
VERIFICATION AND VALIDATION OF SIMULATION MODELS�Robert G. SargentSimulation Research GroupDepartment of Electrical Engineering and Computer ScienceCollege of Engineering and Computer ScienceSyracuse UniversitySyracuse, New York 13244ABSTRACTThis paper discusses veri�cation and validation ofsimulation models. The di�erent approaches to de-ciding model validity are presented; how model ver-i�cation and validation relate to the model develop-ment process are discussed; various validation tech-niques are de�ned; conceptual model validity, modelveri�cation, operational validity, and data validity aredescribed; ways to document results are given; and arecommended procedure is presented.1 INTRODUCTIONSimulationmodels are increasingly being used in prob-lem solving and in decision making. The developersand users of these models, the decision makers usinginformation derived from the results of the models,and people a�ected by decisions based on such modelsare all rightly concerned with whether a model andits results are \correct." This concern is addressedthrough model veri�cation and validation. Modelvalidation is usually de�ned to mean \substantiationthat a computerized model within its domain of ap-plicability possesses a satisfactory range of accuracyconsistent with the intended application of the model"(Schlesinger et al. 1979) and is the de�nition usedhere. Model veri�cation is often de�ned as \ensur-ing that the computer program of the computerizedmodel and its implementation are correct," and is thede�nition adopted here. A model sometimes becomesaccredited through model accreditation. Model ac-creditation determines if a model satis�es a speci�edmodel accreditation criteria according to a speci�edprocess. A related topic is model credibility, which isconcerned with su�ciently developing the con�dencethat (potential) users have in a model and in the in-formation derived from the model that they are will-ing to use the model and the derived information.A model should be developed for a speci�c pur-pose (or application) and its validity determined with�This paper is a modi�ed version of Sargent (1996b).

respect to that purpose. If the purpose of a model isto answer a variety of questions, the validity of themodel needs to be determined with respect to eachquestion. Several sets of experimental conditions areusually required to de�ne the domain of a model'sintended applicability. A model may be valid for oneset of experimental conditions and invalid in another.A model is considered valid for a set of experimen-tal conditions if its accuracy is within its acceptablerange, which is the amount of accuracy required forthe model's intended purpose. This generally requiresthat the model's output variables of interest (i.e., themodel variables used in answering the questions thatthe model is being developed to answer) be identi-�ed and that their required amount of accuracy bespeci�ed. The amount of accuracy required shouldbe speci�ed prior to starting the development of themodel or very early in the model development pro-cess. If the variables of interest are random variables,then properties and functions of the random variablessuch as means and variances are usually what is ofprimary interest and are what is used in determiningmodel validity. Several versions of a model are usu-ally developed prior to obtaining a satisfactory validmodel. The substantiation that a model is valid, i.e.,model veri�cation and validation, is generally consid-ered to be a process and is usually part of the modeldevelopment process.It is often too costly and time consuming to deter-mine that a model is absolutely valid over the com-plete domain of its intended applicability. Instead,tests and evaluations are conducted until su�cientcon�dence is obtained that a model can be consid-ered valid for its intended application (Sargent 1982,1984 and Shannon 1975). The relationships of cost(a similar relationship holds for the amount of time)of performing model validation and the value of themodel to the user as a function of model con�denceare illustrated in Figure 1. The cost of model vali-dation is usually quite signi�cant, particularly whenextremely high model con�dence is required.
