [B3N G2] N [Alc] N [D2 N E1].

4.5 Figure 7 is based on certain assumptions about the relations between the distin-
guishing properties. (Nida does not give any relations between distinguishing prop-
erties.) These particular assumptions may not be as good as some others. The effect
of the assumptions on the distinguishing properties will affect the “quality™ of the
lexicon. However, the approach to lexicon construction described here is independent
of the definition of any particular set of distinguishing properties. Neither claims nor
assumptions are made regarding the universality, the quality or even the validity of
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. Environment
1. Surfaces
a. Supporting
b. Nonsupporting
c. Between surfaces on different levels
2. Air
3. Water
. Source of energy
1. Animate being
2. Animate being and gravity
3. Gravity
. Use of limbs for propulsion
1. All four limbs
2. All limbs normally in contact with supporting surface
(with optional addition of forelimbs for bipeds in climbing)
3. Forelimbs
. Points of contact with the surface
1. Extremities of the limbs
2. Any parts
3. Continuous series of points
. Nature of contact with the surface
1. No contact during movement
2. Intermittent contact
3. Continuous contact
a. By one and then another limb or set of limbs
b. By the same or contiguous portion
. Order of repeated contact between limbs and surface
1. Alternating
2. Variable but rhythmic
3. 1-1-1-1 or 2-2-2-2 or continuous series of short jumps
4. 1-1-2-2-1-1-2-2
. Directional orientation
1. Indeterminant
2. Down
3. Up

Table 4: Distinguishing properties for verbs of motion.
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Figure 7: The tree presentation of the distinguishing properties for verbs of motion.
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Figure 8: The extended basis for verbs of motion.
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climb crawl dance fly fall hop jump roll run sink skip slide swim walk
Ala X X X X X X b 4 X X X
Alb X
Ale b ¢
A2 X
A3 b ¢
Bl x b 4 X b 4 X b'e X b 4 b 4 b'¢
B2 X b ¢
B3 b'e b ¢
Cl x * X
C2 X * b'e X * b'e x X
C3 X *
D1 b g X X X X X b'¢ X
D2 X X
D3 X
E1 X X
E2 x x X b'¢
E3a * b ¢ X b
E3b X X
F1 x b 4 X X
F2 X
F3 b ¢
F4 x
Gl X X b x b ¢ X X b ¢ X X X
G2 X b4
G3 X

“xn

Table 5: Definition of verbs of motion. (“x” indicates Nida’s data; indicates

deviations from Nida.)

30



the distinguishing properties. It might be expected that invalid data will occasion-
ally be used in the construction of a lexicon. The resulting errors in the lexicon will
require eventual correction. The means by which this can be accomplished will be
considered in a later paper.

It should be appreciated that definition of a “good” set of distinguishing properties
for a given semantic domain is a significant task. Much of Nida’s book is devoted to
describing this task. The difficulty can be illustrated by attempting to add “bounce”
to the lexicon of the second example.

Having a person on a trampoline in mind, one might define bounce as B2 N G3 N
AlanN C2nN D1 N E1. However, if one thinks of a ball bouncing on the floor, the
definition might be B3N G3N Alan D2N E1. But the inclusion of G3 fails to permit
use of the word to describe a ball bouncing off a wall or ceiling!

A solution might be to define bounce,, bounce; and bounce; to represent these differ-
ent senses. But it would be better to admit that the set of distinguishing properties is
too limited to accomodate this new lexical item and should be revised. At a minimum,
it appears that heading B should be revised:

B. Source of energy
1. animate source
2. combination of animate and inanimate sources
3. inanimate source
B’. Form of energy
1. potential energy
a. gravity
b. elastic
c. chemical
d. electrical
2. kinetic energy
3. exchange of potential and kinetic energy

In terms of these revised distinguishing properties, the essence of bounce might be
rendered as AlaN B3N D2N(E1U E2). Further consideration might reveal this set
to be inadequate as well.

4.6 The input data in the examples are very simple. In particular, the vocabulary
elements are almost all defined simply as conjunctions of distinguishing properties.
Any such conjunction is already a normal form.

