Math. Struct. in Comp. Science (1997), vol. 7, pp. 7-7

A Model for Syntactic Control of
Interference

P. W. O’Hearn
School of Computer and Information Science
Syracuse University, Syracuse, NY, USA 13224-4100

Received 2277

Two imperative programming language phrases interfere when one writes to a storage
variable that the other reads from or writes to. Reynolds has described an elegant
linguistic approach to controlling interference in which a refinement of typed A-calculus
is used to limit sharing of storage variables; in particular, different identifiers are
required never to interfere. This paper examines semantic foundations of the approach.

We describe a category that has (an abstraction of) interference information built
into all objects and maps. This information is used to define a “tensor” product whose
components are required never to interfere. Environments are defined using the tensor,
and procedure types are obtained via a suitable adjunction. The category is a model of
intuitionistic linear logic. Reynolds’ concept of passive type — i.e. types for phrases that
don’t write to any storage variables — is shown to be closely related, in this model, to
Girard’s “of course” modality.

1. Introduction

The ability to update the state is the source of much of the flexibility and efficiency of
imperative programming, but also many of its difficulties. Undisciplined sharing of stor-
age variables can lead to subtle program errors that are difficult to detect and trace, and
just the possibility of this kind of interference, even when absent, can have a significant
detrimental impact on ease of reading and reasoning about programs (e.g. Hoare, 1974b;
Reynolds, 1978). The well-known dishevelment caused by variable aliasing — when differ-
ent identifiers name the same storage variable — in Hoare-style proof systems for reasoning
about assignment and procedures (Hoare, 1971) is a kind of theoretical symptom of the
problems brought on by interference.

There are related, and perhaps even more vivid, problems in the presence of concur-
rency, where uncontrolled interference can be a serious obstacle to program predictability.
As a result, a number of authors (e.g. Hoare (1974a) and Brinch Hansen (1973)) have
argued that all interference between concurrent processes should be mediated by, say,
monitors or communication primitives.

P.W. O’Hearn 2

Reynolds’ (1978,1989) syntactic control of interference approaches these issues from a
linguistic viewpoint, by using syntactic constraints that limit interaction between differ-
ent program parts. The aim is not to eliminate interference entirely, but i1s to make 1t
more manageable by arranging matters so that (a conservative approximation to) non-
interference is easy for the programmer or compiler to recognize. Programs can still use
state, but there is a tighter control over sharing of storage variables.

The purpose of this paper is to show that the interference constraints that form the
basis of the approach have good semantic properties. This is done in two steps. First, we
describe a category in which interference properties of semantic entities, as well as types,
are made explicit. Then, using this category we examine interference control principles
from a semantic perspective, and familiar category-theoretic structure falls out quite
directly. The structure we obtain amounts to a model of (intuitionistic) linear logic

(Girard, 1987), and a bit more.

A model for syntactic control of interference was previously proposed in (Tennent, 1983).
This was basically an untyped model, in the “Curry” style. While this kind of interpre-
tation can be useful for proving properties of interference constraints, we believe that
the “Church-style” model presented here gives a more satisfactory semantic account of
the type-theoretic basis of the approach (especially in the close relationship between
categorical structure and syntactic constraints).

Controlling interference is an old problem in programming languages. It dates as
far back as Fortran and Concurrent Pascal, with their anti-aliasing restrictions (Brinch
Hansen, 1973; ANSI, 1978; see also Hoare, 1971), and plays an important role in such
languages as FEuclid, Turing and occam (Cordy, 1984; Popek et. al., 1977; Holt et.
al., 1987; INMOS, 1988). We will not attempt to survey here the growing body of recent
work on interference control and related topics. The reader is referred to the papers by
Lucassen and Gifford (1988), Wadler (1990,1992), Guzman and Hudak (1990), Swarup

et. al. (1991), and their references for further discussion of this.

Syntactic control of interference represents an important step toward our understand-
ing of how a programming language could provide the benefits of state, while avoiding
many of the difficulties it causes in present-day languages. It should be mentioned, how-
ever, that the approach has not yet been perfected. In particular, there are presently
difficulties with recursion and jumps (Reynolds, 1989); this will be discussed briefly in
Section 9. Nevertheless, we feel 1t remarkable that the syntactic restrictions at the core
of the approach are semantically so well-behaved, especially since interference is often
regarded as a low-level operational concept. This encourages our belief in the possibility
of clean, and yet practical, methods for harnessing the power of assignment.

We will outline the main features of our model later in this introductory section, after
discussing background on interference control.

A Model for Syntactic Control of Interference 3

1.1. Background on Interference Control

Syntactic control of interference is based on a refinement of typed A-calculus, where
typing constraints are used to limit the manner in which interference can arise. The
constraints are motivated by a number of “principles of interference control” described
by Reynolds, which are chosen so as to ensure that interference is easily detectable.

The first principle is

1. if no identifier free in phrase P interferes with any identifier free in phrase @, then
P and @ don’t interfere.

This is an assumption about the nature of the language which says, in effect, that all
“channels” of interference must be named by identifiers. In particular, closed terms don’t
interfere with any other terms. (We use “phrase” and “term” interchangeably.)

The second principle is what necessitates syntactic constraints.
II. distinct identifiers never interfere.

Combined with I, this provides the programmer with a particularly simple method of
predicting non-interference, and meets head on problems caused by such phenomena as
aliasing of storage variables. For example, Principle IT implies that running the assign-
ment statements x := 1 and y := 2 in any order, or in parallel, is determinate at an
appropriate level of abstraction. This would not be the case if aliasing between and y
was allowed, because the same storage variable would be destructively altered by each
statement.

Principle II may seem overly restrictive at first, but interference 1s not forbidden al-
together. For example, an abstract data structure can be represented by a collection
of interfering procedures that are different qualifications of the same identifier, such as
different components of a “record” or “object” (Reynolds, 1978; Dahl, 1972). In effect,
interference is treated as an exceptional case, which requires effort from the programmer
to indicate explicitly. In contrast, most imperative languages have (the possibility of)
interference as the default case, with determination of non-interference requiring effort.

The final principle allows a limited amount of sharing.

IT1. passive phrases, which don’t write to any (global} variables, don’t interfere
with one another.

For example, if y 1s a “read-only” expression then, according to all of the Principles I-11T,
the assignment statements z := y+ 1 and z := y + 2 won’t interfere. Note that sharing
of read access is consistent with Principle II: two identifiers can have read access to the
same storage variable, as long as neither has write access to it.

Notice that these principles do not attempt to predict all interference relationships
between program phrases, such as whether different uses of the same non-passive identifier
interfere. More “fine-grained” interference detection is often used in parallel program
optimization, e.g. to determine if different uses of an array identifier don’t interfere

P.W. O’Hearn 4

(Padua and Wolfe, 1989). Of course, linguistic interference control and algorithmic
interference detection have different aims (and should be considered complementary),
with simplicity being of the upmost importance in the former, enabling a programmer
to recognize interference easily in many cases.

1.2. Semantic Aspects of State Dependence

The backbone of our analysis of interference control i1s a notion of the support of a se-
mantic entity @ as a pair R, W of finite sets of locations (storage variables). Intuitively, R
consists of the locations that a reads from, and W consists of the locations that a writes
to. Once support is defined it is then straightforward to formulate a semantic counter-
part of non-interference, which we will call independence, by comparing the supports of
semantic entities to determine whether one writes to a location that another reads from
or writes to.

This notion of support is inspired in part by earlier work of Halpern et. al. (1983)
and Meyer and Sieber (1988). There the support of a semantic entity is identified as,
intuitively, the set of locations upon which it depends. Our formulation is different in two
ways. The first is that we separate the read and write capabilities of locations; this will
turn out to be crucial for the treatment of passivity. The second is that our formulation
uses the functor-category approach to program semantics initiated by Reynolds (1981)
and Oles (1982, 1985). In fact, the treatment of support given by Meyer and Sieber can
be considered to have functors at its core. Making this explicit leads to a cleaner and
simpler treatment. We refer to the expository article (O’Hearn and Tennent, 1992) for
further discussion of this. See also (Tennent, 1990,1991; O’Hearn and Tennent 1992,1993)
for other related work on functors and non-interference.

The reader may wonder why we are invoking this category-theoretic machinery. The
reason is that the notion of support is surprisingly difficult to make precise in standard
cpo semantics. There is no trouble defining it for meanings of basic program types, such
as commands (i.e. state transformations) or ezpressions, but getting a definition that
works well at higher types is problematic (try it!). As in the just-mentioned work on
the semantics of state, the key role of functors here will be to explicitly include support
information in the definition of what count as meanings at higher types.

The basic idea of our semantics is to have a category of “possible worlds” in which
the objects are supports. The worlds are used to partition semantic entities according
to the variables that they read or write, and semantic maps are required to respect this
structure. This 1s done by interpreting types as functors from this category to a category
of domains, and terms as natural transformations between these functors. So types
come with interference information “built-in.” This opens up the possibility of defining
type constructors, as operations on a functor category, in a way that takes interference
information into account.