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CostFigure 1: Model Con�denceThe remainder of this paper is organized as fol-lows: Section 2 discusses the basic approaches usedin deciding model validity; Section 3 de�nes valida-tion techniques; Sections 4, 5, 6, and 7 contain de-scriptions of data validity, conceptual model validity,model veri�cation, and operational validity, respec-tively; Section 8 describes ways of presenting results;Section 9 contains a recommended validation proce-dure; and Section 10 gives the conclusions.2 VALIDATION PROCESSThree basic approaches are used in deciding whethera simulation model is valid or invalid. Each of theapproaches requires the model development team toconduct veri�cation and validation as part of the mod-el development process, which is discussed below. Themost common approach is for the development teamto make the decision as to whether the model is valid.This is a subjective decision based on the results ofthe various tests and evaluations conducted as partof the model development process.Another approach, often called \independent ver-i�cation and validation" (IV&V), uses a third (inde-pendent) party to decide whether the model is valid.The third party is independent of both the model de-velopment team and the model sponsor/user(s). Af-ter the model is developed, the third party conductsan evaluation to determine its validity. Based uponthis validation, the third party makes a subjectivedecision on the validity of the model. This approachis usually used when a large cost is associated withthe problem the simulation model is being used forand/or to help in model credibility. (A third party isalso usually used for model accreditation.)The evaluation performed in the IV&V approachranges from simply reviewing the veri�cation and val-idation conducted by the model development team toa complete veri�cation and validation e�ort. Wood(1986) describes experiences over this range of eval-uation by a third party on energy models. One con-clusion that Wood makes is that a complete IV&Vevaluation is extremely costly and time consumingfor what is obtained. This author's view is that ifa third party is used, it should be during the modeldevelopment process. If the model has already been

developed, this author believes that usually a thirdparty should evaluate only the veri�cation and vali-dation that has already been performed.The last approach for determining whether a mod-el is valid is to use a scoring model (see, e.g., Balci1989, Gass 1979, and Gass and Joel 1987). Scores (orweights) are determined subjectively when conduct-ing various aspects of the validation process and thencombined to determine category scores and an overallscore for the simulationmodel. A simulationmodel isconsidered valid if its overall and category scores aregreater than some passing score(s). This approach isinfrequently used in practice.This author does not believe in the use of a scoringmodel for determining validity, because (1) the sub-jectiveness of this approach tends to be hidden andthus appears to be objective, (2) the passing scoresmust be decided in some (usually subjective) way, (3)a model may receive a passing score and yet have adefect that needs correction, and (4) the score(s) maycause overcon�dence in a model or be used to arguethat one model is better than another.We now discuss howmodel veri�cation and valida-tion relate to the model development process. Thereare two common ways to view this relationship. Oneuses a detailed model development process, and theother uses a simple model development process.Banks et al. (1988) reviewed work using both of theseways and concluded that the simple way more clearlyilluminates model veri�cation and validation. Thisauthor recommends the use of a simple way (see, e.g.,Sargent 1982), which is presented next.Consider the simpli�ed version of the modelingprocess in Figure 2. The problem entity is the system(real or proposed), idea, situation, policy, or phenom-ena to be modeled; the conceptual model is the math-ematical/logical/verbal representation (mimic) of theproblem entity developed for a particular study; andthe computerized model is the conceptual model im-plemented on a computer. The conceptual model isdeveloped through an analysis and modeling phase,the computerized model is developed through a com-puter programming and implementation phase, andinferences about the problem entity are obtained byconducting computer experiments on the computer-ized model in the experimentation phase.We now relate model validation and veri�cationto this simpli�ed version of the modeling process (seeFigure 2). Conceptual model validity is de�ned as de-termining that the theories and assumptions under-lying the conceptual model are correct and that themodel representation of the problem entity is \reason-able" for the intended purpose of the model. Comput-erized model veri�cation is de�ned as ensuring thatthe computer programming and implementation of
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VerificationFigure 2: Simpli�ed Version of the Modeling Processthe conceptual model is correct. Operational valid-ity is de�ned as determining that the model's out-put behavior has su�cient accuracy for the model'sintended purpose over the domain of the model's in-tended applicability. Data validity is de�ned as ensur-ing that the data necessary for model building, modelevaluation and testing, and conducting the model ex-periments to solve the problem are adequate and cor-rect.Several versions of a model are usually developedin the modeling process prior to obtaining a satis-factory valid model. During each model iteration,model veri�cation and validation are performed (Sar-gent 1984). A variety of (validation) techniques areused, which are described below. No algorithm orprocedure exists to select which techniques to use.Some attributes that a�ect which techniques to useare discussed in Sargent (1984).3 VALIDATION TECHNIQUESThis section describes various validation techniques(and tests) used in model veri�cation and validation.Most of the techniques described here are found inthe literature (see Balci and Sargent (1984a) for a de-tailed bibliography), although some may be describedslightly di�erently. They can be used either subjec-tively or objectively. By \objectively," we mean usingsome type of statistical test or mathematical proce-dure, e.g., hypothesis tests and con�dence intervals.A combination of techniques is generally used. Thesetechniques are used for validating and verifying thesubmodels and overall model.Animation: The model's operational behavior isdisplayed graphically as the model moves throughtime. For example, the movements of parts througha factory during a simulation are shown graphically.