In the general case, vocabulary elements may be defined by complex Boolean expres-
sions in the elements of D. Computation of the map vg then requires that the normal
form of each such expression be computed.
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This can be accomplished for w € V as follows. Let  be the Boolean expression in
elements of D defining w. If any symbol in z does not denote a block of B (i.e., a block
of some partition in B), that symbol will be equivalent to some expression in the blocks
of B. Substitute for all such terms in z to get an equivalent expression z’ containing
only blocks of B. Let y be the disjunction of conjunctions of blocks of B equivalent to
z'. Then y is a disjunction of elementary subsets, say y = y;U- - -Uy,. It follows that
N(y) = {w} for 1 <1< n, and by 3.13 that N(y) =~ (~N(y1)A:-- A~ N(yn))-

4.7 At this point it is possible to address the distinction between anomalous contra-
diction and nonanomalous contradiction. Consider atoms a,j,ag.. defined by bases
B,, B respectively. Bases B, and Bg.. will be said to be similar iff (i) @ = § and
there exists a basis B’ constructed from elements of D such that B'{,_ ,= B, and
B'1,. .= Ba.; or (ii) B, is similar to B and there exists a basis B’ constructed from
elements of D such that B'f,, ,= B, and B'1,, .= Bg.. Intuitively, bases B, ; and
Bg . are similar if they are defined by the same distinguishing properties. Examples
of similar bases are found in Figure 8.

If z,y € Esg and z Ny = 0 then meanings z and y are contradictory. Suppose
that z and y belong to elementary domains [0,a,] and [0,ap] respectively, where
a=2"b.---byand B =¢y.---.c k L 1. If By,...p, is similar to B, ....,, then z in
conjunction with y is not anomalous; otherwise, z in conjunction with y is anomalous.

Now let z,y € Sup with normal forms N (z) = {zy,...,Z} and N(y) = {y1,--,Yn}-
Then z and y are contradictory iff z Ny = 0 and z is anomalous in conjunction with

y iff elementary subset z; is anomalous in conjunction with elementary subset y; for
all k,lsuchthat 1 <k<m,1<I<n.

Thus crawl and skip, relative to the basis of the second example defining verbs of
motion, is contradictory but not anomalous because the elementary domain to which
vg(crawl) belongs has a basis similar to that of the elementary domain to which
vg(skip) belongs. But sink and skip is both contradictory and anomalous since the
elementary domains do not have similar bases. A more intuitively obvious anomaly
is green idea, in the sense of green entity and idea. Relative to an extended basis
defining the meanings of both words, green idea is contradictory and anomalous. This
follows from the circumstance that vg(green entity) would belong to some elementary
domain dominated by an atom representing concrete physical entities while vg(idea)
would belong to some elementary domain dominated by an atom representing abstract
entities.

Anomaly, like the related concepts entailment, synonymy and contradiction, is relative
to a basis. Unlike these related concepts, anomaly has a further dependence on the set
of distinguishing properties chosen to define meaning. While entailment, synonymy
and contradiction can be defined in purely mathematical terms, anomaly cannot.

32



4.8 Finally consider briefly the length of the code for meanings in the semantic
domain constructed for verbs of motion. In the extended basis, a path requiring the
maximum length code is 1.1.2, containing subcodes for atoms a,,a,., and a,3.2 and
for subsets of a; ;2. Bases B, B; and B, define 9, 3 and 36 atoms respectively and
basis Bj.j.2 contains a single partition of 4 blocks. Therefore any subset of a;;.2 can
be coded by [log,9]+ [log,3]+ [log,36]+ 4 =4 +2+ 6 +4 = 16 bits.

Since the extended basis defines 410 atoms, a lower bound for code length is [log2410]
=9 bits.

For example, vg(climb) = [B1N G3] N [Ala]N[C2N D1 N E3a]N[F1] =a3zNaz; N
as1.1s N F1 which could be coded 0011.01.001111.0001 or in decimal 3.1.15.1.

5 HIGHER LEVEL MEANING

The theory of lexical semantics developed in previous sections deals with entailment,
synonymy, contradiction and anomaly relations on lexical meanings. It remains to
be considered how these relations on lexical meanings can be used to determine sim-
ilar relations on complex meanings. Complex meanings are constructed from simpler
meanings (the simplest being lexical meanings) by the semantic functors of Mon-
tague’s theory. Determination of entailment, synonymy, contradiction and anomaly
on complex meanings constitute the direct deduction that was claimed in Section 1
to be part of linguistic competence.

