
Math. Struct. in Comp. Science (199?), vol. ?, pp. ?{?A Model for Syntactic Control ofInterferenceP. W. O'HearnSchool of Computer and Information ScienceSyracuse University, Syracuse, NY, USA 13224-4100Received ????Two imperative programming language phrases interfere when one writes to a storagevariable that the other reads from or writes to. Reynolds has described an elegantlinguistic approach to controlling interference in which a re�nement of typed �-calculusis used to limit sharing of storage variables; in particular, di�erent identi�ers arerequired never to interfere. This paper examines semantic foundations of the approach.We describe a category that has (an abstraction of) interference information builtinto all objects and maps. This information is used to de�ne a \tensor" product whosecomponents are required never to interfere. Environments are de�ned using the tensor,and procedure types are obtained via a suitable adjunction. The category is a model ofintuitionistic linear logic. Reynolds' concept of passive type { i.e. types for phrases thatdon't write to any storage variables { is shown to be closely related, in this model, toGirard's \of course" modality.1. IntroductionThe ability to update the state is the source of much of the exibility and e�ciency ofimperative programming, but also many of its di�culties. Undisciplined sharing of stor-age variables can lead to subtle program errors that are di�cult to detect and trace, andjust the possibility of this kind of interference, even when absent, can have a signi�cantdetrimental impact on ease of reading and reasoning about programs (e.g. Hoare, 1974b;Reynolds, 1978). The well-known dishevelment caused by variable aliasing { when di�er-ent identi�ers name the same storage variable { in Hoare-style proof systems for reasoningabout assignment and procedures (Hoare, 1971) is a kind of theoretical symptom of theproblems brought on by interference.There are related, and perhaps even more vivid, problems in the presence of concur-rency, where uncontrolled interference can be a serious obstacle to program predictability.As a result, a number of authors (e.g. Hoare (1974a) and Brinch Hansen (1973)) haveargued that all interference between concurrent processes should be mediated by, say,monitors or communication primitives.



P.W. O'Hearn 2Reynolds' (1978,1989) syntactic control of interference approaches these issues from alinguistic viewpoint, by using syntactic constraints that limit interaction between di�er-ent program parts. The aim is not to eliminate interference entirely, but is to make itmore manageable by arranging matters so that (a conservative approximation to) non-interference is easy for the programmer or compiler to recognize. Programs can still usestate, but there is a tighter control over sharing of storage variables.The purpose of this paper is to show that the interference constraints that form thebasis of the approach have good semantic properties. This is done in two steps. First, wedescribe a category in which interference properties of semantic entities, as well as types,are made explicit. Then, using this category we examine interference control principlesfrom a semantic perspective, and familiar category-theoretic structure falls out quitedirectly. The structure we obtain amounts to a model of (intuitionistic) linear logic(Girard, 1987), and a bit more.A model for syntactic control of interference was previously proposed in (Tennent, 1983).This was basically an untyped model, in the \Curry" style. While this kind of interpre-tation can be useful for proving properties of interference constraints, we believe thatthe \Church-style" model presented here gives a more satisfactory semantic account ofthe type-theoretic basis of the approach (especially in the close relationship betweencategorical structure and syntactic constraints).Controlling interference is an old problem in programming languages. It dates asfar back as Fortran and Concurrent Pascal, with their anti-aliasing restrictions (BrinchHansen, 1973; ANSI, 1978; see also Hoare, 1971), and plays an important role in suchlanguages as Euclid, Turing and occam (Cordy, 1984; Popek et. al., 1977; Holt et.al., 1987; INMOS, 1988). We will not attempt to survey here the growing body of recentwork on interference control and related topics. The reader is referred to the papers byLucassen and Gi�ord (1988), Wadler (1990,1992), Guzm�an and Hudak (1990), Swarupet. al. (1991), and their references for further discussion of this.Syntactic control of interference represents an important step toward our understand-ing of how a programming language could provide the bene�ts of state, while avoidingmany of the di�culties it causes in present-day languages. It should be mentioned, how-ever, that the approach has not yet been perfected. In particular, there are presentlydi�culties with recursion and jumps (Reynolds, 1989); this will be discussed briey inSection 9. Nevertheless, we feel it remarkable that the syntactic restrictions at the coreof the approach are semantically so well-behaved, especially since interference is oftenregarded as a low-level operational concept. This encourages our belief in the possibilityof clean, and yet practical, methods for harnessing the power of assignment.We will outline the main features of our model later in this introductory section, afterdiscussing background on interference control.



A Model for Syntactic Control of Interference 31.1. Background on Interference ControlSyntactic control of interference is based on a re�nement of typed �-calculus, wheretyping constraints are used to limit the manner in which interference can arise. Theconstraints are motivated by a number of \principles of interference control" describedby Reynolds, which are chosen so as to ensure that interference is easily detectable.The �rst principle isI. if no identi�er free in phrase P interferes with any identi�er free in phrase Q, thenP and Q don't interfere.This is an assumption about the nature of the language which says, in e�ect, that all\channels" of interference must be named by identi�ers. In particular, closed terms don'tinterfere with any other terms. (We use \phrase" and \term" interchangeably.)The second principle is what necessitates syntactic constraints.II. distinct identi�ers never interfere.Combined with I, this provides the programmer with a particularly simple method ofpredicting non-interference, and meets head on problems caused by such phenomena asaliasing of storage variables. For example, Principle II implies that running the assign-ment statements x := 1 and y := 2 in any order, or in parallel, is determinate at anappropriate level of abstraction. This would not be the case if aliasing between x and ywas allowed, because the same storage variable would be destructively altered by eachstatement.Principle II may seem overly restrictive at �rst, but interference is not forbidden al-together. For example, an abstract data structure can be represented by a collectionof interfering procedures that are di�erent quali�cations of the same identi�er, such asdi�erent components of a \record" or \object" (Reynolds, 1978; Dahl, 1972). In e�ect,interference is treated as an exceptional case, which requires e�ort from the programmerto indicate explicitly. In contrast, most imperative languages have (the possibility of)interference as the default case, with determination of non-interference requiring e�ort.The �nal principle allows a limited amount of sharing.III. passive phrases, which don't write to any (global) variables, don't interferewith one another.For example, if y is a \read-only" expression then, according to all of the Principles I-III,the assignment statements x := y + 1 and z := y + 2 won't interfere. Note that sharingof read access is consistent with Principle II: two identi�ers can have read access to thesame storage variable, as long as neither has write access to it.Notice that these principles do not attempt to predict all interference relationshipsbetween program phrases, such as whether di�erent uses of the same non-passive identi�erinterfere. More \�ne-grained" interference detection is often used in parallel programoptimization, e.g. to determine if di�erent uses of an array identi�er don't interfere



P.W. O'Hearn 4(Padua and Wolfe, 1989). Of course, linguistic interference control and algorithmicinterference detection have di�erent aims (and should be considered complementary),with simplicity being of the upmost importance in the former, enabling a programmerto recognize interference easily in many cases.1.2. Semantic Aspects of State DependenceThe backbone of our analysis of interference control is a notion of the support of a se-mantic entity a as a pair R;W of �nite sets of locations (storage variables). Intuitively, Rconsists of the locations that a reads from, and W consists of the locations that a writesto. Once support is de�ned it is then straightforward to formulate a semantic counter-part of non-interference, which we will call independence, by comparing the supports ofsemantic entities to determine whether one writes to a location that another reads fromor writes to.This notion of support is inspired in part by earlier work of Halpern et. al. (1983)and Meyer and Sieber (1988). There the support of a semantic entity is identi�ed as,intuitively, the set of locations upon which it depends. Our formulation is di�erent in twoways. The �rst is that we separate the read and write capabilities of locations; this willturn out to be crucial for the treatment of passivity. The second is that our formulationuses the functor-category approach to program semantics initiated by Reynolds (1981)and Oles (1982, 1985). In fact, the treatment of support given by Meyer and Sieber canbe considered to have functors at its core. Making this explicit leads to a cleaner andsimpler treatment. We refer to the expository article (O'Hearn and Tennent, 1992) forfurther discussion of this. See also (Tennent, 1990,1991; O'Hearn and Tennent 1992,1993)for other related work on functors and non-interference.The reader may wonder why we are invoking this category-theoretic machinery. Thereason is that the notion of support is surprisingly di�cult to make precise in standardcpo semantics. There is no trouble de�ning it for meanings of basic program types, suchas commands (i.e. state transformations) or expressions, but getting a de�nition thatworks well at higher types is problematic (try it!). As in the just-mentioned work onthe semantics of state, the key role of functors here will be to explicitly include supportinformation in the de�nition of what count as meanings at higher types.The basic idea of our semantics is to have a category of \possible worlds" in whichthe objects are supports. The worlds are used to partition semantic entities accordingto the variables that they read or write, and semantic maps are required to respect thisstructure. This is done by interpreting types as functors from this category to a categoryof domains, and terms as natural transformations between these functors. So typescome with interference information \built-in." This opens up the possibility of de�ningtype constructors, as operations on a functor category, in a way that takes interferenceinformation into account.