Comparison to Other Models: Various results (e.g.,outputs) of the simulation model being validated arecompared to results of other (valid) models. For ex-ample, (1) simple cases of a simulation model maybe compared to known results of analytic modes, and(2) the simulation model may be compared to othersimulation models that have been validated.Degenerate Tests: The degeneracy of the model'sbehavior is tested by appropriate selection of values ofthe input and internal parameters. For example, doesthe average number in the queue of a single servercontinue to increase with respect to time when thearrival rate is larger than the service rate?Event Validity: The \events" of occurrences of thesimulation model are compared to those of the realsystem to determine if they are similar. An exampleof events is deaths in a �re department simulation.Extreme Condition Tests: The model structureand output should be plausible for any extreme andunlikely combination of levels of factors in the system;e.g., if in-process inventories are zero, production out-put should be zero.Face Validity: \Face validity" is asking peopleknowledgeable about the system whether the modeland/or its behavior are reasonable. This techniquecan be used in determining if the logic in the concep-tual model is correct and if a model's input-outputrelationships are reasonable.Fixed Values: Fixed values (e.g., constants) areused for various model input and internal variablesand parameters. This should allow the checking ofmodel results against easily calculated values.Historical Data Validation: If historical data exist(or if data are collected on a system for building ortesting the model), part of the data is used to buildthe model and the remaining data are used to deter-mine (test) whether the model behaves as the systemdoes. (This testing is conducted by driving the simu-lation model with either distributions or traces (Balciand Sargent 1982a, 1982b, 1984b).)Historical Methods: The three historical methodsof validation are rationalism, empiricism, and pos-itive economics. Rationalism assumes that every-one knows whether the underlying assumptions of amodel are true. Logic deductions are used from theseassumptions to develop the correct (valid) model. Em-piricism requires every assumption and outcome tobe empirically validated. Positive economics requiresonly that the model be able to predict the future andis not concerned with a model's assumptions or struc-ture (causal relationships or mechanism).Internal Validity: Several replications (runs) of astochastic model are made to determine the amountof (internal) stochastic variability in the model. Ahigh amount of variability (lack of consistency) may



cause the model's results to be questionable and, iftypical of the problem entity, may question the appro-priateness of the policy or system being investigated.Multistage Validation: Naylor and Finger (1967)proposed combining the three historical methods ofrationalism, empiricism, and positive economics intoa multistage process of validation. This validationmethod consists of (1) developing the model's as-sumptions on theory, observations, general knowledge,and function, (2) validating the model's assumptionswhere possible by empirically testing them, and (3)comparing (testing) the input-output relationships ofthe model to the real system.Operational Graphics: Values of various perfor-mance measures, e.g., number in queue and percent-age of servers busy, are shown graphically as the modelmoves through time; i.e., the dynamic behaviors ofperformance indicators are visually displayed as thesimulation model moves through time.Parameter Variability{Sensitivity Analysis: Thistechnique consists of changing the values of the inputand internal parameters of a model to determine thee�ect upon the model's behavior and its output. Thesame relationships should occur in the model as inthe real system. Those parameters that are sensitive,i.e., cause signi�cant changes in the model's behavioror output, should be made su�ciently accurate priorto using the model. (This may require iterations inmodel development.)Predictive Validation: The model is used to pre-dict (forecast) the system behavior, and then compar-isons are made between the system's behavior and themodel's forecast to determine if they are the same.The system data may come from an operational sys-tem or from experiments performed on the system.Traces: The behavior of di�erent types of speci�centities in the model are traced (followed) throughthe model to determine if the model's logic is correctand if the necessary accuracy is obtained.Turing Tests: People who are knowledgeable aboutthe operations of a system are asked if they can dis-criminate between system and model outputs.(Schruben (1980) contains statistical tests for use withTuring tests.)4 DATA VALIDITYEven though data validity is usually not considered tobe part of model validation, we discuss it because it isusually di�cult, time consuming, and costly to obtainsu�cient, accurate, and appropriate data, and is fre-quently the reason that attempts to validate a modelfail. Data are needed for three purposes: for buildingthe conceptual model, for validating the model, andfor performing experiments with the validated model.