The following discussion is couched in terms of the PTQ fragment as presented by
Dowty [4].

5.1 It is necessary to define a partial ordering <, on complex meanings that will
agree with an intuitive notion of entailment. Each translation into the Intentional
Logic is interpreted as a set of some kind (set of individuals, set of propositions,
set of properties, function or relation). It is natural therefore to define <; to hold
between IL expressions of the same type just when set inclusion holds between their
denotations. In all other instances <, is undefined.

Obviously the definition of <; must be consistent with the definition of <, the partial
order on lexical meanings. It is therefore a requirement on the empirical linguis-
tic data, from which both definitions must ultimately derive, to ensure that this is
the case. It is sufficient that the linguistic data satisfy the following. Let z,y be
expressions in PTQ with translations z’,y’ respectively.

(1) If z,y are basic common nouns (Bgy) or basic intransitive verbs (Byy)!° then it

10, is the set of basic expressions of syntactic category a. P, is the set of phrases of syntactic
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is necessary that vg(c) < vg(y) iff 2’ <; y'.

(i1) If z, y are lexical items that translate to functors of type {a, b), then it is necessary
that vg(z) < vg(y) iff 2’ <, ¥ :& Vz € ME,[z'(2) <1 /()1

Since it will be assumed that these requirements are satisfied, <; will be written <
in subsequent discussion.

5.2 The following definition relates entailment between complex expressions to en-
tailment between their constituents.

DEFINITION. Let z € ME(,j. Then z is isotone :& Vy,,y; € ME,[y; < y;, =
z(y1) < z(y2)] and z is antitone :& Vy;,y, € ME,[y; < y2 = z(y2) < z(y1)]-

Now suppose that z,,z, € ME(; such that z; < z; and z, is isotone. Suppose
further that y;,yo € ME, such that y; < y,. Then it follows from the definition
that z1(y1) < z1(y2) < z2(y2). Thus from z, entails z, and y, entails y, the isotone
property of z; permits z1(y;) entails z;(y2) to be inferred.

This result can be illustrated with expressions of PTQ.

5.3 First consider the determiners of PTQ, viz., every, a (or an) and the, in the
light of the above definition. Their translations into IL are (=7 is the translates-to
relation):!?

every =71 APAQVz[P{z} — Q{z}] = every’

a =7 APAQ3z[P{z} AQ{z}] = o’

the =7 APAQ3Iz[Vy[P{y} & z =y] A Q{z}] = the

Therefore every man =7 AQVz[man'(z) — Q{z}]. Similarly every human =7
AQVz[human'(z) — Q{z}]. Each of these expressions in IL denotes a set of properties
of individuals. Obviously the first contains the second since any property possessed
by every human is certainly possessed by every man. Therefore, [man] < [human]'3
as lexical meanings while [every human] < [every man]. Since the same argument
is valid for all z,y € Pcy such that [z] < [y], it follows that the functor every’ is
antitone.

Similarly, a man =7 A@Q3z[man'(z) A Q{z}] and a human =7 AQ3Iz[human’(z) A
Q{z}].- Now a property possessed by some man is certainly possessed by some human.
Therefore [a man] < [a human]. Since this argument is valid generally, it is concluded

category a. Of course, B, C F,.

1A functor of type (a,b) is one whose argument is of type a and whose result is of type b. The
set of expressions in IL of type a is denoted M E, (meaningful expressions of type a). Therefore, a
functor of type (a,b) is a member of ME(, ).

12Gee Dowty [4] for details of translation of PTQ into IL.

13[z] will denote the meaning of z whether in the sense of lexical meaning or in the sense of the
interpretation of z’ as an expression of IL. Further, [z] < [v] ¢ [z] C [v].
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that a’ is isotone.