A Model for Syntactic Control of Interference 5

1.8. QOverview of the Model

A main aim of our model will be to make Principle II evident. This is an an assumption
about the nature of the environment, one that we shall take as our starting point. We do
this by defining the notion of environment so that the only environments are ones in which
distinct identifiers denote non-interfering (independent) meanings. The principle is thus
regarded as a prior assumption about the semantic character of the language, present in
the structure of all semantic maps (definable or not), rather than as a property to be
proved about valuations.

Environments will be built up using a product-like operation as usual. But Principle I1
tells us right away that a cartesian (categorical) product would not be appropriate in this
context. The reason is that we do not want a “diagonal” map that takes an environment
and forms a bigger environment in which there are two copies (b,), denoted by different
identifiers, of a single component b from the smaller environment: if b interferes with
itself then this would violate II.

We will instead use a restricted form of product which, while not cartesian, satisfies
the requirements for symmetric monoidal categories. The intuition about this “tensor”
product A® B is that its elements are pairs whose components don’t interfere with one
another. A term ¢ with, say, two free identifiers of types A and B is interpreted as a map
of the form

[

A®B C

thus achieving our basic aim of making Principle I evident. Procedure types are then
obtained via a suitable exponential adjunction:

Hom(A®B,C) = Hom(A, B— ().

This gives a very satisfactory explanation of the interaction of procedures and environ-
ments in the presence of interference constraints.

For Principle III, we describe a notion of passive object in our category, where a type is
passive iff none of its “elements” writes to any storage variables. If A and B are passive
objects then the key property is that A®B is isomorphic to the (categorical) product
AxB. In particular, for such a passive A there is a diagonal map from A to ARA,
corresponding to the intuition that sharing of read access is permissible. In categori-
cal terminology, for each passive type (and only for passive types) there is a canonical
commutative comonoid structure. This semantic treatment of passivity amounts to a

(('77

categorical interpretation of the modality from linear logic (Lafont, 1988; Seeley,

1989).

This categorical structure suggests a semantic view of the typing rules of interfer-
ence control that i1s independent of the interference-specific aspects of the underlying
category. This abstraction is especially useful because the details of the semantics of
non-interference that we present are, in truth, quite complicated in certain respects.
However, we believe that it 1s important to see how this categorical structure arises from
an account of non-interference in a specific case. It is the interplay between the concrete

P.W. O’Hearn 6

model and categorical principles that is important here, with the former giving assurance
that the abstraction provided by the latter is indeed faithful to more concrete program-
ming intuitions. Our semantic analysis would be incomplete if it did not include both of
these perspectives.

1.4. Outline

The remainder of the paper is organized as follows.

We begin in Section 2 by describing a simple language that incorporates Principles
I and II. It should be mentioned that the type system used in this study is actually a
stripped-down version of those described by Reynolds. In particular, we do not consider
record types or intersection types, which were used by Reynolds (1989) to cope with
subtleties in the syntactic treatment of passivity. These omissions are made mainly to
simplify the exposition.

The use of functors in explicating certain aspects of state dependence is the topic of
Sections 3-5. Section 3 begins with the definition of the category of worlds, and then
provides an illustrative example of the category at work. Sections 4 and b are devoted
to defining and exposing basic properties of support and independence.

In Section 6 we use the independence predicate to describe the tensor ® and its cor-
responding exponential adjunction. An interpretation of the typing rules from Section 2
is given in Section 7. This follows fairly directly from categorical considerations. We do
not carry out a detailed study of properties of the interpretation itself, but we do look
at some semantic equivalences that illustrate reasoning principles that are sound in the
presence of interference constraints, principles that would be unsound otherwise.

Sections 8 and 9 are concerned with passivity. Section 8 is devoted to categorical mat-
ters, including the connection to intuitionistic linear logic. Section 9 gives interpretations
for typing rules that incorporate Principle III into the language.

2. Interference Constraints

We will use A, B to range over types in our language:
A, B ::=exp | comm |var | A — B.

var, comm and exp are the types of (storage) variables, commands and expressions,
respectively. Commands denote state transformations, while expressions denote functions
from states to values. The language is Algol-like in the sense of (Reynolds, 1981): all
side-effects are encompassed in the type comm, expressions are side-effect-free (but
state-dependent), and procedures are called by-name. A procedure can cause side-effects
only indirectly, when used within a phrase of type comm.

A typing context T' is a (possibly empty) list z1 : Ay, ..., 2, : Ap, where the x; are dis-
tinct identifiers and the A; are types. (We assume an infinite, but otherwise unspecified,

A Model for Syntactic Control of Interference 7

ac:Al—x:AId
Tww:Brx: AAFt: A TRt A]
T Ay B,AFt: A Exchange T ARt A Weakening
T,0:AFt:B ?TFp:A— B Abg: A
Trweaos ! T At B —F

7kFp:comm 7 Fg:comm

7 F piq: comm Sequencing

7kFp:comm Al g:comm

7, AFpllg:comm Par

7FV:.:var 7TFE:exp
7V :=F:comm

Assignment

Table 1 Typing Rules

collection of identifiers.) We write T', A for the concatenation of T' and A. This assumes
that identifiers in I' and A are disjoint, which is the implicit assumption whenever we
write [', A. Typing judgements are of the form I' - ¢ : A, where ¢ is a term, A is a type,
and [is a typing context. Some typing rules are in Table 1. Other rules are in Sections

7 and 9.

The use of different contexts for the procedure and the argument in the elimination
rule — F plays a central role in the approach. An application p(¢) can be typed using
this rule only if the free identifiers in p and ¢ are disjoint. This ensures that binding
using A preserves the property that distinct identifiers don’t interfere. For example, in

Az. oy g

if we assume that no identifier free in ¢ interferes with y then, using II, we can conclude
by Principle I that ¢ doesn’t interfere with y. Thus, the bound identifier x won’t interfere
with y either, preserving Principle II. (So A — B is the type of procedures that never
interfere with their arguments.)

Put another way, this constraint on application prevents the typing of
because y is free in both the argument and procedure. This is how aliasing between z
and y in the body of the procedure 1s avoided.

As in (Reynolds, 1978, 1989), for illustrative purposes we consider a simple form of
parallel composition, whereby p || ¢ is well-formed only when p and ¢ don’t interfere.
The intention is that this will ensure that their parallel execution is determinate. This 1s

P.W. O’Hearn 8

achieved with the different contexts for p and ¢ in the rule Par. For example, we cannot
type something like 2 := 1 || z := 2.
Principle IIT has not yet been taken into account. It will allow a limited form of sharing

between concurrent commands, and between procedures and their arguments. This is
deferred to Section 9.

3. Functors and State Dependence

In the possible-world approach to program semantics, types are interpreted as functors
from a small category W of “possible worlds” to a category D of domains, and terms are
given by natural transformations. Instead of a single set or domain, types are families
of suitably related domains.

This approach was used initially by Reynolds and Oles in the semantics of local-variable
declarations. Their idea was that allocation of a local variable in a block such as new z . C'
induces a change in the “shape” of the store, because it results in there being an extra
storage variable (bound to x) that was not available previously. Thus, the collection of
possible states varies as storage variables get allocated and de-allocated. This variation
was modeled using a category of worlds in which the objects were abstract store shapes
and the morphisms were “expansions” that allocated additional variables.

We will use possible-world structure to partition semantic entities according to the
storage variables (or “locations”) that they read from or write to. This will be accom-
plished with a suitable choice of W. The worlds will be pairs (R, W) of finite sets of
locations, with R representing “readable” locations and W “writable” ones. The under-
lying intuition is that, for a functor [A] : W — D corresponding to a type A,

[AJ(R, W) is a domain of meanings appropriate to A which may read from (only)
locations in R, and write to (only) locations in .

NoTaTiON: We write A € C to indicate that A is an object of a category C. D is the
category of directed-complete posets (predomains) and continuous functions. Semicolon
denotes composition in diagrammatic order in various categories. Our model will be a
full subcategory of the functor category DW.

3.1. The Category of Worlds

We assume a fixed infinite set Loc (of locations). The category W has

OBJECTs: The W-objects are pairs (R, W) of finite subsets of Loc.

MorpPHISMS: A W-morphism f : (R, W) — (R/,W') is an injective function from
RUW to R'UW' such that f(R) C R’ and f(W) € W’'. (Though we won’t be
explicit on this point, to be completely precise we should label each morphism with
its domain and co-domain in W, to disambiguate cases when a single function can
serve as a number of W-morphisms.)

A Model for Syntactic Control of Interference 9

Here, f(R) is the image of f on locations in R, and similarly for f(W). We will
also write f(X) for the world (f(R), f(W)), when X = (R, W). Composition is just
composition of set-theoretic functions. We denote the identity W-morphism on world X
by idx.

We extend set-theoretic notion for subset inclusion (C), union (U), intersection (N)
and the inclusion function L — L’ between sets L and L’ (when L C L) to worlds as

follows:
(RW)C (RN W)<— RCR ANWCW
(RW)U(R, W) = (RUR , WUW)
(RW)N(R, W) = (RNR,WnW)
(RaW)— (R,W') = RUW — R UW".

We call (R, W) — (R, W') an inclusion morphism.