In model validation we are concerned only with the�rst two types of data.To build a conceptual model we must have suf-�cient data on the problem entity to develop theo-ries that can be used in building the model, to de-velop the mathematical and logical relationships inthe model that will allow it to adequately representthe problem identity for its intended purpose, and totest the model's underlying assumptions. In addition,behavioral data is needed on the problem entity to beused in the operational validity step of comparing theproblem entity's behavior with the model's behavior.(Usually, these data are system input/output data.)If these data are not available, high model con�denceusually cannot be obtained, because su�cient opera-tional validity cannot be achieved.The concern with data is that appropriate, ac-curate, and su�cient data are available, and if anydata transformations are made, such as disaggrega-tion, they are correctly performed. Unfortunately,there is not much that can be done to ensure thatthe data are correct. The best that can be done is todevelop good procedures for collecting and maintain-ing it, test the collected data using techniques suchas internal consistency checks, and screen for outliersand determine if they are correct. If the amount ofdata is large, a data base should be developed andmaintained.5 CONCEPTUAL MODEL VALIDATIONConceptual model validity is determining that (1)the theories and assumptions underlying the concep-tual model are correct, and (2) the model representa-tion of the problem entity and the model's structure,logic, and mathematical and causal relationships are\reasonable" for the intended purpose of the model.The theories and assumptions underlying the modelshould be tested using mathematical analysis and sta-tistical methods on problem entity data. Examples oftheories and assumptions are linearity, independence,stationary, and Poisson arrivals. Examples of appli-cable statistical methods are �tting distributions todata, estimating parameter values from the data, andplotting the data to determine if they are stationary.In addition, all theories used should be reviewed toensure they were applied correctly; for example, ifa Markov chain is used, does the system have theMarkov property, and are the states and transitionprobabilities correct?Next, each submodel and the overall model mustbe evaluated to determine if they are reasonable andcorrect for the intended purpose of the model. Thisshould include determining if the appropriate detailand aggregate relationships have been used for the



model's intended purpose, and if the appropriatestructure, logic, and mathematical and causal rela-tionships have been used. The primary validationtechniques used for these evaluations are face vali-dation and traces. Face validation has experts onthe problem entity evaluate the conceptual model todetermine if it is correct and reasonable for its pur-pose. This usually requires examining the 
owchartor graphical model, or the set of model equations.The use of traces is the tracking of entities througheach submodel and the overall model to determineif the logic is correct and if the necessary accuracyis maintained. If errors are found in the conceptualmodel, it must be revised and conceptual model val-idation performed again.6 MODEL VERIFICATIONComputerized model veri�cation ensures that the com-puter programming and implementation of the con-ceptual model are correct. To help ensure that a cor-rect computer program is obtained, program designand development procedures found in the �eld of soft-ware engineering should be used in developing andimplementing the computer program. These includeobject-oriented design, top-down design, structuredprogramming, and program modularity. A separateprogram module or object should be used for eachsubmodel, the overall model, and for each simulationfunction (e.g., time-
ow mechanism, random numberand random variate generators, and integration rou-tines) when using general purpose higher-order lan-guages, e.g., FORTRAN, PASCAL, C, or C++, andwhere possible when using simulation languages.One should be aware that the type of computerlanguage used a�ects the probability of having a cor-rect program. The use of a special-purpose simu-lation language generally will result in having fewererrors than if a general-purpose simulation languageis used, and using a general purpose simulation lan-guage will generally result in having fewer errors thanif a general purpose higher-order language is used.Not only does the use of simulation languages increasethe probability of having a correct program, program-ming time is usually reduced signi�cantly. (However,
exibility is usually reduced also.)After the computer program has been developed,implemented, and|optimistically|most of the pro-gramming\bugs" removed, the programmust be test-ed for correctness and accuracy. First, the simulationfunctions should be tested to see if they are correct.Usually, straightforward tests can be used here to de-termine if they are working properly. Next, each sub-model and the overall model should be tested to seeif they are correct. Here the testing is more di�cult.