A Model for Syntactic Control of Interference 51.3. Overview of the ModelA main aim of our model will be to make Principle II evident. This is an an assumptionabout the nature of the environment , one that we shall take as our starting point. We dothis by de�ning the notion of environment so that the only environments are ones in whichdistinct identi�ers denote non-interfering (independent) meanings. The principle is thusregarded as a prior assumption about the semantic character of the language, present inthe structure of all semantic maps (de�nable or not), rather than as a property to beproved about valuations.Environments will be built up using a product-like operation as usual. But Principle IItells us right away that a cartesian (categorical) product would not be appropriate in thiscontext. The reason is that we do not want a \diagonal" map that takes an environmentand forms a bigger environment in which there are two copies (b; b), denoted by di�erentidenti�ers, of a single component b from the smaller environment: if b interferes withitself then this would violate II.We will instead use a restricted form of product which, while not cartesian, satis�esthe requirements for symmetric monoidal categories. The intuition about this \tensor"product A
B is that its elements are pairs whose components don't interfere with oneanother. A term t with, say, two free identi�ers of types A and B is interpreted as a mapof the form A
B C-[[t]]thus achieving our basic aim of making Principle II evident. Procedure types are thenobtained via a suitable exponential adjunction:Hom(A
B;C) �= Hom(A;B��C):This gives a very satisfactory explanation of the interaction of procedures and environ-ments in the presence of interference constraints.For Principle III, we describe a notion of passive object in our category, where a type ispassive i� none of its \elements" writes to any storage variables. If A and B are passiveobjects then the key property is that A
B is isomorphic to the (categorical) productA�B. In particular, for such a passive A there is a diagonal map from A to A
A,corresponding to the intuition that sharing of read access is permissible. In categori-cal terminology, for each passive type (and only for passive types) there is a canonicalcommutative comonoid structure. This semantic treatment of passivity amounts to acategorical interpretation of the modality \!" from linear logic (Lafont, 1988; Seeley,1989).This categorical structure suggests a semantic view of the typing rules of interfer-ence control that is independent of the interference-speci�c aspects of the underlyingcategory. This abstraction is especially useful because the details of the semantics ofnon-interference that we present are, in truth, quite complicated in certain respects.However, we believe that it is important to see how this categorical structure arises froman account of non-interference in a speci�c case. It is the interplay between the concrete



P.W. O'Hearn 6model and categorical principles that is important here, with the former giving assurancethat the abstraction provided by the latter is indeed faithful to more concrete program-ming intuitions. Our semantic analysis would be incomplete if it did not include both ofthese perspectives.1.4. OutlineThe remainder of the paper is organized as follows.We begin in Section 2 by describing a simple language that incorporates PrinciplesI and II. It should be mentioned that the type system used in this study is actually astripped-down version of those described by Reynolds. In particular, we do not considerrecord types or intersection types, which were used by Reynolds (1989) to cope withsubtleties in the syntactic treatment of passivity. These omissions are made mainly tosimplify the exposition.The use of functors in explicating certain aspects of state dependence is the topic ofSections 3-5. Section 3 begins with the de�nition of the category of worlds, and thenprovides an illustrative example of the category at work. Sections 4 and 5 are devotedto de�ning and exposing basic properties of support and independence.In Section 6 we use the independence predicate to describe the tensor 
 and its cor-responding exponential adjunction. An interpretation of the typing rules from Section 2is given in Section 7. This follows fairly directly from categorical considerations. We donot carry out a detailed study of properties of the interpretation itself, but we do lookat some semantic equivalences that illustrate reasoning principles that are sound in thepresence of interference constraints, principles that would be unsound otherwise.Sections 8 and 9 are concerned with passivity. Section 8 is devoted to categorical mat-ters, including the connection to intuitionistic linear logic. Section 9 gives interpretationsfor typing rules that incorporate Principle III into the language.2. Interference ConstraintsWe will use A;B to range over types in our language:A;B ::= exp j comm jvar jA! B.var, comm and exp are the types of (storage) variables, commands and expressions,respectively. Commands denote state transformations, while expressions denote functionsfrom states to values. The language is Algol-like in the sense of (Reynolds, 1981): allside-e�ects are encompassed in the type comm, expressions are side-e�ect-free (butstate-dependent), and procedures are called by-name. A procedure can cause side-e�ectsonly indirectly, when used within a phrase of type comm.A typing context � is a (possibly empty) list x1 : A1; :::; xn : An, where the xi are dis-tinct identi�ers and the Ai are types. (We assume an in�nite, but otherwise unspeci�ed,



A Model for Syntactic Control of Interference 7x : A ` x : A Id�; y : B;x : A;� ` t : A�; x : A; y : B;� ` t : A Exchange � ` t : A�; x : A ` t : A Weakening�; x : A ` t : B� ` �x:t : A! B ! I � ` p : A! B � ` q : A�;� ` p(q) : B ! E� ` p : comm � ` q : comm� ` p; q : comm Sequencing� ` p : comm � ` q : comm�;� ` p k q : comm Par� ` V : var � ` E : exp� ` V := E : comm AssignmentTable 1 Typing Rulescollection of identi�ers.) We write �;� for the concatenation of � and �. This assumesthat identi�ers in � and � are disjoint, which is the implicit assumption whenever wewrite �;�. Typing judgements are of the form � ` t : A, where t is a term, A is a type,and � is a typing context. Some typing rules are in Table 1. Other rules are in Sections7 and 9.The use of di�erent contexts for the procedure and the argument in the eliminationrule !E plays a central role in the approach. An application p(q) can be typed usingthis rule only if the free identi�ers in p and q are disjoint. This ensures that bindingusing � preserves the property that distinct identi�ers don't interfere. For example, in(�x : � � �x � � �y � � �)qif we assume that no identi�er free in q interferes with y then, using II, we can concludeby Principle I that q doesn't interfere with y. Thus, the bound identi�er x won't interferewith y either, preserving Principle II. (So A ! B is the type of procedures that neverinterfere with their arguments.)Put another way, this constraint on application prevents the typing of(�x : � � �x � � �y := 2 � � �)ybecause y is free in both the argument and procedure. This is how aliasing between xand y in the body of the procedure is avoided.As in (Reynolds, 1978, 1989), for illustrative purposes we consider a simple form ofparallel composition, whereby p k q is well-formed only when p and q don't interfere.The intention is that this will ensure that their parallel execution is determinate. This is



P.W. O'Hearn 8achieved with the di�erent contexts for p and q in the rule Par. For example, we cannottype something like x := 1 k x := 2.Principle III has not yet been taken into account. It will allow a limited form of sharingbetween concurrent commands, and between procedures and their arguments. This isdeferred to Section 9.3. Functors and State DependenceIn the possible-world approach to program semantics, types are interpreted as functorsfrom a small categoryW of \possible worlds" to a category D of domains, and terms aregiven by natural transformations. Instead of a single set or domain, types are familiesof suitably related domains.This approach was used initially by Reynolds and Oles in the semantics of local-variabledeclarations. Their idea was that allocation of a local variable in a block such as newx :Cinduces a change in the \shape" of the store, because it results in there being an extrastorage variable (bound to x) that was not available previously. Thus, the collection ofpossible states varies as storage variables get allocated and de-allocated. This variationwas modeled using a category of worlds in which the objects were abstract store shapesand the morphisms were \expansions" that allocated additional variables.We will use possible-world structure to partition semantic entities according to thestorage variables (or \locations") that they read from or write to. This will be accom-plished with a suitable choice of W. The worlds will be pairs (R;W ) of �nite sets oflocations, with R representing \readable" locations and W \writable" ones. The under-lying intuition is that, for a functor [[A]] :W �!D corresponding to a type A,[[A]](R;W ) is a domain of meanings appropriate to A which may read from (only)locations in R, and write to (only) locations in W .Notation: We write A 2 C to indicate that A is an object of a category C. D is thecategory of directed-complete posets (predomains) and continuous functions. Semicolondenotes composition in diagrammatic order in various categories. Our model will be afull subcategory of the functor category DW.3.1. The Category of WorldsWe assume a �xed in�nite set Loc (of locations). The category W hasObjects: The W-objects are pairs (R;W ) of �nite subsets of Loc.Morphisms: A W-morphism f : (R;W ) ! (R0;W 0) is an injective function fromR [W to R0 [ W 0 such that f(R) � R0 and f(W ) � W 0. (Though we won't beexplicit on this point, to be completely precise we should label each morphism withits domain and co-domain in W, to disambiguate cases when a single function canserve as a number of W-morphisms.)