‘W-morphisms will be used to convert semantic entities at one world to another world
where possibly additional locations are readable or writable. The requirements f(R) C R’
and f(IW) C W' mean that, in general, we cannot do such a conversion to a world where
fewer locations are readable or writable. The injectivity requirement ensures that distinct
locations do not get identified when passing from one world to another, a restriction that
is crucial for the definition of morphism parts of various functors for program types.

W is similar in some respects to the category of finite sets and injective functions,
a category that can be used to treat local-variable declarations (Moggi, 1989; O’Hearn
and Tennent, 1992). The part of our development having mainly to do with principles I
and II, i.e. up until the end of Section 7, could in fact be carried out using this simpler
category. However, the separation of read and write aspects of locations will prove to be
important for the treatment of passivity.

3.2. Command Meanings

We now illustrate the use of state-dependence information in W by considering a functor
[comm] of command meanings. For any world (R, W), [comm](R, W) will consist of
state transformations for commands that, intuitively, only read from locations in R and
write to locations in W. Accordingly, two conditions on state transformations will be
imposed, one concerned with locations that are not writable and the other with locations
that are not readable.

Suppose ¢ is a state transformation. If ¢ doesn’t write to a location, then the location
should have the same value in the output state as in the input state. For read access, if
applying ¢ to state s doesn’t read location £ then the result should be independent of the
value of £. This “independence” splits into two cases: (i) the value of £ is left unchanged,
and this does not depend on the particular value that ¢ has, or (ii) £ is set to a specific
value that does not depend on the initial value of £. (i) corresponds to the case when ¢
neither reads nor writes ¢, and (ii) is the case when ¢ writes but does not read ¢. These
points are incorporated into the definition of [comm] below.

If . C Loc then we define the states for L as a set of functions

P.W. O’Hearn 10

S(L) = L — Values

where Values is some set of storable data values (e.g. integers). For simplicity, we have
assumed that there is only one kind of value that can be stored as the contents of a
location. To cope with more than one kind of storable value, we could tag each location
with a type, indicating the kind of value it can hold, and then require that states and
‘W-morphisms respect these tags.

We now define [comm] on W-objects:

[comm](R, W) = {c € S(RUW)~ S(RUW) | if e(s) = ' then
Yie RUW,
Lg W = s(f) =s'(¢), and
{éd R — (VvEValues.c(5|£b—>v):(5’ | £ — v)
V Yu € Values.c(s | £ — v) = 5’)

}, ordered by graph inclusion.

Here ~ is the partial-function space and (s | £ — v) is the state like s except that £ maps
to v.

In the case that W = R = L this definition reduces to S(L) ~ S(L), which is similar
to the notion of command meaning that we would use if finite sets and injective functions
was to serve as the category of worlds (O’Hearn and Tennent, 1992; Oles, 1985). The
extra conditions in the definition correspond to the points (i) and (ii) discussed above,
and are due to our separation of read and write aspects of locations.

To make [comm] into a functor, for f: (R, W) — (R, ') we must define
[comm]/ : [comm](R, W) — [comm](R', W').
Note that if f: (R, W) — (R, W') and s € S(R' UW’) then (f;s) € S(R U W).
For ¢ € [comm](R, W) and s € S(R' UW'), [comm]fcs is undefined if ¢(f;s) is

undefined (notation e(f;s)]). If ¢(f;s) = s1 € S(RUW), then we define [comm]fes
to be s; € S(R'UW’), where for £ € RF UW'

[s(t)y ifeg f(RUW)
s2(0) _{ s1(0) if (0 = ¢.

That is, up to location-renaming by f, [comm](f)e extends ¢ by the identity on extra
locations in world (R', W’) that are not in the image of f.

To illustrate this definition, consider the meaning ¢0 € [comm]({z, v}, {x, y}) corre-
sponding to the assignment statement x := 1. (For notational simplicity, in examples
we will use z,y, ... for identifiers as well as the locations that they denote.) ¢0 takes an
input state s € S({z,y}) and produces as output s’ € S({z,y}), where s'(z) = 1 and
s'(y) = s(y)-

Clearly, z := 1 doesn’t read from x or y, so we should be able to remove = and y from
the read component of the world. Recalling our two cases about read access, we note

A Model for Syntactic Control of Interference 11

that (i) ¢ acts like the identity on y, and the final value of x doesn’t depend on y, and
(ii) it sets @ to 1, irrespective of what values are in the initial state. Therefore, from the
definition of [comm] it follows that c0 is also in [comm](®, {z, y}) and

0 = [eomm] (0, {z, s}) — ({z.y}, {x,4})) 0

On the other hand, since := 1 doesn’t write to y we should be able to remove y from the
write component. The result is a meaning c¢1 € [comm](0, {x}) that maps s € S({z}) to
s', where §'(z) is 1. [comm] is defined on morphisms so that, for a morphism f : X —V
and ¢’ € [comm]X, [comm]f¢' is the identity on any locations not in the image of f.
Therefore, for our ¢0 and cl,

0 = [eomm] ((0,{}) — ({z.y}.{z.4})) 1

This example illustrates an important intuition: the meaning ¢0 “lives at” the world
({z,y},{z,y}), but it “comes from” each of the smaller worlds by using the appropriate
component of the morphism part of [comm].

(0, {=}) (0, {z,y}) ({z,y}, {=z,y})

(D—(—(

Furthermore, (0, {z}) is the “smallest” world that c0 comes from in this sense (via an
inclusion); we say that (0, {x}) is the support of c0. Notice how well this accords with
intuitions about support. The absence of y in the write component of (§, {z}) indicates
that ¢0 (or the assignment statement z := 1) doesn’t write to y, and the empty read
component indicates that no locations are read from.

4. Support

In this section we define a notion of support that, intuitively, identifies the locations
that a semantic entity reads from or writes to. The strategy will be to generalize the
treatment of support for command meanings sketched at the end of the previous section.
This notion of support will be applicable to all functors in a full subcategory of the
functor category DW.

4.1. Pullbacks and Support

Since types in our model will be functors from W to D, the support of a semantic entity
will be a concept defined relative to a possible world, i.e. a W-object. For such a functor
A and element @ € A(X), where X is a world, we want to identify the “smallest” world
that a “comes from.” As a prelude to the definition of support we make this “comes
from” intuition precise.

P.W. O’Hearn 12

Suppose A: W — D, X € W, and a € A(X). When Y C X, we define
YEa@ <= Fad € AY). AY —=X)d = a.

Y = ais read “a comes from Y.” (The notation Y |= a does not indicate the relevant
functor (A) or world (X), but no ambiguity is likely to arise as these will always be clear
from context. Similar remarks apply to the notations suppori(a), aAb and passive(a) to

be defined later.)

We are going to define the support of a € A(X) as the smallest Y C X such that ¥ = a.
Such a smallest world is not guaranteed to exist for arbitrary functors A. However, we
can get a satisfactory definition when the following property holds

(*) for all worlds X,Y,Z CY, and a € A(X),

YEeANZEFe = YNZEa

When (%) holds, the intersection of the (finite) collection of ¥’s such that ¥ |= a will be
the support of a.

We can ensure property (*) by making use of a standard connection between intersec-
tions and pullbacks. Recall that, in the usual category of sets, if Y, Z C X, then

Y/X\Z
S

is a pullback square, where the unlabeled arrows are inclusion functions. This is also
a pullback square in W, when the unlabeled arrows are what we called the inclusion
morphisms and N 1s the componentwise intersection of W-objects.

Note also that the category W has all pullbacks. Given W-morphisms j : ¥ — X and
2
k:Z — X, a pullback square Y 7 is obtained by setting X' = j(Y)Nk(Z) and
N A
defining h and i in the evident fashion so that h(¢) = j=1(¢) and i(¢) = k=1(¢).

Now, property (*) can be guaranteed to hold whenever the functor A : W — D
preserves pullbacks.

Proof of (*). IfY |Eaand Z |= a then there are a; € A(Y) and as € A(Z) such that
AY — X)a; = a and A(Z — X)as = a. Let {*} be a one-point domain, and define
Fi{s} = AY)and g : {*#} — A(Z) by f(*) = a1 and g(*) = az. Consider the following

A Model for Syntactic Control of Interference 13

diagram, where the unlabeled arrows are A(7) for the appropriate inclusions i.

{*}
The outer diagram commutes by the definitions of f and g so, since A preserves pullbacks,
there is a unique k& making the whole diagram commute. In particular, k(x) € A(Y N Z)
must be such that A(Y N7 — 7) k(*) = a2, and this implies Y N 7 = a. a

Thus, if A: W — D preserves pullbacks, X is a world, and a € A(X), we define
support(a) to be the unique world such that

support(a) | a, and
VY CX.Y Ea = support(a) CY.

That is, suppori(a) is the “smallest” world that @ comes from.

Example. Define ¢2,¢3 € [comm]({z}, {z}) by

c2s = s’ where §'(x) = s(x) + 1,
s — { undefined if s(z) =1

s otherwise.

These could be denotations of commands := « + 1 and if « = 1 then diverge.
Recalling also ¢0 from the previous section, we calculate

support(c2) = ({z}, {z}), support(c0) = (0,{x}), and support(c3) = ({x},0).