There are two basic approaches to testing|staticand dynamic testing (analysis) (Fairley 1976). Instatic testing the computer program of the comput-erized model is analyzed to determine if it is cor-rect by using such techniques as correctness proofs,structured walk-through, and examining the struc-ture properties of the program. The commonly usedstructured walk-through technique consists of eachprogram developer explaining his or her computerprogram code statement-by-statement to other mem-bers of the modeling team until all are convinced itis correct.In dynamic testing the computerized model is ex-ecuted under di�erent conditions and the resultingvalues are used to determine if the computer pro-gram and its implementations are correct. This in-cludes both the values obtained during the programexecution and the �nal values obtained. There arethree di�erent strategies used in dynamic testing: (1)bottom-up testing, which means, e.g., testing the sub-models �rst and then the overall model; (2) top-downtesting, which means, e.g., testing the overall model�rst using programming stubs (sets of data) for eachof the submodels and then testing the submodels;and (3) mixed testing, which uses a combination ofbottom-up and top-down testing (Fairly 1976). Thetechniques commonly used in dynamic testing aretraces, investigations of input-output relations usingdi�erent validation techniques, internal consistencychecks, and reprogramming critical components todetermine if the same results are obtained. If thereare a large number of variables, one might aggre-gate some of the variables to reduce the number oftests needed or use certain types of design of exper-iments (Kleijnen 1987), e.g., use factor screening ex-periments to identify the key variables in order toreduce the number of experimental conditions thatneed to be tested.It is necessary to be aware while checking the cor-rectness of the computer program and its implemen-tation that errors may be caused by the data, theconceptual model, the computer program, or the com-puter implementation.For a more detailed discussion on model veri�ca-tion, see Whitner and Balci (1989).7 OPERATIONAL VALIDITYOperational validity is concerned with determiningthat the model's output behavior has the accuracyrequired for the model's intended purpose over thedomain of its intended applicability. This is wheremost of the validation testing and evaluation takesplace. The computerized model is used in operationalvalidity, and thus any de�ciencies found may be due



Table 1: Operational Validity Classi�cationOBSERVABLE NON-OBSERVABLESYSTEM SYSTEMSUBJECTIVE � COMPARISON USING � EXPLOREAPPROACH GRAPHICAL DISPLAYS MODEL BEHAVIOR� EXPLORE MODEL � COMPARISON TOBEHAVIOR OTHER MODELSOBJECTIVE � COMPARISON � COMPARISONAPPROACH USING TO OTHERSTATISTICAL MODELS USINGTESTS AND STATISTICALPROCEDURES TESTS ANDPROCEDURESto an inadequate conceptual model, an improperlyprogrammed or implemented conceptual model (e.g.,due to programming errors or insu�cient numericalaccuracy), or due to invalid data.All of the validation techniques discussed in Sec-tion 3 are applicable to operational validity. Whichtechniques and whether to use them objectively orsubjectively must be decided by the model develop-ment team and other interested parties. The majorattribute a�ecting operational validity is whether theproblem entity (or system) is observable, where ob-servable means it is possible to collect data on theoperational behavior of the program entity. Table 1gives a classi�cation of the validation approaches foroperational validity. \Comparison" means compar-ing/testing the model and system input-out behav-iors, and \explore model behavior" means to examinethe output behavior of the model using appropriatevalidation techniques and usually includes parametervariability-sensitivity analysis. Various sets of exper-imental conditions from the domain of the model'sintended applicability should be used for both com-parison and exploring model behavior.To obtain a high degree of con�dence in a modeland its results, comparison of the model's and sys-tem's input-output behaviors for at least two di�erentsets of experimental conditions is usually required.There are three basic comparison approaches used:(1) graphs of the model and system behavior data, (2)con�dence intervals, and (3) hypothesis tests. Graphsare the most commonly used approach, and con�-dence intervals are next.