A Model for Syntactic Control of Interference 9Here, f(R) is the image of f on locations in R, and similarly for f(W ). We willalso write f(X) for the world (f(R); f(W )), when X = (R;W ). Composition is justcomposition of set-theoretic functions. We denote the identityW-morphism on world Xby idX .We extend set-theoretic notion for subset inclusion (�), union ([), intersection (\)and the inclusion function L ,! L0 between sets L and L0 (when L � L0) to worlds asfollows:(R;W ) � (R0;W 0) () R � R0 ^ W � W 0(R;W ) [ (R0;W 0) = (R [R0;W [W 0)(R;W ) \ (R0;W 0) = (R \R0;W \W 0)(R;W ) ,! (R0;W 0) = R [W ,! R0 [W 0.We call (R;W ) ,! (R0;W 0) an inclusion morphism.W-morphisms will be used to convert semantic entities at one world to another worldwhere possibly additional locations are readable or writable. The requirements f(R) � R0and f(W ) � W 0 mean that, in general, we cannot do such a conversion to a world wherefewer locations are readable or writable. The injectivity requirement ensures that distinctlocations do not get identi�ed when passing from one world to another, a restriction thatis crucial for the de�nition of morphism parts of various functors for program types.W is similar in some respects to the category of �nite sets and injective functions,a category that can be used to treat local-variable declarations (Moggi, 1989; O'Hearnand Tennent, 1992). The part of our development having mainly to do with principles Iand II, i.e. up until the end of Section 7, could in fact be carried out using this simplercategory. However, the separation of read and write aspects of locations will prove to beimportant for the treatment of passivity.3.2. Command MeaningsWe now illustrate the use of state-dependence information inW by considering a functor[[comm]] of command meanings. For any world (R;W ), [[comm]](R;W ) will consist ofstate transformations for commands that, intuitively, only read from locations in R andwrite to locations in W . Accordingly, two conditions on state transformations will beimposed, one concerned with locations that are not writable and the other with locationsthat are not readable.Suppose c is a state transformation. If c doesn't write to a location, then the locationshould have the same value in the output state as in the input state. For read access, ifapplying c to state s doesn't read location ` then the result should be independent of thevalue of `. This \independence" splits into two cases: (i) the value of ` is left unchanged,and this does not depend on the particular value that ` has, or (ii) ` is set to a speci�cvalue that does not depend on the initial value of `. (i) corresponds to the case when cneither reads nor writes `, and (ii) is the case when c writes but does not read `. Thesepoints are incorporated into the de�nition of [[comm]] below.If L � Loc then we de�ne the states for L as a set of functions



P.W. O'Hearn 10S(L) = L! Valueswhere Values is some set of storable data values (e.g. integers). For simplicity, we haveassumed that there is only one kind of value that can be stored as the contents of alocation. To cope with more than one kind of storable value, we could tag each locationwith a type, indicating the kind of value it can hold, and then require that states andW-morphisms respect these tags.We now de�ne [[comm]] on W-objects:[[comm]](R;W ) = nc 2 S(R [W ); S(R [W ) j if c(s) = s0 then8` 2 R [W ,` 62W =) s(`) = s0(`), and` 62 R =) �8v 2 Values: c(s j ` 7! v) = (s0 j ` 7! v)_ 8v 2 Values: c(s j ` 7! v) = s0�o, ordered by graph inclusion.Here ; is the partial-function space and (s j ` 7! v) is the state like s except that ` mapsto v.In the case that W = R = L this de�nition reduces to S(L) ; S(L), which is similarto the notion of commandmeaning that we would use if �nite sets and injective functionswas to serve as the category of worlds (O'Hearn and Tennent, 1992; Oles, 1985). Theextra conditions in the de�nition correspond to the points (i) and (ii) discussed above,and are due to our separation of read and write aspects of locations.To make [[comm]] into a functor, for f : (R;W )! (R0;W 0) we must de�ne[[comm]]f : [[comm]](R;W ) �! [[comm]](R0;W 0):Note that if f : (R;W )! (R0;W 0) and s 2 S(R0 [W 0) then (f ; s) 2 S(R [W ).For c 2 [[comm]](R;W ) and s 2 S(R0 [W 0), [[comm]]f c s is unde�ned if c(f ; s) isunde�ned (notation c(f ; s)"). If c(f ; s) = s1 2 S(R [W ), then we de�ne [[comm]]f c sto be s2 2 S(R0 [W 0), where for ` 2 R0 [W 0s2(`) = � s(`) if ` 62 f(R [W )s1(`0) if f(`0) = `:That is, up to location-renaming by f , [[comm]](f)c extends c by the identity on extralocations in world (R0;W 0) that are not in the image of f .To illustrate this de�nition, consider the meaning c0 2 [[comm]](fx; yg; fx; yg) corre-sponding to the assignment statement x := 1. (For notational simplicity, in exampleswe will use x; y; ::: for identi�ers as well as the locations that they denote.) c0 takes aninput state s 2 S(fx; yg) and produces as output s0 2 S(fx; yg), where s0(x) = 1 ands0(y) = s(y).Clearly, x := 1 doesn't read from x or y, so we should be able to remove x and y fromthe read component of the world. Recalling our two cases about read access, we note



A Model for Syntactic Control of Interference 11that (i) c acts like the identity on y, and the �nal value of x doesn't depend on y, and(ii) it sets x to 1, irrespective of what values are in the initial state. Therefore, from thede�nition of [[comm]] it follows that c0 is also in [[comm]](;; fx; yg) andc0 = [[comm]]�(;; fx; yg) ,! (fx; yg; fx; yg)� c0:On the other hand, since x := 1 doesn't write to y we should be able to remove y from thewrite component. The result is a meaning c1 2 [[comm]](;; fxg) that maps s 2 S(fxg) tos0, where s0(x) is 1. [[comm]] is de�ned on morphisms so that, for a morphism f : X ! Yand c0 2 [[comm]]X, [[comm]]fc0 is the identity on any locations not in the image of f .Therefore, for our c0 and c1,c0 = [[comm]]�(;; fxg) ,! (fx; yg; fx; yg)� c1:This example illustrates an important intuition: the meaning c0 \lives at" the world(fx; yg; fx; yg), but it \comes from" each of the smaller worlds by using the appropriatecomponent of the morphism part of [[comm]].'&$%c1(;; fxg) (;; fx; yg) (fx; yg; fx; yg)- c0 c0'&$%-'&$%Furthermore, (;; fxg) is the \smallest" world that c0 comes from in this sense (via aninclusion); we say that (;; fxg) is the support of c0. Notice how well this accords withintuitions about support. The absence of y in the write component of (;; fxg) indicatesthat c0 (or the assignment statement x := 1) doesn't write to y, and the empty readcomponent indicates that no locations are read from.4. SupportIn this section we de�ne a notion of support that, intuitively, identi�es the locationsthat a semantic entity reads from or writes to. The strategy will be to generalize thetreatment of support for command meanings sketched at the end of the previous section.This notion of support will be applicable to all functors in a full subcategory of thefunctor category DW.4.1. Pullbacks and SupportSince types in our model will be functors fromW to D, the support of a semantic entitywill be a concept de�ned relative to a possible world , i.e. aW-object. For such a functorA and element a 2 A(X), where X is a world, we want to identify the \smallest" worldthat a \comes from." As a prelude to the de�nition of support we make this \comesfrom" intuition precise.