If we let ¢4 denote the everywhere-undefined partial function and ¢b the identity function
in [comm]({z}, {z}) then support(cd) = support(ch) = (0,0).

4.2. The Semantic Category

We define the K to be the category whose objects are pullback-preserving functors from
W to D and whose morphisms are all natural transformations between such functors,
with the usual (vertical) componentwise composition. One can easily verify that [comm)]
preserves pullbacks.

K has finite products, which are calculated pointwise as is typical in functor categories.
A terminal object 1 € K can be defined as 1(X) = {+} and 1(f) = the identity function

P.W. O’Hearn 14

on {x}, for some singleton domain {*} and any world X and f: X — Y. If A, B € K,
X € W and f is a W-morphism then

(AxB)(X) = A(X)xB(X), ordered componentwise
(AxB)(f) = A(f)xB(f)

where x on the right-hand side is the (categorical) product in D. For maps n: A — A’
and g : B — B’ in K, the natural transformation nxp : AxB — A’x B’ is defined by
setting nxpu X = n(X)xpu(X). Pullback preservation for Ax B follows straightforwardly
from the definition of the W-morphism part of Ax B.

A consequence of the pullback-preservation requirement is that the morphism parts of
functors in K are automatically order-reflecting, where a map m : D — E of predomains
is order-reflecting iff Vd,d" € D.m(d) <gp m(d’) = d <p d’. This result (which was
pointed out by A. Pitts) will play an important role in our development, ensuring that
domain-theoretic structure 1s respected when we define the tensor product, exponential,
and passive types in K.

Lemma 1 Suppose A€ K and f: X — Y is a W-morphism. Then the map A(f) is
order-reflecting. As a result, it is injective and its image is directed-complete.

Proof. First, note that for any map f : X — Y in W there are maps ¢ and h such
g/' ‘\h n/‘ ‘\0
that Y Y is a pullback square. Second, note that if F E is a pullback
N ™
X D
square in D then m is necessarily order-reflecting; this can be shown by a straightforward
calculation using the isomorphism between D and the standard construction of the pull-

back object as a suitable sub-poset of Ex E. That A(f) is order-reflecting then follows
because A preserves pullbacks.

Since A(f) is order-reflecting, injectivity follows from monotonicity, and directed-
completeness of the image follows from continuity. a

The next result shows that supports of semantic entities are respected by all natural
transformations and by the morphism parts of functors in K. These properties form the
technical underpinning for almost all of what follows.

Lemma 2 Suppose A,B€ K, X is a world, a € A(X), f: X — 7, and n: A = B.
Then

(i) suppori(n X a) C support(a)

(ii) f(support(a)) = support(A(f)a)
Proof. (i). Suppose Y = a. Then A(Y — X)a’ = a for some o’ € A(Y'). Naturality of
7 then guarantees that B(Y — X)) (UY a’) = 5 X a, and the result follows.

(il). Weshow VY C X .Y Ea < f(Y) E A(f)a; the desired result follows from
this. Suppose Y C X and f: X — Z. One can easily verify that the left-hand diagram

A Model for Syntactic Control of Interference 15

below commutes in W — where f* : YV — f(Y) is the evident map induced by the
restricting f — and the right-hand diagram commutes by the functoriality of A.

Y Y—=X .y A 2=
, o, oo
JY) =7 Z A(f(Y))WA(Z)

—: Assume Y |= a. This means that A(Y — X)a’ = a for some a’. The right
diagram then gives A(f(Y) — Z) (A(f*)a’) = A(f)a, and so f(Y) E A(f)a.
<=: Assume f(Y) | A(f)a. Then the right-hand diagram implies A(Y — X; f)d’

A(f)a for some o', because A(f*) is an isomorphism in D (since f* isisoin W). YV |
follows from the injectivity of A(Y — X) (Lemma 1).

O =

4.8. Discussion: On the Level of Granularity

With the definition of command meanings as state transformations, the words “a com-
mand writes (reads) a location ¢” must be understood at a level of abstraction where
one ignores intermediate states. For example, the “do-nothing” command skip and the
composite := x4+ 1;x := x— 1 would be semantically equal. However, our mathematical
notion of support does not depend on the particulars of this treatment of commands be-
cause 1t applies to any functor in K, and so this frees us to study properties of support in
relative isolation from details of how commands or other types are interpreted. Indeed,
it would possible to interpret commands on a level of abstraction where intermediate
states are made visible, and the relevant parts of our semantic theory would still apply.

But one important consequence of interference control is that, in the absence of con-
trolled interaction (e.g. through monitors), it is consistent to view concurrent commands
on the level of abstraction of state transformations. We believe that it is simpler and
more informative to formulate the model in a way that makes this clear.

5. Independence

We can now use the support predicate to define independence, a semantic counterpart
of non-interference. (We have chosen to use a somewhat neutral term, “independence,”
to avoid confusion that may arise from possible operational, or implementation oriented,
predispositions with regard to the concept of non-interference; c.f. the comments at the
end of the last section.)

We begin by defining a relation A of independence between possible worlds. If (R, W1)
and (R, W) are W-objects then

(Rl,Wl)A(RQ,Wz) < (W1UR1)QWQI® A (WzURz)ﬁlem

P.W. O’Hearn 16

If two worlds are independent then any writable location in one is not in the other.

Independence between semantic entities 1s defined in terms of their supports. This 1s
again a notion that is relative to a possible world. If A, B are K-objects, a € A(X), and
b€ B(X), then

alb < support(a)Asupport(b).

Example. Suppose ¢1,¢2 € [comm](R, W) and ¢;Acy. We define a state transforma-
tion ¢1 || ¢z € [comm](R, W) that represents the joint, parallel, capabilities of ¢; and
Co.

Suppose suppori(ci) = (Ry, W1), support(ca) = (Ra, Wa), and s € S(RUW). If ¢1(s) T
or ¢z(s) T then (¢ || c2)sT. Otherwise,

ce(s)t if L e
(c1]|e2)st = ea(s) € if L e Wy
s(0) otherwise

Note that W and s are disjoint since ¢3 Aca, and so ¢; || ez is well-defined. From the
definitions of [comm] and A one can easily show that ¢; || ca = ¢1;¢2 = ¢2;¢1 when
c1/Acs, where semicolon here is composition of partial functions. a

The next lemma states basic properties independence, as it relates to the functor-
category structure in K. Part (i) says that independence is preserved and reflected by
the morphism parts of functors in K; as a result, changing worlds does not alter indepen-
dence relationships between semantic entities. (The = direction is essentially the usual
“Kripke monotonicity” property that intuitionistic predicates in presheaf toposes Sets*
must satisfy.) Part (ii) states that independence is preserved, though not necessarily
reflected, by all maps in our category. From the programming perspective, this says that
if you apply a closed term of procedural type to two non-interfering entities, then the
two resulting terms must still be non-interfering. (To see why the converse should fail,
consider a constant procedure that takes an argument and simply returns the numeral 1:
1 doesn’t interfere with itself, but this does not imply that arguments to different calls
of the constant procedure do not interfere.)

Lemma 3 Suppose A BeK,ac A(X),beB(X), f: X =Y, andn: A= A"

(i) alb <= A(f)aAB(f)b
(ii) alb = (nX a)l\b
(iii) {(a,b) € A(X)xB(X) | aAb} is directed-complete.

Proof. (i) and (ii) follow from Lemma 2. For (iii) suppose D C (A®B)X is non-empty
directed. Since the maps (a,b) — suppori(a) and (a,b) — support(b) from D to the
set of worlds have finite image, there is a cofinal subset D’ C D on which they are
constant, with values, say, Y and 7. (i.e. ¥d € D3d' € D'.d < d', and V(a,b) €
D' support(a) =Y A support(b) = Z) Clearly YAZ, since aAb whenever (a,b) € D',
Furthermore, if (a’,) = | | D’ (taking limits in (Ax B)X) then support(a’) C Y and

A Model for Syntactic Control of Interference 17

support(b') C Z, because of the componentwise calculation of limits in the product and
because the morphism parts of A and B preserve and reflect order (Lemma 1). So this
limit is in (A®B)X, and the result follows since | | D = | | D’ (as D' is cofinal). a

Finally, we consider how A interacts with finite (categorical) products. This will prove
to be important when we define the tensor product in the next section.

Lemma 4 Suppose A, B,C € K, a € A(X), b€ B(X), ¢ € C(X), and * is the unique
element of 1(X). (In (iii) (b, ¢) is considered as an element of (BxC)X, and similarly

for (iv).)

(i) *Aa

(ii) bAa < alb

(iii) al(b,c) < alb A ale

(iv) (a,b)Ae AN ab <= al(b,c) N ble
Proof. (i): Since support(x) = (,0) it follows that suppori(x)Asuppori(a) no matter
what support(a) is.

(ii): Immediate.