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7.1 Graphical Comparison of DataThe behavior data of the model and the system aregraphed for various sets of experimental conditionsto determine if the model's output behavior has su�-cient accuracy for its intended purpose. Three typesof graphs are used: histograms, box (and whisker)plots, and behavior graphs using scatter plots. (SeeSargent (1996a) for a thorough discussion on the useof these for model validation.) An example of a boxplot is given in Figure 3, and examples of behaviorgraphs are shown in Figures 4 and 5. A variety ofgraphs using di�erent types of (1) measures such asthe mean, variance, maximum, distribution, and timeseries of a variable, and (2) relationships between twomeasures of a single variable (see Figure 4) and be-tween measures of two variables (see Figure 5) arerequired. It is important that appropriate measuresand relationships be used in validating a model andthat they be determined with respect to the model'sintended purpose. See Anderson and Sargent (1974)for an example of a set of graphs used in the valida-tion of a simulation model.These graphs can be used in model validation indi�erent ways. First, the model development teamcan use the graphs in the model development processto make a subjective judgment on whether a modelpossesses su�cient accuracy for its intended purpose.Second, they can be used in the face validity tech-nique where experts are asked to make subjectivejudgments on whether a model possesses su�cientaccuracy for its intended purpose. Third, the graphscan be used is in Turing tests. Another way they canbe used is in IV&V.
Figure 4: Reaction Time



Figure 5: Disk Access7.2 Con�dence IntervalsCon�dence intervals (c.i.), simultaneous con�denceintervals (s.c.i.), and joint con�dence regions (j.c.r.)can be obtained for the di�erences between the means,variances, and distributions of di�erent model andsystem output variables for each set of experimentalconditions. These c.i., s.c.i., and j.c.r. can be used asthe model range of accuracy for model validation.To construct the model range of accuracy, a sta-tistical procedure containing a statistical techniqueand a method of data collection must be developedfor each set of experimental conditions and for eachvariable of interest. The statistical techniques usedcan be divided into two groups: (1) univariate statis-tical techniques, and (2) multivariate statistical tech-niques. The univariate techniques can be used to de-velop c.i., and with the use of the Bonferroni inequal-ity (Law and Kelton 1991), s.c.i. The multivariatetechniques can be used to develop s.c.i. and j.c.r.Both parametric and nonparametric techniques canbe used.The method of data collection must satisfy theunderlying assumptions of the statistical techniquebeing used. The standard statistical techniques and

data collection methods used in simulation outputanalysis (Banks, Carson, and Nelson 1996, Law andKelton 1991) can be used for developing the modelrange of accuracy, e.g., the methods of replicationand (nonoverlapping) batch means.It is usually desirable to construct the model rangeof accuracy with the lengths of the c.i. and s.c.i. andthe sizes of the j.c.r. as small as possible. The shorterthe lengths or the smaller the sizes, the more usefuland meaningful the model range of accuracy will usu-ally be. The lengths and the sizes (1) are a�ected bythe values of con�dence levels, variances of the modeland system response variables, and sample sizes, and(2) can be made smaller by decreasing the con�dencelevels or increasing the sample sizes. A tradeo� needsto be made among the sample sizes, con�dence levels,and estimates of the length or sizes of the model rangeof accuracy, i.e., c.i., s.c.i., or j.c.r. Tradeo� curvescan be constructed to aid in the tradeo� analysis.Details on the use of c.i., s.c.i., and j.c.r. for oper-ational validity, including a general methodology, arecontained in Balci and Sargent (1984b). A brief dis-cussion on the use of c.i. for model validation is alsocontained in Law and