P.W. O'Hearn 12Suppose A :W �!D, X 2W, and a 2 A(X). When Y � X, we de�neY j= a () 9 a0 2 A(Y ) : A(Y ,! X) a0 = a.Y j= a is read \a comes from Y ." (The notation Y j= a does not indicate the relevantfunctor (A) or world (X), but no ambiguity is likely to arise as these will always be clearfrom context. Similar remarks apply to the notations support(a), a4b and passive(a) tobe de�ned later.)We are going to de�ne the support of a 2 A(X) as the smallest Y � X such that Y j= a.Such a smallest world is not guaranteed to exist for arbitrary functors A. However, wecan get a satisfactory de�nition when the following property holds(�) for all worlds X, Y;Z � Y , and a 2 A(X),Y j= a ^ Z j= a =) Y \ Z j= a:When (�) holds, the intersection of the (�nite) collection of Y 's such that Y j= a will bethe support of a.We can ensure property (�) by making use of a standard connection between intersec-tions and pullbacks. Recall that, in the usual category of sets, if Y; Z � X, thenXY \ ZY Z@@I ������ @@Iis a pullback square, where the unlabeled arrows are inclusion functions. This is alsoa pullback square in W, when the unlabeled arrows are what we called the inclusionmorphisms and \ is the componentwise intersection of W-objects.Note also that the category W has all pullbacks. GivenW-morphisms j : Y ! X andk : Z ! X, a pullback square XX 0Y Z@@Ih ���i���j @@Ik is obtained by setting X 0 = j(Y )\k(Z) andde�ning h and i in the evident fashion so that h(`) = j�1(`) and i(`) = k�1(`).Now, property (�) can be guaranteed to hold whenever the functor A : W �! Dpreserves pullbacks.Proof of (�). If Y j= a and Z j= a then there are a1 2 A(Y ) and a2 2 A(Z) such thatA(Y ,! X)a1 = a and A(Z ,! X)a2 = a. Let f�g be a one-point domain, and de�nef : f�g ! A(Y ) and g : f�g ! A(Z) by f(�) = a1 and g(�) = a2. Consider the following



A Model for Syntactic Control of Interference 13diagram, where the unlabeled arrows are A(i) for the appropriate inclusions i.A(X)A(Y \ Z)f�gA(Y ) A(Z)QQQQk SSSSSSSo f �������7g6k ����3����3 QQQQkThe outer diagram commutes by the de�nitions of f and g so, since A preserves pullbacks,there is a unique k making the whole diagram commute. In particular, k(�) 2 A(Y \Z)must be such that A(Y \ Z ,! Z) k(�) = a2, and this implies Y \ Z j= a. 2Thus, if A : W �! D preserves pullbacks, X is a world, and a 2 A(X), we de�nesupport(a) to be the unique world such thatsupport(a) j= a, and8Y � X : Y j= a =) support(a) � Y .That is, support(a) is the \smallest" world that a comes from.Example. De�ne c2; c3 2 [[comm]](fxg; fxg) byc2 s = s0 where s0(x) = s(x) + 1,c3 s = � unde�ned if s(x) = 1s otherwise.These could be denotations of commands x := x + 1 and if x = 1 then diverge.Recalling also c0 from the previous section, we calculatesupport(c2) = (fxg; fxg), support(c0) = (;; fxg), and support(c3) = (fxg; ;).If we let c4 denote the everywhere-unde�ned partial function and c5 the identity functionin [[comm]](fxg; fxg) then support(c4) = support(c5) = (;; ;).4.2. The Semantic CategoryWe de�ne the K to be the category whose objects are pullback-preserving functors fromW to D and whose morphisms are all natural transformations between such functors,with the usual (vertical) componentwise composition. One can easily verify that [[comm]]preserves pullbacks.K has �nite products, which are calculated pointwise as is typical in functor categories.A terminal object 1 2K can be de�ned as 1(X) = f�g and 1(f) = the identity function



P.W. O'Hearn 14on f�g, for some singleton domain f�g and any world X and f : X ! Y . If A;B 2 K,X 2W and f is a W-morphism then(A�B)(X) = A(X)�B(X), ordered componentwise(A�B)(f) = A(f)�B(f)where � on the right-hand side is the (categorical) product in D. For maps � : A :! A0and � : B :! B0 in K, the natural transformation ��� : A�B :! A0�B0 is de�ned bysetting ���X = �(X)��(X). Pullback preservation for A�B follows straightforwardlyfrom the de�nition of the W-morphism part of A�B.A consequence of the pullback-preservation requirement is that the morphism parts offunctors in K are automatically order-reecting , where a mapm : D ! E of predomainsis order-reecting i� 8d; d0 2 D :m(d) �E m(d0) ) d �D d0. This result (which waspointed out by A. Pitts) will play an important role in our development, ensuring thatdomain-theoretic structure is respected when we de�ne the tensor product, exponential,and passive types in K.Lemma 1 Suppose A 2 K and f : X ! Y is a W-morphism. Then the map A(f) isorder-reecting. As a result, it is injective and its image is directed-complete.Proof. First, note that for any map f : X ! Y in W there are maps g and h suchthat �XY Y@@If ���f���g @@Ih is a pullback square. Second, note that if �DE E@@Im ���m���n @@Io is a pullbacksquare inD then m is necessarily order-reecting; this can be shown by a straightforwardcalculation using the isomorphism between D and the standard construction of the pull-back object as a suitable sub-poset of E�E. That A(f) is order-reecting then followsbecause A preserves pullbacks.Since A(f) is order-reecting, injectivity follows from monotonicity, and directed-completeness of the image follows from continuity. 2The next result shows that supports of semantic entities are respected by all naturaltransformations and by the morphism parts of functors in K. These properties form thetechnical underpinning for almost all of what follows.Lemma 2 Suppose A;B 2 K, X is a world, a 2 A(X), f : X ! Z, and � : A :! B.Then(i) support(�X a) � support(a)(ii) f(support(a)) = support(A(f)a)Proof. (i). Suppose Y j= a. Then A(Y ,! X)a0 = a for some a0 2 A(Y ). Naturality of� then guarantees that B(Y ,! X)�� Y a0� = �X a, and the result follows.(ii). We show 8Y � X : Y j= a () f(Y ) j= A(f)a; the desired result follows fromthis. Suppose Y � X and f : X ! Z. One can easily verify that the left-hand diagram



A Model for Syntactic Control of Interference 15below commutes in W { where f� : Y ! f(Y ) is the evident map induced by therestricting f { and the right-hand diagram commutes by the functoriality of A.Yf(Y ) XZ?f?f� -Y ,!X -f(Y ) ,! Z A(Y )A(f(Y )) A(X)A(Z)?A(f)?A(f�) -A(Y ,! X)-A(f(Y ) ,! Z)=): Assume Y j= a. This means that A(Y ,! X)a0 = a for some a0. The rightdiagram then gives A(f(Y ) ,! Z)�A(f�)a0� = A(f)a, and so f(Y ) j= A(f)a.(=: Assume f(Y ) j= A(f)a. Then the right-hand diagram implies A(Y ,! X; f)a0 =A(f)a for some a0, because A(f�) is an isomorphism in D (since f� is iso in W). Y j= afollows from the injectivity of A(Y ,! X) (Lemma 1). 24.3. Discussion: On the Level of GranularityWith the de�nition of command meanings as state transformations, the words \a com-mand writes (reads) a location `" must be understood at a level of abstraction whereone ignores intermediate states. For example, the \do-nothing" command skip and thecomposite x := x+1;x := x�1 would be semantically equal. However, our mathematicalnotion of support does not depend on the particulars of this treatment of commands be-cause it applies to any functor inK, and so this frees us to study properties of support inrelative isolation from details of how commands or other types are interpreted. Indeed,it would possible to interpret commands on a level of abstraction where intermediatestates are made visible, and the relevant parts of our semantic theory would still apply.But one important consequence of interference control is that, in the absence of con-trolled interaction (e.g. through monitors), it is consistent to view concurrent commandson the level of abstraction of state transformations. We believe that it is simpler andmore informative to formulate the model in a way that makes this clear.5. IndependenceWe can now use the support predicate to de�ne independence, a semantic counterpartof non-interference. (We have chosen to use a somewhat neutral term, \independence,"to avoid confusion that may arise from possible operational, or implementation oriented,predispositions with regard to the concept of non-interference; c.f. the comments at theend of the last section.)We begin by de�ning a relation4 of independence between possible worlds. If (R1;W1)and (R2;W2) are W-objects then(R1;W1)4 (R2;W2) () (W1 [R1) \W2 = ; ^ (W2 [R2) \W1 = ;