(iii) = If 7 = (b,c) then the definition of the morphism part of BxC' implies
Z E band 7 | ¢, and so support(b) C support(b,c) and support(c) C suppori(b,c).
Thus, if suppori(a)Asupport(h, ¢) then we may conclude that support(a)Asupport(h) and
support(a)Asupport(c) since, for arbitrary worlds Wy, Wy, Ws, it is clear that

Wiy C Wy A WoAWs — W1 AW;.
(iii) <=: Clearly suppori(b, c) = support(b) U suppori(c), by the definition of BxC on

morphisms. If aAb and a/Ac then support(a)Asupport(b) U support(c) since, for arbitrary
worlds Wy, Ws, W3,

WiAWs A WiAWs — Wi AWs U Ws.
The result follows.

(iv): Immediate from (iii) and (ii). m|

6. The Symmetric Monoidal Closed Structure

We now use the independence predicate to define a tensor product ® on K. This will
be used to interpret contexts on the left-hand side of i in typing judgements. Then we
construct the corresponding exponential adjunction —o that will model procedure types.

P.W. O’Hearn 18

6.1. The Tensor Product

The bifunctor ® on K is a subfunctor of the categorical product X, restricted so that
different components are independent of one another.

If A, B are K-objects then

(A®B)X = {(a,b) € A(X)x B(X)|aAb}, ordered componentwise

(A@B) f(a,b) = (A(f)a, B(f)b)
for worlds X and W-morphisms f : X — Y. (A®B)X is directed-complete by Lemma
3(iii), and (A®B)f is well-defined — ie. (A(f)a, B(f)b) € (A®B)Y — by the Kripke
monotonicity property for A (Lemma 3(i)). Pullback-preservation is immediate from
the definition of AR B on W-morphisms.

Ifp: A= A and n : B — B’ are maps in K then the natural transformation
ne@n : A9B — A’®@B’ is such that

(nom) X (a,0) = (pX a,nXb)
when (a,b) € (A®B)X. This is well-defined by Lemmas 3(ii) and 4(ii). Preservation of
identities and composites for AQ B and —® — 1s straightforward.
We can obtain “projections” pr; : A;®As — A;, i = 1,2, by using the evident inclusion
map from @ to x. The direct definition is prqy X (a,b) = a and pro X (a,b) = b.

® is not a categorical product because there is no pairing (or diagonal). However, it
does have symmetric monoidal structure. That is, there are symmetry, associativity, and
unity isomorphisms that commute in an appropriately coherent fashion. (The “projec-
tions” for ® can also explained by the fact that the terminal object 1 is the unit of this
monoidal structure.)

Proposition 5 There are isomorphisms

(A9B)®C = A®(BeC)
19A =2 A 2 Al
A®B = B®RA

satisfying the Mac Lane-Kelly equations for symmetric monoidal categories.

Proof. Straightforward using Lemma 4(i) for unity, (ii) for symmetry, and (iv) for
associativity. a

6.2. The Exponential

The description of —o will follow the standard definition of exponentiation in functor
categories, with some alterations to reflect the request that B—o— be adjoint to —® B,
instead of —x B.

First, we recall how (the object part) of the exponentiation A = B in a presheaf
category Sets® is typically defined (e.g. Lambek and Scott, 1986). For each X € C,

A Model for Syntactic Control of Interference 19

there is a representable functor h* = Homg(X,-) from C to Sets, and the Yoneda
lemma tells us that, no matter how exponentiation = is defined, we must have that

(A= B)X = Homgesc(h™, A= B).

Thus, if A = - is to be right adjoint to —x A then (using Currying) we must have that
(A = B)X is isomorphic to Homgesc (hX x A, B), and we can simply take this last Hom
set to be the definition of (A — B)X. Our case will be treated similarly, using ® in
place of x.

If X is a W-object then the functor ¥ : W — D is defined by
h* = Homw(X,-); F

where F'is the embedding functor from the category of sets and functions to D that equips
a set with the discrete order. An element of h* (V) is a W-morphism f : X — Y. The
morphism part of h* is such that if f: X — Y and g : Y — Z then (hX g f) € %X (2) is
just the composite f; g. Pullback preservation is a consequence of the standard fact that
representable functors preserve limits (Mac Lane, 1971). So h* is in fact a K-object.

If A, B are K-objects and X is a world then we define
(A— B)X = Homk(hX @A, B), ordered pointwise.
Here, by the pointwise order we mean that, for p1,ps € (A— B)X,
pL<p2 <= VY EW.¥(g,a) €(MXRA)Y . p1Y (g,0) <p2Y (g,0a).

A result of this use of ® in place of x is that procedure meanings can only be applied to
arguments that they are independent of, as will become evident below when we consider
the application map.

Now we define the morphism parts of A—oB and ——o—. If f : X — VY, (g,a) €
(hX®A)Z and m € (A—o B)X then
(4= Byfm) Z(g,0) = mZ ((f59).a)

Notice that (f;g,a) € (WX®@A)Z because gAa. One can show by straightforward calcu-
lations that A—o B preserves pullbacks. If p: A’ = A, n: B = B and p € (Ao B)X
then (p1—o 1) X p is the bottom of the following diagram.

Ry p— B
z‘d®u‘[&
pXou BemXp
The currying map
curry

Homk(A® B, () Homg (A, B— ()

is given by the equation

((currym)Xa) Y (f,b) = mY(A(f)a,b).

P.W. O’Hearn 20

Note that A(f)aAb by the assumption that (f,b) € (hX@B)Y, so the argument (A(f)a, b)
is of the right type.

These definitions are very similar to the usual ones associated with exponentiation (as
adjoint to x) in functor categories. The application map

app B

(A—o B)®A

is more subtle, however, because of the use of ® in the definition of —o. Application for
presheaf exponentiation is given using identity morphisms: app X (p,a) = p X (idx, a).
We cannot use this equation here, because the definition of —o would require that id x Aa,
and this 1s not always the case.

However, if p € (A—o B)X then, by injectivity of the morphism part of A—o B (Lemma
1), there is a unique element [p] € (A—o B)support(p) such that

(support(p) — X) [p] = p.

Furthermore, we clearly have that (support(p) — X)Aa whenever pAa, and so the pair

((support(p) — X),a) is in (hsupport(p)(@A)X. These observations lead to the following
definition of application:

app X (p,a) = [p] X (support(p) — X, a).

With these definitions it is then routine to show that, for m : C®A = B, curry(m)
is the unique map making

CeA
curry(m)®id \
(Ao B)oA—PP__Zp

cominute.

Proposition 6 For all B€ K, —-®B 1is left adjoint to B—o —.

7. Interpretation of Typing Rules

In this section we define a semantics for the language from Section 2. The meaning of a
term will be given by a natural transformation between functors in K. More specifically,
each derivation of a typing judgement I' - ¢ : A will determine a natural transformation
[t] from a functor [I'] € K of environments appropriate to T' to a functor [A] € K of
meanings appropriate to A.

(To be completely precise we would decorate these meanings [¢] with data indicating
a derivation, and then prove a coherence result stating that different derivations of a
judgement always lead to the same meaning. See Breazu-Tannen et. al. (1989) for
discussion of coherence in this type-theoretic sense.)

A Model for Syntactic Control of Interference 21

7.1. Types and Environments
Now we define suitable functors [A] and [I'] for types A and typing contexts T'. The
functor [comm] of command meanings has already been specified in Section 3.

[var] is defined on W-objects by

[var](R,W) = RNW, discretely ordered.

Variables are locations that are both readable and writable. We have opted for a “simple”
semantics here that cannot handle, e.g., state-dependent variables such as conditional
variables. On W-morphisms [var] is defined by

[var] f¢ = f(0).

The functor Jexp] of expression meanings is

[exp](R,W) = S(R) ~ Values, ordered by graph inclusion
[exp] fes = e(f%;s).

where ff : R — R’ is the evident function obtained by restricting the W-morphism
F:(RW) — (R, W'). Procedure types are interpreted as [4 — B] = [A]—[B].

For simplicity, we will regard products of the form A®(B&C) and (A® B)®C as being
identical (in light of Proposition 5), and write A@B&C.

The environment functors are
[e1: AL, .. 2 An] = [A® - [AL] M =1

where [] is the empty typing context. Intuitively, an environment u € [T]X at world X is
atuple (uy, ..., u,) of meanings, the components of which don’t interfere with one another.

Example: Suppose that €1, ¢s € [var](R, W) and ¢ Afls. Since both of these locations
are in RN W, the definition of independence between worlds means that ¢; # £5. Thus,
the definition of environments using ® ensures that there is no aliasing.

7.2. A-Calculus Rules

The pure A-calculus rules from Table 1 are interpreted as follows, where id, exch and proj
are appropriate identity, exchange and projection maps (recall that ® has “projections”).

P.W. O’Hearn 22

1d 4] u [A]
Bxchange [FleAJolBIo[A] 92200 ey piopppoa—d]
Weakening [I]e[A] — 2%] ul [5]

—r peral L (g g —P— 5

—r —2 s

The reader will see that we have suppressed some trivial applications of unity isomor-
phisms in the interpretations of these rules.

The placement of ® in the interpretation of — E is the semantic counterpart of the
syntactic requirement that a procedure and its argument don’t interfere.

The usual 7 and 5 laws of A-calculus are valid according to this interpretation, because
of the adjunction between —®@B and B—o—. The validity of 3 reflects the call-by-name
nature of the language.