Finally, the man =7 AQ3z[Vy[man'(y) « z = y] A @{z}] and the human =r
AQ3Iz[Vylhuman'(y) « z = y] A @Q{z}]. In a model containing a single man but
many humans, [the man] # @ while [the human] = . On the other hand, in a
model containing a single human but no man, [the man] = @ while [the human] #
0. Therefore, the' can be neither isotone nor antitone in general. However, if [the
man] # @ # [the human], then [the man] = [the human]. This argument holds
generally for all common nouns. Therefore, when it occurs in nonvacuous phrases,
the' is both isotone and antitone; when vacuous phrases are admitted, it is neither.

Quantitative determiners (which are not part of PTQ) can also be defined as logical
constants (e.g., see [8]). Using reasoning similar to the above they are classified as
follows. For natural numbers n and m: at least n, more than n, infinitely many, less
than one-nth and no more than one-nth translate to isotone functors; no, at most n,
less than n, (only) finitely many, at least one-nth and more than one-nth translate to
antitone functors; the n, the n or more and the n or less translate to functors having
the same character as the’; (exactly) n, all but n, between n and m and (exactly)
one-nth translate to functors that are neither isotone nor antitone.

Possessive determiners such as John’s occuring in the sentence “John’s car is red”
can also be classified. Note that “John’s car is red” is equivalent to “The car of
John is red” [8]. Therefore it follows that possessive determiners behave like the and
translate to functors that are both isotone and antitone when the phrases involved
are nonvacuous and neither isotone nor antitone otherwise.

5.4 The term phrases of PTQ are formed from determiners combined with common
nouns, from term phrases conjoined by “or”, or are basic terms such as John, heg
and ninety. Each term phrase is interpreted as a set of properties of individuals,
where a property of individuals is a function from indices (or “possible worlds”) into
sets of individuals. At a fixed index such a set of properties is called a sublimation.
Three kinds of sublimations are distinguished [4]: (i) a sublimation that interprets
an IL expression of the form AQ[Q{j}] is called an individual sublimation; (ii) one
that interprets an IL expression of the form AQ3z[man'(z) A Q{z}] is called an
eristential sublimation; and (iii) one that interprets an IL expression of the form
AQVz[man'(z) — Q{z}]is called a universal sublimation. These three kinds interpret
all the term phrases of PTQ.

Suppose that @, and Q) are properties of individuals such that @, C Q. (i.e., @1(z) C
Qi) for each index i). Then if (AQ[Q{7}])(Q,) is interpreted as true (i.e., [j] €
[@1]), it follows that (AQ[Q{7}])(Q2) must also be interpreted as true (i.e., [;] €
[Q-] also). Thus IL expressions which are interpreted by individual sublimations are
isotone functors.
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Similar arguments show that IL expressions which are interpreted by existential and
universal sublimations are isotone functors. It is concluded that all term phrases of
PTQ translate to isotone functors.

5.5 This is enough to illustrate how 5.2 mediates determination of entailment be-
tween complex meanings. Consider first the example of Section 1. Assume that the
lexicon contains the following data: [date] < [ accompany], Jactor] < [male], date’
is isotone, and a' is isotone. Applying the above results to these data it is immedi-
ately deduced that [date an actor] < [accompany a male]. In a similar fashion, from
the datum every’ is antitone, it follows that [date every male] < [accompany every
actor].

Since Mary’ is an isotone functor, [Mary dates an actor] < [Mary accompanies a
male] and [Mary dates every male] < [Mary accompanies every actor]. Thus the
entailments recognized by English speakers are obtained from the theory.

5.6 It is well known that the sentence “Every woman dates a man” permits two
distinct readings, depending on the order of quantification. The first, called the de
dicto reading, can be unambiguously rendered “Every woman dates some man or other
but not necessarily the same man”. The second, known as the de re reading, can also
be rendered “Every woman dates a man, the very same one for every woman”. The
sentence on the de re reading entails the sentence on the de dicto reading. This is
true generally; the converse is not.

From 5.2-5.4 it follows that for a fixed reading (either de dicto or de re), it can be
derived that “Every woman dates a man” entails “Every debutante accompanies a
male”. Therefore, “Every woman dates a man” (de re) entails “Every debutante
accompanies a male” (de re) which entails “Every debutante accompanies a male”
(de dicto). In fact, introduction of the de re - de dicto entailment at any point in
this derivation is valid. This is a general condition and therefore it can be concluded
that the entailment following from 5.2-5.4 and the de re - de dicto entailment act

independently.
5.7 It is reasonable to generalize definition 5.2.