P.W. O'Hearn 16If two worlds are independent then any writable location in one is not in the other.Independence between semantic entities is de�ned in terms of their supports. This isagain a notion that is relative to a possible world. If A;B are K-objects, a 2 A(X), andb 2 B(X), then a4b () support(a)4support(b):Example. Suppose c1; c2 2 [[comm]](R;W ) and c14c2. We de�ne a state transforma-tion c1 k c2 2 [[comm]](R;W ) that represents the joint, parallel, capabilities of c1 andc2.Suppose support(c1) = (R1;W1), support(c2) = (R2;W2), and s 2 S(R[W ). If c1(s)"or c2(s)" then (c1 k c2)s". Otherwise,(c1 k c2) s ` = 8<: c1(s) ` if ` 2W1c2(s) ` if ` 2W2s(`) otherwiseNote that W1 and W2 are disjoint since c14c2, and so c1 k c2 is well-de�ned. From thede�nitions of [[comm]] and 4 one can easily show that c1 k c2 = c1; c2 = c2; c1 whenc14c2, where semicolon here is composition of partial functions. 2The next lemma states basic properties independence, as it relates to the functor-category structure in K. Part (i) says that independence is preserved and reected bythe morphism parts of functors inK; as a result, changing worlds does not alter indepen-dence relationships between semantic entities. (The =) direction is essentially the usual\Kripke monotonicity" property that intuitionistic predicates in presheaf toposes SetsXmust satisfy.) Part (ii) states that independence is preserved, though not necessarilyreected, by all maps in our category. From the programming perspective, this says thatif you apply a closed term of procedural type to two non-interfering entities, then thetwo resulting terms must still be non-interfering. (To see why the converse should fail,consider a constant procedure that takes an argument and simply returns the numeral 1:1 doesn't interfere with itself, but this does not imply that arguments to di�erent callsof the constant procedure do not interfere.)Lemma 3 Suppose A;B 2K, a 2 A(X), b 2 B(X), f : X ! Y , and � : A :! A0.(i) a4b () A(f)a4B(f)b(ii) a4b =) (�X a)4b(iii) f(a; b) 2 A(X)�B(X) j a4bg is directed-complete.Proof. (i) and (ii) follow from Lemma 2. For (iii) suppose D � (A
B)X is non-emptydirected. Since the maps (a; b) 7! support(a) and (a; b) 7! support(b) from D to theset of worlds have �nite image, there is a co�nal subset D0 � D on which they areconstant, with values, say, Y and Z. (i.e. 8d 2 D 9d0 2 D0 : d � d0, and 8(a; b) 2D0 : support(a) = Y ^ support(b) = Z) Clearly Y4Z, since a4b whenever (a; b) 2 D0.Furthermore, if (a0; b0) = FD0 (taking limits in (A�B)X) then support(a0) � Y and



A Model for Syntactic Control of Interference 17support(b0) � Z, because of the componentwise calculation of limits in the product andbecause the morphism parts of A and B preserve and reect order (Lemma 1). So thislimit is in (A
B)X, and the result follows since FD = FD0 (as D0 is co�nal). 2Finally, we consider how4 interacts with �nite (categorical) products. This will proveto be important when we de�ne the tensor product in the next section.Lemma 4 Suppose A;B;C 2K, a 2 A(X), b 2 B(X), c 2 C(X), and � is the uniqueelement of 1(X). (In (iii) (b; c) is considered as an element of (B�C)X, and similarlyfor (iv).)(i) �4a(ii) b4a () a4b(iii) a4(b; c) () a4b ^ a4c(iv) (a; b)4c ^ a4b () a4(b; c) ^ b4cProof. (i): Since support(�) = (;; ;) it follows that support(�)4support(a) no matterwhat support(a) is.(ii): Immediate.(iii) =): If Z j= (b; c) then the de�nition of the morphism part of B�C impliesZ j= b and Z j= c, and so support(b) � support(b; c) and support(c) � support(b; c).Thus, if support(a)4support(b; c) then we may conclude that support(a)4support(b) andsupport(a)4support(c) since, for arbitrary worlds W1;W2;W3, it is clear thatW1 � W2 ^ W24W3 =) W14W3:(iii) (=: Clearly support(b; c) = support(b) [ support(c), by the de�nition of B�C onmorphisms. If a4b and a4c then support(a)4support(b)[ support(c) since, for arbitraryworlds W1;W2;W3, W14W2 ^ W14W3 =) W14W2 [W3:The result follows.(iv): Immediate from (iii) and (ii). 26. The Symmetric Monoidal Closed StructureWe now use the independence predicate to de�ne a tensor product 
 on K. This willbe used to interpret contexts on the left-hand side of ` in typing judgements. Then weconstruct the corresponding exponential adjunction �� that will model procedure types.



P.W. O'Hearn 186.1. The Tensor ProductThe bifunctor 
 on K is a subfunctor of the categorical product �, restricted so thatdi�erent components are independent of one another.If A;B are K-objects then(A
B)X = f(a; b) 2 A(X)�B(X) j a4bg, ordered componentwise(A
B) f (a; b) = (A(f) a;B(f) b)for worlds X and W-morphisms f : X ! Y . (A
B)X is directed-complete by Lemma3(iii), and (A
B)f is well-de�ned { i.e. (A(f)a;B(f)b) 2 (A
B)Y { by the Kripkemonotonicity property for 4 (Lemma 3(i)). Pullback-preservation is immediate fromthe de�nition of A
B on W-morphisms.If � : A :! A0 and � : B :! B0 are maps in K then the natural transformation�
� : A
B :! A0
B0 is such that(�
�)X (a; b) = (�X a; �X b)when (a; b) 2 (A
B)X. This is well-de�ned by Lemmas 3(ii) and 4(ii). Preservation ofidentities and composites for A
B and {
 { is straightforward.We can obtain \projections" pri : A1
A2 :! Ai, i = 1; 2, by using the evident inclusionmap from 
 to �. The direct de�nition is pr1X (a; b) = a and pr2X (a; b) = b.
 is not a categorical product because there is no pairing (or diagonal). However, itdoes have symmetric monoidal structure. That is, there are symmetry, associativity, andunity isomorphisms that commute in an appropriately coherent fashion. (The \projec-tions" for 
 can also explained by the fact that the terminal object 1 is the unit of thismonoidal structure.)Proposition 5 There are isomorphisms(A
B)
C �= A
(B
C)1
A �= A �= A
1A
B �= B
Asatisfying the Mac Lane-Kelly equations for symmetric monoidal categories.Proof. Straightforward using Lemma 4(i) for unity, (ii) for symmetry, and (iv) forassociativity. 26.2. The ExponentialThe description of �� will follow the standard de�nition of exponentiation in functorcategories, with some alterations to reect the request that B�� { be adjoint to {
B,instead of {�B.First, we recall how (the object part) of the exponentiation A ) B in a presheafcategory SetsC is typically de�ned (e.g. Lambek and Scott, 1986). For each X 2 C,



A Model for Syntactic Control of Interference 19there is a representable functor hX = HomC(X; {) from C to Sets, and the Yonedalemma tells us that, no matter how exponentiation ) is de�ned, we must have that(A) B)X �= HomSetsC (hX ; A) B):Thus, if A ) { is to be right adjoint to {�A then (using Currying) we must have that(A) B)X is isomorphic to HomSetsC (hX�A;B), and we can simply take this last Homset to be the de�nition of (A ! B)X. Our case will be treated similarly, using 
 inplace of �.If X is a W-object then the functor hX :W �!D is de�ned byhX = HomW(X; {) ; Fwhere F is the embedding functor from the category of sets and functions toD that equipsa set with the discrete order. An element of hX(Y ) is a W-morphism f : X ! Y . Themorphism part of hX is such that if f : X ! Y and g : Y ! Z then (hX g f) 2 hX(Z) isjust the composite f ; g. Pullback preservation is a consequence of the standard fact thatrepresentable functors preserve limits (Mac Lane, 1971). So hX is in fact a K-object.If A;B are K-objects and X is a world then we de�ne(A��B)X = HomK(hX
A;B); ordered pointwise.Here, by the pointwise order we mean that, for p1; p2 2 (A��B)X,p1 � p2 () 8Y 2W : 8(g; a) 2 (hX
A)Y : p1 Y (g; a) � p2 Y (g; a) :A result of this use of 
 in place of � is that procedure meanings can only be applied toarguments that they are independent of, as will become evident below when we considerthe application map.Now we de�ne the morphism parts of A��B and {�� {. If f : X ! Y , (g; a) 2(hX
A)Z and m 2 (A��B)X then�(A��B) f m�Z (g; a) = mZ �(f ; g); a�Notice that (f ; g; a) 2 (hX
A)Z because g4a. One can show by straightforward calcu-lations that A��B preserves pullbacks. If � : A0 :! A, � : B :! B0 and p 2 (A��B)Xthen (��� �)X p is the bottom of the following diagram.hX
A0 B0hX
A B6id
� ?�-p -(��� �)XpThe currying mapHomK(A
B;C) HomK(A;B��C)-curryis given by the equation�(currym)X a�Y (f; b) = mY �A(f)a; b�:



P.W. O'Hearn 20Note that A(f)a4b by the assumption that (f; b) 2 (hX
B)Y , so the argument (A(f)a; b)is of the right type.These de�nitions are very similar to the usual ones associated with exponentiation (asadjoint to �) in functor categories. The application map(A��B)
A B-appis more subtle, however, because of the use of 
 in the de�nition of �� . Application forpresheaf exponentiation is given using identity morphisms: appX (p; a) = pX (idX ; a).We cannot use this equation here, because the de�nition of �� would require that idX4a,and this is not always the case.However, if p 2 (A��B)X then, by injectivity of the morphism part of A��B (Lemma1), there is a unique element dpe 2 (A��B)support(p) such that�support(p) ,! X�dpe = p:Furthermore, we clearly have that (support(p) ,! X)4a whenever p4a, and so the pair((support(p) ,!X); a) is in (hsupport(p)
A)X. These observations lead to the followingde�nition of application:appX (p; a) = dpeX (support(p) ,! X; a):With these de�nitions it is then routine to show that, for m : C
A :! B, curry(m)is the unique map making (A��B)
AC
A B-app?curry(m)
id HHHHHHHjmcommute.Proposition 6 For all B 2K, {
B is left adjoint to B�� {.7. Interpretation of Typing RulesIn this section we de�ne a semantics for the language from Section 2. The meaning of aterm will be given by a natural transformation between functors in K. More speci�cally,each derivation of a typing judgement � ` t : A will determine a natural transformation[[t]] from a functor [[�]] 2 K of environments appropriate to � to a functor [[A]] 2 K ofmeanings appropriate to A.(To be completely precise we would decorate these meanings [[t]] with data indicatinga derivation, and then prove a coherence result stating that di�erent derivations of ajudgement always lead to the same meaning. See Breazu-Tannen et. al. (1989) fordiscussion of coherence in this type-theoretic sense.)



A Model for Syntactic Control of Interference 217.1. Types and EnvironmentsNow we de�ne suitable functors [[A]] and [[�]] for types A and typing contexts �. Thefunctor [[comm]] of command meanings has already been speci�ed in Section 3.[[var]] is de�ned on W-objects by[[var]](R;W ) = R \W , discretely ordered.Variables are locations that are both readable and writable. We have opted for a \simple"semantics here that cannot handle, e.g., state-dependent variables such as conditionalvariables. On W-morphisms [[var]] is de�ned by[[var]] f ` = f(`).The functor [[exp]] of expression meanings is[[exp]](R;W ) = S(R); Values, ordered by graph inclusion[[exp]] f e s = e(fR ; s).where fR : R ! R0 is the evident function obtained by restricting the W-morphismf : (R;W )! (R0;W 0). Procedure types are interpreted as [[A! B]] = [[A]]�� [[B]].For simplicity, we will regard products of the form A
(B
C) and (A
B)
C as beingidentical (in light of Proposition 5), and write A
B
C.The environment functors are[[x1 : A1; :::; xn : An]] = [[A]]1
 � � �
[[An]] [[[]]] = 1where [] is the empty typing context. Intuitively, an environment u 2 [[�]]X at world X isa tuple (u1; :::; un) of meanings, the components of which don't interfere with one another.Example: Suppose that `1; `2 2 [[var]](R;W ) and `14`2. Since both of these locationsare in R \W , the de�nition of independence between worlds means that `1 6= `2. Thus,the de�nition of environments using 
 ensures that there is no aliasing.7.2. �-Calculus RulesThe pure �-calculus rules from Table 1 are interpreted as follows, where id, exch and projare appropriate identity, exchange and projection maps (recall that 
 has \projections").



P.W. O'Hearn 22Id [[A]] [[A]]-idExchange [[�]]
[[A]]
[[B]]
[[�]] [[�]]
[[A]]
[[B]]
[[�]] [[C]]-id
exch
id -[[t]]Weakening [[�]]
[[A]] [[�]] [[B]]-proj -[[t]]! E [[�]]
[[�]] ([[A]]�� [[B]])
[[A]] [[B]]-[[p]]
[[q]] -app! I [[�]] [[A]]�� [[B]]-curry[[t]]The reader will see that we have suppressed some trivial applications of unity isomor-phisms in the interpretations of these rules.The placement of 
 in the interpretation of !E is the semantic counterpart of thesyntactic requirement that a procedure and its argument don't interfere.The usual � and � laws of �-calculus are valid according to this interpretation, becauseof the adjunction between {
B and B�� {. The validity of � reects the call-by-namenature of the language.Principle II is evident from the de�nition of environments. As for Principle I, thatclosed terms don't interfere with any other terms can be explained semantically as follows.A closed term should correspond to a map of the form m : 1 :! A, for some A. Givenany world X, B 2 K, and b 2 B(X), Lemma 4(i) guarantees that �4b, and since mapsinK preserve independence (Lemma 3(ii)) it follows that m(X)�4b. Thus the meaningsof closed terms are independent (in the 4 sense) of the meanings of other terms. (Theprinciple can be explained similarly for open terms, using Lemma 4(iii) and 4(i) to showthat an environment doesn't interfere with a semantic entity if its components don't,and then using the fact that the meaning of a term, as a map in K, must preserveindependence.)7.3. Selected Algol-like RulesThe other rules in Table 1 are interpreted as follows.Par [[�]]
[[�]] [[comm]]
[[comm]] [[comm]]-[[p]]
[[q]] -parSequencing [[�]] [[comm]]�[[comm]] [[comm]]-h[[p]]; [[q]]i -seqAssignment [[�]] [[var]]�[[exp]] [[comm]]-h[[v]]; [[e]]i -assHere, h�; �i is pairing for the product � inK, and par : [[comm]]
[[comm]] :! [[comm]],seq : [[comm]]�[[comm]] :! [[comm]], and ass : [[var]]�[[exp]] :! [[comm]] are de�ned asfollows, where c1 k c2 is as in Section 5, c1; c2 is composition of partial functions, and



A Model for Syntactic Control of Interference 23sjR is the restriction of state s 2 S(R [W ) to R:parX (c1; c2) = c1 k c2seqX (c1; c2) = c1; c2ass (R;W ) (`; e) s = � (s j ` 7! e(sjR) if e(sR) #unde�ned if e(sR) "Notice the roles of 
 in Par and � in Seq: concurrent commands may not interfere withone another, while sequentially-composed commands may.A dereferencing coercion that converts a variable to an expression can be given by themap j : [[var]] :! [[exp]] such that j(X) ` s = s(`).Two \global" commands areskip : comm diverge : commThey are interpreted by maps skip; diverge : 1 :! [[comm]] such thatskip(R;W ) = the identity function on S(R [W )diverge(R;W ) = the everywhere-unde�ned partial functionThese are the only maps from 1 to [[comm]].Now we consider variable declarations. (This is a good test case for our 4.) To beconsistent with Principle II, we will need to ensure that, in a block of the form newx :C,the meaning of the locally-declared identi�er x is independent of the meanings of otheridenti�ers. We would certainly expect this to be the case, since the intention is that xdenotes a newly allocated variable that is inaccessible by non-local entities.Matters are simpli�ed if we regard newx :C as sugar for new(�x:C), where new is acombinator of type (var! comm)! comm. For the semantics of new we de�ne a mapnew : ([[var]]�� [[comm]]) :! [[comm]]. By adjointness (Proposition 6) this determinesa map from 1 to [[(var ! comm) ! comm]]. If p 2 ([[var]]�� [[comm]])(R;W ) ands 2 S(R [W ), thennew (R;W ) p s = � f ; s2 if p Y (f; `) s1 = s2unde�ned if (p Y (f; `) s1)"where� ` 62 R [W is any fresh location,� f = (R;W ) ,! Y , where (R [ f`g;W [ f`g) = Y ,� s1 = (s j ` 7! 0) (0 is the initial value).The idea here is that the morphism f connects the non-local world to the expanded worldwith the additional variable. The procedure p is executed in this expanded world with thefresh location ` passed as an argument, and this location is de-allocated on termination.The de-allocation is performed using f , obtaining the state f ; s2 2 S(R;W ) from the states2 2 S(Y ) at the expanded world. Notice that f4`, which is necessary for the argument