Principle II 1s evident from the definition of environments. As for Principle I, that
closed terms don’t interfere with any other terms can be explained semantically as follows.
A closed term should correspond to a map of the form m : 1 — A, for some A. Given
any world X, B € K, and b € B(X), Lemma 4(i) guarantees that *Ab, and since maps
in K preserve independence (Lemma 3(ii)) it follows that m(X)+Ab. Thus the meanings
of closed terms are independent (in the A sense) of the meanings of other terms. (The
principle can be explained similarly for open terms, using Lemma 4(iii) and 4(i) to show
that an environment doesn’t interfere with a semantic entity if its components don’t,
and then using the fact that the meaning of a term, as a map in K, must preserve
independence.)

7.3. Selected Algol-like Rules

The other rules in Table 1 are interpreted as follows.

[rl©ld]

[comm]®[comm] B, [comm]

Par [I]®[A]
(Ir], laD)

([e]. [e])

Sequencing [T [comm] x [comm] L I [comm]

- [var] x [exp] —2*— [comm]

Assignment [T

Here, (-, -} is pairing for the product x in K, and par : [comm]®[comm] — [comm],
seq : [comm]x[comm] — [comm], and ass : [var]x[exp] — [comm] are defined as
follows, where ¢1 || ¢2 is as in Section 5, e1; ¢z is composition of partial functions, and

A Model for Syntactic Control of Interference 23

s|g is the restriction of state s € S(RUW) to R:

parX (c1,c2) = e e

seg X (c1,c2) = ci5e
(s|€—e(s|r) ife(sr) |
ass (R, W) (E’ 6) s { undefined if 6(5R) 1

Notice the roles of ® in Par and x in Seq: concurrent commands may not interfere with
one another, while sequentially-composed commands may.

A dereferencing coercion that converts a variable to an expression can be given by the
map j : [var] — [exp] such that j(X)£s = s(£).

Two “global” commands are
skip : comm diverge : comm
They are interpreted by maps skip, diverge : 1 — [comm] such that

skip(R, W) = the identity function on S(RU W)
diverge(R,WW) = the everywhere-undefined partial function

These are the only maps from 1 to [comm)].

Now we consider variable declarations. (This is a good test case for our A.) To be
consistent with Principle II, we will need to ensure that, in a block of the form new z . C|
the meaning of the locally-declared identifier « is independent of the meanings of other
identifiers. We would certainly expect this to be the case, since the intention is that z
denotes a newly allocated variable that is inaccessible by non-local entities.

Matters are simplified if we regard new z . C' as sugar for new(Az.C'), where new is a
combinator of type (var — comm) — comm. For the semantics of new we define a map
new : ([var]—o [comm]) — [comm]. By adjointness (Proposition 6) this determines
a map from 1 to [(var — comm) — comm]. If p € ([var]—o [comm])(R, W) and

s € S(RUW), then

[82 if pY (f,€)s1 = s

new(R,W)ps = { undefined if (p¥ (f,0)s1)1]

where

e (& RUW is any fresh location,
o [f=(R,W)—=Y, where (RU{{},WU{{})=Y,
e 51 =(s] €~ 0) (0 is the initial value).

The idea here is that the morphism f connects the non-local world to the expanded world
with the additional variable. The procedure p is executed in this expanded world with the
fresh location £ passed as an argument, and this location is de-allocated on termination.
The de-allocation is performed using f, obtaining the state f; so € S(R, W) from the state
sz € S(Y') at the expanded world. Notice that fAf, which is necessary for the argument

P.W. O’Hearn 24

(f,£) to be of the right semantic type; one might say that the principle that non-local
entities don’t interfere with local variables is forced on us by the use of —o in the semantic
type of new. We refer to (Oles, 1982,1985; O’Hearn and Tennent, 1992; Tennent, 1991)
for further discussion of this form of local-variable semantics. (We mention only that a
specific choice of fresh location ¢ need not be given because of the naturality of p: any

{¢ RUW will do.)

Other valuations, e.g. for conditionals and while loops, are as usual.

7.4. Discussion

There are simple equivalences, valid in the model, that illustrate reasoning principles
that are sound in the presence of interference constraints. For example,

r=Ly=2 = y=2%r:=1

when x,y : var are different identifiers. Because of the use of ® in environments, z and
y must denote independent locations, so assigning to one won’t affect the other. This
equivalence would not hold in a language that allowed aliasing.

Principle II applies to types other than var, so it is more than just a statement
about aliasing. For example, (assuming the obvious interpretation of if) the following
equivalence is valid

if e = 0 then
(¢;if e = 0 then diverge) = diverge
else diverge

for identifiers ¢ : comm and e : exp. The intuition that is captured here is that execution
of ¢ won’t change the value of e because ¢ and e are different identifiers.

It is straightforward to prove an adequacy correspondence with a suitable operational
semantics (Lent, 1992). However, the model is not fully abstract. Some of the difficult
test equivalences for local variables described by Meyer and Sieber (1988) are not valid
here (specifically, their Examples 5 and 7).

8. Semantical Passivity

The presentation thus far has not dealt with typing rules that permit any sharing between
identifiers. In this section and the next we extend our analysis to account for Principle I11
from the Introduction. This principle allows for a limited amount of sharing, where read,
but not write, access is involved. The main semantic concept that must be explained
is that of passivity, a property of types and phrases that amounts to the absence of
write-access capabilities.

This section is concerned with an analysis of basic semantic properties of passivity.
Typing rules are considered in Section 9.

A Model for Syntactic Control of Interference 25

8.1. Passive Elements

A program phrase is passive if it doesn’t write to any (global) locations. We wish to
explain this semantically by saying when an “element” of a semantic domain is passive.
As with the concept of independence, this will be relative to a possible world.

If Ais a K-object and a € A(R, W) then we define
passive(a) <— (R,0) E a.
a 1s passive if comes from a world in which there are no writable locations.
Example. Returning to the command meanings from Sections 3 and 4, examining their

support shows

passive(e3), passive(cd), and passive(eb), while
—passive(c2) and —passive(c0).

The commands diverge, skip, and if # = 1 then diverge are passive, while z := z 4 1
and x := 1 are not. ad

The following result describes basic properties of passivity. Part (i) says essentially
that closed terms, given by maps out of 1, are passive. (ii) relates passivity to products,
and (iii) is Principle III. (iv) connects passivity and independence, and in particular
implies that passivity is preserved and reflected by morphism parts of K-objects, and
preserved by K-maps (as in Lemma 3).

Lemma 7 Suppose A, B are K-objects, a € A(X), be B(X), n: A=DB, f: X =Y,
and * is the unique element of 1(X).

(i) passive(x)

(i) passive(a) A passive(b) < passive(a,b)
(iii) passive(a) A passive(b) — al\b
(a)

(iv) passive(a) <= ala

Proof. (i) and (ii) are immediate from Lemma4. (iii) and (iv) follow from the definitions
of support(-) and A, and the functoriality of A and B. a

8.2. Passive Objects
The passivity predicate says when an “element” is passive. We call a K-object A passive
if all of its elements are:

A € K is passive <= VX € W .Va € A(X) . passive(a).

The functor [exp] is easily seen to be passive, because its definition does not mention
the write components of worlds at all. [comm] and [var] are not passive.

Passive objects are manufactured by an endofunctor ! on K:

P.W. O’Hearn 26

'AX = {a€ A(X)|passive(a)}, with ordering inherited from A(X)
'Afa = A(f)a
mMXa=nXa

where f is a W-morphism and : A — A’ is a map in K. !4 X is directed-complete by
Lemmas 7(iv) and 3(iii). 'A f and !p X are well-defined by Lemmas 7(iv) and 3(i) and
(ii). The functoriality of ! and A are straightforward, and pullback preservation follows
directly from the definition of !A f and pullback preservation for A.

Proposition 8 (i) A€XK is passive iff 1A= A
(ii) 12 =1
(iii) W(AxB) =1(A®B) =!A®!B =14Ax!B
(iv) 11 =1.
Proof. (i) and (ii) are obvious. (iii) follows from Lemma 7(ii) and (iii) and the definitions

of @ and !. (iv) follows from Lemma 7(i). O.

We now consider the relationship with the ! modality from linear logic. We do this by
interpreting the usual logical rules for !.

I'AFB . TF B

TAF B Dereliction TE1B R!
A 'AF B]
7F, AF B Contraction

(We don’t need to consider the Weakening rule for !, because it is already covered by the
general Weakening for ®.)

Dereliction is given semantically by the map iny 1A — A that simply includes the
“passive subset” of A into A. Contraction is given by the diagonal map diag,, 1A —
TAR!A. This exists since !AQ!B =!Ax!B, and so we can in fact just use diagonal from
1A to 1AX!A. For R! given a map m :!4A — B we can form the composite
id

1A A tm B

where id is the identity (since !? =!). In the next section we will use the Dereliction
map to interpret application for passive procedures, the diagonal map for Contraction
for passive types, and R! for A-abstraction for passive procedures.