DEFINITION. Let z € ME,, (a,,....(an-1 b)--)- Then
T is isotone in argument k :& Vyi,yi € ME, [yx < ¥t = [Vy1 € ME,, ---Vy,_,€

Mfa..-l [z(¥0) - - (Yk-1) () (Yr41) *** (Yn-1) £ 2(Yo) - (Ya-1)(¥k) (Y1) - - - (¥n—1)]]]

z is antitone in argument k :& Vyi,y) € ME, [yx < yp = [Vy1 € ME,, ---Vyn_1€
ME,,_, [z(yo) - - (yx-1) (k) (Yk+1) -+ (¥n-1) < 2(y0) - - - (r-1)(¥r) (Yrs1) - - - (¥n-1)]]l-

The implication of this definition is a generalization of that given in 5.2. Let z;,z; €
ME(ao,(al per{Bn—1,0)-)r Yk yi € MEak and n € MEG’,) ceesYk-1 € MEak_l yYk+1 €
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ME,,,.,... Yyn-1 € ME,,_,. If 2, < z,, z, is isotone (respectively antitone) in argu-
ment k and yx < g, (respectively g} < y) then 21(yo) - - (Yo-1)(¥k) Wrs1) - - (Yns) <
z2(yo) - - - (Yr—-1) (k) (¥k41) -+ (yn—1)-

5.8 A further generalization to partial isotone (antitone) property is possible.

DEFINITION. z is partially isotone in argument k on M C ME? :& VY(yi,y}) €
My <yi = [Vy1 € ME,, -+ -Vyn1€ ME, _, [z(y0)- - (yx-1)(¥k)(¥rt1) - (Yn-1) £
z(yo) - - - (ya-1)(¥k) (k1) - - (¥n-1)]]] and

x is partially antitone in argument k on M C ME? :& Y(yi,v;) € Mlyr < v} =
Vy1 € ME,, ---Vyn_1€ ME, _, [z(y0) " (¥£-1)(¥k) (¥r+1) - - (¥n-1) < =(y0)- - - (¥&-1)
(k) (Wi+1) -+ (yn-a)lll-

Again let 21,25 € ME (4 (a;,...(an-1.8)-)» Yks Yt € ME,, and y; € ME,,,...,yx1 €
ME,, . ,yxs1 € ME,, ,...,yn-1 € ME, _,. If 2, < 3, 7, is partially isotone (re-
spectively partially antitone) in argument k on M and (yx, y%) € M such that y; <y}
(respectively yi < yi) then z1(yo) - - - (Yr-1)(¥&) (Yk+1) - - - (Yn-1) < z2(o) - - - (yx-1)(¥i)
(yk+l) tet (yn—l)-

It is an interesting question whether partially isotone (antitone) functors occur in
natural languages.

A more complete treatment of entailment (and hence synonymy, contradiction and
anomaly) at the level of complex meaning is reserved for a subsequent paper.

6 CONCLUSION

The theory of lexical semantics described in this paper represents lexical meanings
as subspaces of a multidimensional semantic space. The space is coordinatized, with
each coordinate regarded as an independent “dimension of meaning.” Each subspace
has a unique representation, called its normal form. A lexicon is defined as a map
from a vocabulary to a Boolean algebra of normal forms.

A lexicon can be constructed using data from empirical linguistic analysis. No as-
sumption of universal or ideal semantic categories is made. Data from Nida’s compo-
nential analysis [9] are used to illustrate the construction. It is an interesting question
whether this construction could also support incremental or evolutionary acquisition
of semantic knowledge.

This theory of lexical semantics complements Montague semantics. It appears that
the theory also complements lexical extensions of Montague semantics such as de-
scribed by Dowty [2,3]. Entailment at the level of lexical meaning can be determined
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directly from the normal forms. At higher levels of meaning, entailment can be deter-
mined using entailment at lower levels and knowledge of isotone/antitone properties

of functors that combine lower level meanings. This is demonstrated in connection
with the PTQ fragment [4].
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