P.W. O'Hearn 24(f; `) to be of the right semantic type; one might say that the principle that non-localentities don't interfere with local variables is forced on us by the use of �� in the semantictype of new. We refer to (Oles, 1982,1985; O'Hearn and Tennent, 1992; Tennent, 1991)for further discussion of this form of local-variable semantics. (We mention only that aspeci�c choice of fresh location ` need not be given because of the naturality of p: any` 62 R [W will do.)Other valuations, e.g. for conditionals and while loops, are as usual.7.4. DiscussionThere are simple equivalences, valid in the model, that illustrate reasoning principlesthat are sound in the presence of interference constraints. For example,x := 1; y := 2 � y := 2;x := 1when x; y : var are di�erent identi�ers. Because of the use of 
 in environments, x andy must denote independent locations, so assigning to one won't a�ect the other. Thisequivalence would not hold in a language that allowed aliasing.Principle II applies to types other than var, so it is more than just a statementabout aliasing. For example, (assuming the obvious interpretation of if) the followingequivalence is validif e = 0 then( c ; if e = 0 then diverge ) � divergeelse divergefor identi�ers c : comm and e : exp. The intuition that is captured here is that executionof c won't change the value of e because c and e are di�erent identi�ers.It is straightforward to prove an adequacy correspondence with a suitable operationalsemantics (Lent, 1992). However, the model is not fully abstract. Some of the di�culttest equivalences for local variables described by Meyer and Sieber (1988) are not validhere (speci�cally, their Examples 5 and 7).8. Semantical PassivityThe presentation thus far has not dealt with typing rules that permit any sharing betweenidenti�ers. In this section and the next we extend our analysis to account for Principle IIIfrom the Introduction. This principle allows for a limited amount of sharing, where read,but not write, access is involved. The main semantic concept that must be explainedis that of passivity , a property of types and phrases that amounts to the absence ofwrite-access capabilities.This section is concerned with an analysis of basic semantic properties of passivity.Typing rules are considered in Section 9.



A Model for Syntactic Control of Interference 258.1. Passive ElementsA program phrase is passive if it doesn't write to any (global) locations. We wish toexplain this semantically by saying when an \element" of a semantic domain is passive.As with the concept of independence, this will be relative to a possible world.If A is a K-object and a 2 A(R;W ) then we de�nepassive(a) () (R; ;) j= a.a is passive if comes from a world in which there are no writable locations.Example. Returning to the commandmeanings from Sections 3 and 4, examining theirsupport showspassive(c3); passive(c4); and passive(c5), while:passive(c2) and :passive(c0).The commands diverge, skip, and if x = 1 then diverge are passive, while x := x+ 1and x := 1 are not. 2The following result describes basic properties of passivity. Part (i) says essentiallythat closed terms, given by maps out of 1, are passive. (ii) relates passivity to products,and (iii) is Principle III. (iv) connects passivity and independence, and in particularimplies that passivity is preserved and reected by morphism parts of K-objects, andpreserved by K-maps (as in Lemma 3).Lemma 7 Suppose A;B are K-objects, a 2 A(X), b 2 B(X), � : A :! B, f : X ! Y ,and � is the unique element of 1(X).(i) passive(�)(ii) passive(a) ^ passive(b) () passive(a; b)(iii) passive(a) ^ passive(b) =) a4b(iv) passive(a) () a4aProof. (i) and (ii) are immediate from Lemma 4. (iii) and (iv) follow from the de�nitionsof support(�) and 4, and the functoriality of A and B. 28.2. Passive ObjectsThe passivity predicate says when an \element" is passive. We call a K-object A passiveif all of its elements are:A 2K is passive () 8X 2W : 8a 2 A(X) : passive(a).The functor [[exp]] is easily seen to be passive, because its de�nition does not mentionthe write components of worlds at all. [[comm]] and [[var]] are not passive.Passive objects are manufactured by an endofunctor ! on K:



P.W. O'Hearn 26!AX = fa 2 A(X) j passive(a)g, with ordering inherited from A(X)!A f a = A(f) a!�X a = �X awhere f is a W-morphism and � : A :! A0 is a map in K. !AX is directed-complete byLemmas 7(iv) and 3(iii). !Af and !�X are well-de�ned by Lemmas 7(iv) and 3(i) and(ii). The functoriality of ! and !A are straightforward, and pullback preservation followsdirectly from the de�nition of !Af and pullback preservation for A.Proposition 8 (i) A 2 K is passive i� !A = A(ii) !2 = !(iii) !(A�B) = !(A
B) = !A
!B = !A�!B(iv) !1 = 1.Proof. (i) and (ii) are obvious. (iii) follows from Lemma 7(ii) and (iii) and the de�nitionsof 
 and !. (iv) follows from Lemma 7(i). 2.We now consider the relationship with the ! modality from linear logic. We do this byinterpreting the usual logical rules for !.�; A ` B�; !A ` B Dereliction !� ` B!� ` !B R!�; !A; !A ` B�; !A ` B Contraction(We don't need to consider the Weakening rule for !, because it is already covered by thegeneral Weakening for 
.)Dereliction is given semantically by the map inA :!A :! A that simply includes the\passive subset" of A into A. Contraction is given by the diagonal map diag!A :!A :!!A
!A. This exists since !A
!B =!A�!B, and so we can in fact just use diagonal from!A to !A�!A. For R!, given a map m : !A :! B we can form the composite!A !!A !B-id -!mwhere id is the identity (since !2 = !). In the next section we will use the Derelictionmap to interpret application for passive procedures, the diagonal map for Contractionfor passive types, and R! for �-abstraction for passive procedures.Thus, there are maps of the right functionality for interpreting Dereliction, Contrac-tion, and R!. These maps also satisfy the usual categorical axioms for !, amounting onthe logical level to equivalences between proofs (e.g. Seely, 1989).Proposition 9(i) There are natural transformations � : ! :! I; � : ! :! !2 making (!; �; �) a comonad,where I is the identity functor on K.(ii) ! carries the canonical commutative comonoid structure for � to a commutativecomonoid structure for 
.



A Model for Syntactic Control of Interference 27Proof. (i). The comonad structure is given by de�ning �AX : !AX ! AX as theevident inclusion map and taking � as the identity (since !2 = !).(ii). The canonical comonoid structure (wrt �) on an object A is given by the di-agonal diagA : A :! A�A and the unique map � : A :! 1. ! takes the diagonal to!diagA : !A :! !(A�A), and this is just the diagonal map diag !A : !A :! !A�!A (note theequality !(A�A) = !A�!A). Also, since !1 = 1, !m : !A :! 1 is the unique map, and so(!A; !diagA; !m) is the canonical commutative comonoid structure (wrt �) for !A. Finally,observing that !A
!A = !A�!A and recalling that 1 is the unit of 
, we get that it is acommutative comonoid wrt (
;1) as well. 2To sum up, the structure on the categoryK that has been found is that of a symmetricmonoidal closed category (1;
;�� ) with �nite products (1;�) and a functor ! satisfyingthe conditions of Proposition 9.Theorem 10 Our category is a model of intuitionistic linear logic.(Since Weakening is valid, we actually have a model of a�ne logic with \of course" types.There are also additional properties satis�ed by our ! that are not valid in all intuistioniclinear models, such as the isomorphism !A
!B = !A�!B and the stronger condition ofLafont (1988) that !A is the cofree commutative comonoid over A (the ( direction of7(iv) is important for this). )This relation to linear logic is interesting. There is in fact a striking similarity in thegoals of syntactic control of interference and linear functional programming, as set out in(Lafont, 1988; Holmstr�om, 1988; Wadler, 1990; Abramsky, 1993). These might be con-sidered as two heads of the same coin. One aims to make imperative programming moreelegant, by limiting di�culties caused by aliasing and interference, while the other aimsto make functional programming more e�cient, by permitting destructive updating in apurely functional context and by limiting the need for garbage collection. That they havesimilar formal structure is perhaps more than coincidence. (A preliminary, not entirelysatisfactory, syntactic study of this relationship has been attempted in (O'Hearn, 1991).)9. Passive TypesThis section considers syntax rules that take Principle III into account. The most impor-tant addition will be a restricted form of the structural rule of Contraction, which wasconspicuously absent in Section 2. Contraction is the source of sharing in �-calculus, soto maintain Principle II we will allow it only for passive types.It should be mentioned that the presentation in this section departs somewhat from(Reynolds, 1989). One di�erence is that we have chosen to use explicit structural rulesin our formulation, while Reynolds' systems are in a more familiar format where theserules are left implicit. This is for the most part a minor point, though focusing onstructural rules perhaps more clearly illustrates the logical avour of the approach (e.g.the restricted Contraction). A more signi�cant departure is that we do not consider theuse of intersection types. We will comment briey on this at the end of the section.