Thus, there are maps of the right functionality for interpreting Dereliction, Contrac-
tion, and R!. These maps also satisfy the usual categorical axioms for !, amounting on
the logical level to equivalences between proofs (e.g. Seely, 1989).

Proposition 9

(i) There are natural transformations n:! = I, p :1 =12 making (!, n, 1) a comonad,
where I 1s the identity functor on K.

(ii) ! carries the canonical commutative comonoid structure for x to a commutative
comonoid structure for @.

A Model for Syntactic Control of Interference 27

Proof. (i). The comonad structure is given by defining 4 X 14X — A X as the
evident inclusion map and taking p as the identity (since 12 =1).

(ii). The canonical comonoid structure (wrt x) on an object A is given by the di-
agonal diag, : A — AxA and the unique map ¢ : A — 1. ! takes the diagonal to
ldiag, 14 —=1(Ax A), and this is just the diagonal map diag,, :14 —=14x!4 (note the
equality [(Ax A) =!1Ax1A4). Also, since 11 = 1, Im :14 = 1 is the unique map, and so
(1A, ldiagy, Im) is the canonical commutative comonoid structure (wrt x) for IA. Finally,
observing that !A®!A =1Ax!A and recalling that 1 is the unit of ®, we get that it is a
commutative comonoid wrt (®,1) as well. a

To sum up, the structure on the category K that has been found is that of a symmetric
monoidal closed category (1, ®, —o) with finite products (1, x) and a functor ! satisfying
the conditions of Proposition 9.

Theorem 10 Qur category is a model of intuitionistic linear logic.

(Since Weakening is valid, we actually have a model of affine logic with “of course” types.
There are also additional properties satisfied by our ! that are not valid in all intuistionic
linear models, such as the isomorphism !A®!B =!Ax!B and the stronger condition of
Lafont (1988) that !4 is the cofree commutative comonoid over A (the < direction of
7(iv) is important for this).)

This relation to linear logic is interesting. There 1s in fact a striking similarity in the
goals of syntactic control of interference and linear functional programming, as set out in
(Lafont, 1988; Holmstrom, 1988; Wadler, 1990; Abramsky, 1993). These might be con-
sidered as two heads of the same coin. One aims to make imperative programming more
elegant, by limiting difficulties caused by aliasing and interference, while the other aims
to make functional programming more efficient, by permitting destructive updating in a
purely functional context and by limiting the need for garbage collection. That they have
similar formal structure is perhaps more than coincidence. (A preliminary, not entirely
satisfactory, syntactic study of this relationship has been attempted in (O’Hearn, 1991).)

9. Passive Types

This section considers syntax rules that take Principle III into account. The most impor-
tant addition will be a restricted form of the structural rule of Contraction, which was
conspicuously absent in Section 2. Contraction is the source of sharing in A-calculus, so
to maintain Principle II we will allow it only for passive types.

It should be mentioned that the presentation in this section departs somewhat from
(Reynolds, 1989). One difference is that we have chosen to use explicit structural rules
in our formulation, while Reynolds’ systems are in a more familiar format where these
rules are left implicit. This is for the most part a minor point, though focusing on
structural rules perhaps more clearly illustrates the logical flavour of the approach (e.g.
the restricted Contraction). A more significant departure is that we do not consider the
use of intersection types. We will comment briefly on this at the end of the section.

P.W. O’Hearn 28

T, Ay:A-t: B)))
7.2: AFi[z/z,2/y] : B Contraction (A is passive)

TFp: A B AFg:A T x:AFt: B

=

TAF p(g): B 7E Tzt AmB 71 (Tispassive)

Table 2 Rules for Passive Types

9.1. Typing Rules and their Interpretations

The grammar of types i1s extended to include types for passive procedures
AB = ..- A& B.

The intention is that a procedure of type A — B must not write to any (global) variables.
For example, Az.z := y is of type var - comm, when y : exp, because the only free
identifier y is in a read-only position. On the other hand, Ay.z := y is not of type
exp - comm when z : var, because the procedure has write access to the global
variable denoted by x.

[A - B] is defined as {([A]— [B]). We call types of the form exp and A — B passive.
(Incidentally, if B is a passive type then [A — B] and [A = B] are isomorphic, so there
is a certain amount of redundancy in the types; Reynolds (1989) in fact disallows types
of the form A — B when B is passive.) A context z1 : Ay,..., 2, : A, is termed passive
if each A; is a passive type. The empty context is considered passive. Some typing rules
are in Table 2. In Contraction, ¢[z/x, z/y] is ¢ with z substituted for # and y.

Lemma 11 If A is a passive lype then [A] is a passive K-object. If T is a passive
typing context then [I'] is a passive K-object.

Proof. [exp] is passive, and [A — B] is passive by Proposition 8(i) and (ii). The result
for [I'] then follows from Proposition 8(iii) and (iv) O

Using Contraction, passive identifiers can be shared between a procedure and its ar-
gument, or between concurrent commands. For example, assuming typical rules for +
and 1, we can type ¢ .= z ||y :== 2+ L=

z:var,zi:exp - ¢ = z; : comm y:var,zy:exp bk y:= z2 + 1 : comm

ar
z:var,y:var,z;:exp,z2:exp bz =z ||y := 22+ 1 : comm

Contraction
z:var,y:var,z:exphkz:=z||y:=z4+1:comm

A Model for Syntactic Control of Interference 29

The restriction of Contraction to passive types is essential. If it were allowed for var
then we could type # := 1| := 2, or a procedure call like

which would lead to variable aliasing.

Contraction is interpreted by the diagonal map diag : [A] = [A]®[A], which exists
by Proposition 9 and Lemma 11:

[

Contraction [I]o[A] —98 + [rle[A]e[A4] 18]

For — I, we obtain

curry[i]

[r]

as usual, and then apply ! to get

[A]—[5]

leurry[t]

'r] ([A]—[B])

Since T is a passive context, [I'] is a passive K-object. Thus, ![T'] = [I'] and the map
leurry[t] is of the right functionality for the — I rule.

— LI is given by

rjeia] — B2 gy sy —P2 (5]

where —:([A]—[B]) = ([A]—[B]) is the evident inclusion.

Finally, we remark that the interpretation of passive procedure types using !(4A—o B)
can be characterized via an adjunction. Let —®, B be the the restriction of - ®B to the
subcategory Pass of passive objects in K (B need not be passive here). Then !(B—o-),
as a functor from K to Pass, is right adjoint to — @, B. (This follows straightforwardly
from Proposition 6 and the fact that maps in K preserve passivity.) Thus, we have an
isomorphism of hom sets

Homg(A®B,C) = Homgk(A,!(B—o ()
which holds in general only when A is passive. This means also that
Homk (A, B) = Homk(1,!(A— B))

since 1 is passive. (We will use this last isomorphism implicitly when interpreting block
expressions below.)

9.2. Block Ezpressions

We illustrate passive procedure types with a form of block expression:

blkexp : (var - comm) — exp.

P.W. O’Hearn 30

Intuitively, execution of blkexp(t) proceeds by first allocating a new (local) location ¢,
then executing #(¢) in an extended state in which £ is initialized to some value, and on
termination returning the final value of ¢ as the value of the expression block. The inten-
tion is that passivity of ¢ should ensure that there are no changes to non-local variables,
and so the use of side-effects in the body of a block expression should be invisible outside
its scope. The treatment of block expressions here is inspired by (Tennent, 1991).

As an example block expression, if n : exp then

blkexp (A fact.

new (A k.
fact :=13k :=n;
while k& # 0 do
fact := factxk ;
)

k=Fk—-1
calculates the factorial of a non-negative integer n in a side-effect-free fashion.

We give the semantics by defining a map blkexp :!([var]—o [comm]) — [exp]. If
t €l([var]—o [comm])(R, W) and s € S(R), then

SZ(E) if |—t-| Y (f, E) 51 = 89

blkezp (R, W)ts = { undefined if [(]Y (f,6)s1 |

where

e (& RUW is any fresh location,

o [=(R,0)—Y whereY = (RU{¢},{}),

o [var — comm]((R,0) — (R, W))[t] =, and
o 51 ={(s|L—0).

[t] exists because ¢ is passive, and is unique by Lemma 1. Since the command meaning
[t]Y (f,¢) lives at the world (RU{£},{{}), by the definition of [comm] this means that
the values of global variables in R U W are not altered. That is, the fresh location £ is
the only location that can have a different value in s5 than in s;. Thus, the passivity of
t ensures that the expression block is side-effect-free when viewed from outside the scope
of the declaration, where changes to local variables aren’t visible.

9.3. Recurston

As stated in (Reynolds, 1978,1989), it is not possible to include a general fixed-point
combinator in syntactic control of interference as it presently stands. If ' = Af.t assigns
to a global variable denoted by a free identifier, then f and this identifier will interfere
in a fixed-point definition Y F', violating Principle II. Another way to see the problem is
to notice that the right-hand side of the fixed-point equation YF = F(YF') violates the
restriction that a procedure never interfere with its argument. This difficulty is mitigated
somewhat by the fact that we can define fixed-points of passive procedures. If Af.t 1s

A Model for Syntactic Control of Interference 31

passive then there will be no assignments (to global variables) in the body that could
cause interference with f. Similarly, there is no problem with the fixed-point equation.