P.W. O'Hearn 28�; x : A; y : A ` t : B�; z : A ` t[z=x; z=y] : B Contraction (A is passive)� ` p : A!P B � ` q : A�;� ` p(q) : B !P E �; x : A ` t : B� ` �x:t : A!P B !P I (� is passive)Table 2 Rules for Passive Types9.1. Typing Rules and their InterpretationsThe grammar of types is extended to include types for passive proceduresA;B ::= � � � A!P B.The intention is that a procedure of type A!P B must not write to any (global) variables.For example, �x:x := y is of type var !P comm, when y : exp, because the only freeidenti�er y is in a read-only position. On the other hand, �y : x := y is not of typeexp !P comm when x : var, because the procedure has write access to the globalvariable denoted by x.[[A!P B]] is de�ned as !([[A]]�� [[B]]). We call types of the form exp and A!P B passive.(Incidentally, if B is a passive type then [[A! B]] and [[A!P B]] are isomorphic, so thereis a certain amount of redundancy in the types; Reynolds (1989) in fact disallows typesof the form A ! B when B is passive.) A context x1 : A1; :::; xn : An is termed passiveif each Ai is a passive type. The empty context is considered passive. Some typing rulesare in Table 2. In Contraction, t[z=x; z=y] is t with z substituted for x and y.Lemma 11 If A is a passive type then [[A]] is a passive K-object. If � is a passivetyping context then [[�]] is a passive K-object.Proof. [[exp]] is passive, and [[A!P B]] is passive by Proposition 8(i) and (ii). The resultfor [[�]] then follows from Proposition 8(iii) and (iv) 2Using Contraction, passive identi�ers can be shared between a procedure and its ar-gument, or between concurrent commands. For example, assuming typical rules for +and 1, we can type x := z k y := z + 1:......x :var; z1 :exp ` x := z1 : comm ......y :var; z2 :exp ` y := z2 + 1 : commx :var; y :var; z1 :exp; z2 :exp ` x := z1 k y := z2 + 1 : comm Parx : var; y : var; z : exp ` x := z k y := z + 1 : comm Contraction



A Model for Syntactic Control of Interference 29The restriction of Contraction to passive types is essential. If it were allowed for varthen we could type x := 1 k x := 2, or a procedure call like(�x : � � �y � � �x := 1 � � �) ywhich would lead to variable aliasing.Contraction is interpreted by the diagonal map diag : [[A]] :! [[A]]
[[A]], which existsby Proposition 9 and Lemma 11:Contraction [[�]]
[[A]] [[�]]
[[A]]
[[A]] [[B]]-diag -[[t]]For !P I, we obtain [[�]] [[A]]�� [[B]]-curry[[t]]as usual, and then apply ! to get![[�]] !([[A]]�� [[B]])-!curry[[t]]Since � is a passive context, [[�]] is a passive K-object. Thus, ![[�]] = [[�]] and the map!curry[[t]] is of the right functionality for the !P I rule.!P E is given by[[�]]
[[�]] ([[A]]�� [[B]])
[[A]] [[B]]-([[p]]; ,!)
[[q]] -appwhere ,!:!([[A]]�� [[B]]) :! ([[A]]�� [[B]]) is the evident inclusion.Finally, we remark that the interpretation of passive procedure types using !(A��B)can be characterized via an adjunction. Let {
pB be the the restriction of {
B to thesubcategory Pass of passive objects in K (B need not be passive here). Then !(B�� {),as a functor from K to Pass, is right adjoint to {
pB. (This follows straightforwardlyfrom Proposition 6 and the fact that maps in K preserve passivity.) Thus, we have anisomorphism of hom setsHomK(A
B;C) �= HomK(A; !(B��C))which holds in general only when A is passive. This means also thatHomK(A;B) �= HomK(1; !(A��B))since 1 is passive. (We will use this last isomorphism implicitly when interpreting blockexpressions below.)9.2. Block ExpressionsWe illustrate passive procedure types with a form of block expression:blkexp : (var!P comm)!P exp:



P.W. O'Hearn 30Intuitively, execution of blkexp(t) proceeds by �rst allocating a new (local) location `,then executing t(`) in an extended state in which ` is initialized to some value, and ontermination returning the �nal value of ` as the value of the expression block. The inten-tion is that passivity of t should ensure that there are no changes to non-local variables,and so the use of side-e�ects in the body of a block expression should be invisible outsideits scope. The treatment of block expressions here is inspired by (Tennent, 1991).As an example block expression, if n : exp thenblkexp�� fact :new (� k:fact := 1 ; k := n ;while k 6= 0 dofact := fact�k ;k := k � 1) �calculates the factorial of a non-negative integer n in a side-e�ect-free fashion.We give the semantics by de�ning a map blkexp :!([[var]]�� [[comm]]) :! [[exp]]. Ift 2!([[var]]�� [[comm]])(R;W ) and s 2 S(R), thenblkexp (R;W ) t s = � s2(`) if dteY (f; `) s1 = s2unde�ned if dteY (f; `) s1 "where� ` 62 R [W is any fresh location,� f = (R; ;) ,! Y , where Y = (R [ f`g; f`g),� [[var!P comm]]((R; ;) ,! (R;W ))dte = t, and� s1 = (s j ` 7! 0).dte exists because t is passive, and is unique by Lemma 1. Since the commandmeaningdteY (f; `) lives at the world (R[f`g; f`g), by the de�nition of [[comm]] this means thatthe values of global variables in R [W are not altered. That is, the fresh location ` isthe only location that can have a di�erent value in s2 than in s1. Thus, the passivity oft ensures that the expression block is side-e�ect-free when viewed from outside the scopeof the declaration, where changes to local variables aren't visible.9.3. RecursionAs stated in (Reynolds, 1978,1989), it is not possible to include a general �xed-pointcombinator in syntactic control of interference as it presently stands. If F = �f:t assignsto a global variable denoted by a free identi�er, then f and this identi�er will interferein a �xed-point de�nition YF , violating Principle II. Another way to see the problem isto notice that the right-hand side of the �xed-point equation YF = F (YF ) violates therestriction that a procedure never interfere with its argument. This di�culty is mitigatedsomewhat by the fact that we can de�ne �xed-points of passive procedures. If �f:t is



A Model for Syntactic Control of Interference 31passive then there will be no assignments (to global variables) in the body that couldcause interference with f . Similarly, there is no problem with the �xed-point equation.Jumps cause related problems. If we take the position that a \label" denotes a con-tinuation, then it interferes with any variables that are assigned to \later." This seemsdi�cult to reconcile with the principle that distinct identi�ers don't interfere, withoutrelaxing the principle or introducing a naming convention that groups interfering contin-uations and variables together into a common collection.These problems are the subject of current research. Here we are going to simplyindicate that the relevant �xed-points for passive procedures do exist in our model.Fixed-points are calculated in the full subcategory K0 of K whose objects A are suchthat� A(X) has a least element, for each W-object X, and� A(f) is strict, for each W-morphism f .The strictness requirement applies only to the objects of K0; a component �(X) of anatural transformation � in K0 need not be strict. K is an analogue of the category of\predomains," while K0 is a category of \domains."Notice that the \simple" [[var]] that we have opted for does not lie in K', though[[comm]] and [[exp]] do. If A is any K-object and B is a K0-object then A��B is in K0.In fact, all of the structure (
, �� , !) cuts down to this smaller category, including theexponential adjunction and the comonoid structure for !.The strictness requirement has two (related) purposes. First, \global" least elementsare needed in B for (A��B)X to have a least element (Oles, 1982). Second, for the�xed-point combinator to be natural the calculation of �xed-points must be preservedby the morphism parts of functors, and strictness is essential for this.Now we can de�ne the �xed-point map YA :!(A��A) :! A for objects A in K0. Ifm 2!(A��A)(R; ;) then�x(m) = Gf(F i? j i is a natural numbergwhere F 0(d) = d and F i+1(d) = m (R; ;) (id (R;;); F i(d)), for d 2 A(R; ;).Notice that id (R;;)4d for such a d since both are passive, and F i(d) 2 A(R; ;) becausem is passive. Notice also that id(R;;)4? because support(?) = (;; ;), so ? 2 [[A]](R; ;)and fF i?g is in fact have a chain in [[A]](R; ;). We then de�neYA(X)m = A(support(m) ,!X)(�xdme):9.4. DiscussionThe syntactic treatment of passivity in this section is not entirely satisfactory. As in(Reynolds, 1978), �-reduction does not preserve typings. For example, it is easy toderive
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