Jumps cause related problems. If we take the position that a “label” denotes a con-

” This seems

tinuation, then it interferes with any variables that are assigned to “later.
difficult to reconcile with the principle that distinct identifiers don’t interfere, without
relaxing the principle or introducing a naming convention that groups interfering contin-

uations and variables together into a common collection.

These problems are the subject of current research. Here we are going to simply
indicate that the relevant fixed-points for passive procedures do exist in our model.

Fixed-points are calculated in the full subcategory K’ of K whose objects A are such
that

e A(X) has a least element, for each W-object X, and
o A(f) is strict, for each W-morphism f.

The strictness requirement applies only to the objects of K'; a component n(X) of a
natural transformation 7 in K’ need not be strict. K is an analogue of the category of
“predomains,” while K’ is a category of “domains.”

Notice that the “simple” [var] that we have opted for does not lie in K’, though
[comm] and [exp] do. If A is any K-object and B is a K’-object then A—o B is in K’.
In fact, all of the structure (®, —o, !) cuts down to this smaller category, including the
exponential adjunction and the comonoid structure for !.

The strictness requirement has two (related) purposes. First, “global” least elements
are needed in B for (A— B)X to have a least element (Oles, 1982). Second, for the
fixed-point combinator to be natural the calculation of fixed-points must be preserved
by the morphism parts of functors, and strictness is essential for this.

Now we can define the fixed-point map Y4 :1(A— A) — A for objects A in K'. If
m €l(A—o A)(R,D) then
fix(m) = |_|{(FZ — |7 is a natural number}

where FO(d) = d and F*l(d) = m(R,0) (1d(R,0), Fi(d)), for d € A(R, D).

Notice that 1d(g gyAd for such a d since both are passive, and Fi(d) € A(R, D) because
m is passive. Notice also that id(g g)A— because support(—) = (0,0), so — € [A](R,0)
and {F?—} is in fact have a chain in [A](R,0). We then define

Ya(X)m = A(support(m) — X)(fix[m]).

9.4. Discussion

The syntactic treatment of passivity in this section is not entirely satisfactory. As in
(Reynolds, 1978), f-reduction does not preserve typings. For example, it is easy to
derive

P.W. O’Hearn 32

p:comm — exp, ¢ : comm t p(c) : exp, and
F Az.Ay.z : exp — (comm — exp),

and therefore
p:comm — exp,c¢: comm F (Az.Ay.2)(p(c)) : comm — exp.
But we cannot derive the judgement that results from g-reduction
p:comm — exp,c: comm - Ay.p(¢) : comm — exp

because the identifier ¢ is non-passive, and so we cannot use the rule I to infer that
the A-abstraction has passive type. Reynolds (1989) has shown how this difficulty can
be overcome very neatly using a variant of the intersection type discipline of Coppo and
Dezani (1978). An elegant category-theoretic interpretation of intersection types has

been discussed in (Reynolds, 1987,1991)

ACKNOWLEDGEMENTS. It is a pleasure to acknowledge the influence on this work of my
thesis advisor Bob Tennent, and to express my thanks for his enthusiastic guidance and
encouragement throughout. I am also grateful to Steve Brookes, Frank Oles, Andy Pitts,
John Reynolds, Edmund Robinson, and an anonymous referree for helpful discussions
and comments; and to Samson Abramsky and Prakash Panangaden for suggesting I ex-
plore the relation with linear logic. Diagrams were drawn with John Reynolds’ macrows.
This research was partially supported by the Information Technology Research Center
of Ontario.

References

Abramsky, S. (1993) Computational interpretations of linear logic. To appear in Theoretical
Computer Science.

ANSI (1978) American National Standards Institute, Fortran Standard, ANSI X3.9.

Breazu-Tannen, V., Coquand, T., Gunter, C. A. and Scedrov, A. (1991) Inheritance and explicit
coercion. Information and Computation 93:172-221.

Brinch Hansen, P. (1973) Operating Systems Principles. Prentice Hall.

Coppo M. and Dezani, M. (1978) A new type-assignment for A-terms. Archiv. Math. Logik.,
19, 139-156.

Dahl, O. J. (1972) Hierarchical program structures. In Structured Programming, Academic
Press, London

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science, 50, 1-102.

Guzman, J. and Hudak, P. (1990) Single-threaded polymorphic lambda calculus. Proceedings
of the 5th IEEF Symposium on Logic in Computer Science, 333-345.

Halpern, J. Y., Meyer, A. R. and Trakhtenbrot, B. A. (1983) The semantics of local storage, or
what makes the free list free? Conference Record of the 11th ACM Symposium on Principles
of Programming Languages, 245-257.

Hoare, C. A. R. (1971) Procedures and parameters: an axiomatic approach. In Symposium
on Semantics of Algorithmic Languages, E. Engeler ed.; Lecture Notes in Mathematics 188,
Springer Verlag, 102-116.

A Model for Syntactic Control of Interference 33

—— (1974a) Monitors: an operating system concept. Communications of the ACM, 17, 549
557.

—— (1974b) Hints on programming language design. Technical Report CS-74-403, Stanford
University.

Holmstrom, S. (1988) Linear functional programming. Proceedings of the Workshop on Imple-
mentation of Lazy Functional Languages, Chalmers University.

Holt et. al. (1987) The Turing Programming Language. Design and Definition. Prentice Hall.

INMOS LTD. (1988) occam 2 Reference Manual. Prentice Hall.

Lafont, Y. (1988) The linear abstract machine. Theoretical Computer Science, 59, 157-180.

Lambek, J. and Scott, P. J. (1986) Introduction to Higher-Order Categorical Logic. Cambridge
University Press.

Lent, A. F. (1992) The category of functors from state shapes to bottomless CPOs is adequate
for block structure. Master’s thesis, MIT.

Lucassen, J. M. and Gifford, D. K. (1988) Polymorphic effect systems. Conference Record of
the 15th ACM Symposium on Principles of Programming Languages.

Mac Lane, S. (1971) Categories for the Working Mathematician, Springer-Verlag.

Meyer, A.R. and Sieber, K. (1988) Towards fully abstract semantics for local variables. Confer-
ence Record of the 15th ACM Symposium on Principles of Programming Languages, 191-203.

Moggi, E. (1989) An abstract view of programming languages. Course Notes.

O’Hearn, P. W. (1991) Linear logic and interference control (preliminary report). 4’th Confer-
ence on Category Theory and Computer Science, LNCS 530, 74-93.

O’Hearn, P. W. and Tennent, R. D. (1992) Semantics of local variables. In Fourman, Johnstone
and Pitts editors, Applications of Categories in Computer Science, London Math. Soc. Lec-
ture Notes Series 177. Cambridge Univ. Press.

—— (1993) Semantical analysis of specification logic, part 2. To appear in Information and
Computation.

Oles, F. J. (1982) A Category- Theoretic Approach to the Semantics of Programming Languages.
Syracuse University.

—— (1985) Type Algebras, Functor Categories and Block Structure. In M. Nivat and J. C.
Reynolds editors, Algebraic Methods in Semantics, Cambridge University Press, 543-573.
Padua, D. A. and Wolfe, M. J. (1986) Advanced compiler optimizations for supercomputers.

Communications of the ACM 29(12).

Popek et. al. (1977) Notes on the design of EUCLID. SIGPLAN Notices, 12(3), 11-18.

Reynolds, J. C. (1978) Syntactic control of interference. Conference Record of the 5th ACM
Symposium on Principles of Programming Languages, 39-46.

—— (1981) The essence of Algol. In J. W. de Bakker and J. C. van Vliet editors, Algorithmic
Languages, 345-372, North-Holland, Amsterdam.

—— (1987) Conjunctive types and Algol-like languages (abstract of invited lecture). Proc.
2nd IFEFE Symposium on Logic in Computer Science, Ithaca.

—— (1989) Syntactic control of interference, part II. ICALP 89 Proceedings, LNCS 372, 704-
722.

—— (1991) The coherence of languages with intersection types. International Conference on
Theoretical Aspects of Computer Software, Sendai, Japan

Seeley, R. A. G. (1989) Linear logic, *-autonomous categories and cofree coalgebras. Contem-
porary Mathematics 92: Categories in Computer Science and Logic. 371-382.

Swarup, V., Reddy, U. S. and Ireland, E. (1991) Assignments for applicative languages. Proc.
Conference on Functional Programming Languages and Computer Architecture.

P.W. O’Hearn 34

Tennent, R. D. (1983) Semantics of interference control. Theoretical Computer Science, 27,
297-310.
—— (1986) Functor-category semantics of programming languages and logics, Category The-
ory and Computer Programming, LNCS 240, 206-224
—— (1990) Semantical analysis of specification logic, Information and Computation 85(2),
135-162.
—— (1991) Semantics of Programming Languages. Prentice Hall International, London.
Wadler, P. (1990) Linear types can change the world!. In M. Broy and C. Jones, editors,
Programming Concepts and Methods, North Holland.
—— (1992) The essence of functional programming. Conference Record of the 19th ACM
Symposium on Principles of Programming Languages.