Kelton (1991).7.3 Hypothesis TestsHypothesis tests can be used in the comparison ofmeans, variances, distributions, and time series of theoutput variables of a model and a system for each setof experimental conditions to determine if the model'soutput behavior has an acceptable range of accuracy.An acceptable range of accuracy is the amount ofaccuracy that is required of a model to be valid forits intended purpose.The �rst step in hypothesis testing is to state thehypotheses to be tested:H0: Model is valid for the acceptable range of accu-racy under the set of experimental conditions.H1: Model is invalid for the acceptable range of ac-curacy under the set of experimental conditions.Two types of errors are possible in testing hy-potheses. The �rst, or type I error, is rejecting thevalidity of a valid model and the second, or type IIerror, is accepting the validity of an invalid model.The probability of a type error I, �, is called modelbuilder's risk, and the probability of the type II error,�, is calledmodel user's risk (Balci and Sargent 1981).In model validation, the model user's risk is extremelyimportant and must be kept small. Thus both type Iand type II errors must be carefully considered whenusing hypothesis testing for model validation.The amount of agreement between a model anda system can be measured by a validity measure,�, which is chosen such that the model accuracy or



Figure 6: Operating Characteristic Curvesthe amount of agreement between the model and thesystem decreases as the value of the validity mea-sure increases. The acceptable range of accuracy canbe used to determine an acceptable validity range,0 � � � ��.The probability of acceptance of a model beingvalid, Pa, can be examined as a function of the va-lidity measure by using an Operating CharacteristicCurve (Johnson 1994). Figure 6 contains three di�er-ent operating characteristic curves to illustrate howthe sample size of observations a�ect Pa as a functionof �. As can be seen, an inaccurate model has a highprobability of being accepted if a small sample size ofobservations is used, and an accurate model has a lowprobability of being accepted if a large sample size ofobservations is used.The location and shape of the operating charac-teristic curves are a function of the statistical tech-nique being used, the value of � chosen for � = 0,i.e., ��, and the sample size of observations. Oncethe operating characteristic curves are constructed,the intervals for the model user's risk �(�) and themodel builders risk � can be determined for a given�� as follows:�� � model builder's risk � � (1� ��)0 � model user's risk �(�) � ��:Thus there is a direct relationship among the builder'srisk, model user's risk, acceptable validity range, andthe sample size of observations. A tradeo� amongthese must be made in using hypothesis tests in modelvalidation.Details of the methodology for using hypothesistests in comparing the model's and system's outputdata for model validations are given in Balci andSargent (1981). Examples of the application of thismethodology in the testing of output means for modelvalidation are given in Balci and Sargent (1982a,1982b, 1983). Also, see Banks et al. (1996).

8 DOCUMENTATIONDocumentation on model veri�cation and validationis usually critical in convincing users of the \correct-ness" of a model and its results, and should be in-cluded in the simulation model documentation. (Fora general discussion on documentation of computer-based models, see Gass (1984).) Both detailed andsummary documentation are desired. The detaileddocumentation should include speci�cs on the tests,evaluations made, data, results, etc. The summarydocumentation should contain a separate evaluationtable for data validity, conceptual model validity, com-puter model veri�cation, operational validity, and anoverall summary. See Table 2 for an example of anevaluation table of conceptual model validity. (SeeSargent (1994, 1996b) for examples of two of the otherevaluation tables.) The columns of the table are self-explanatory except for the last column, which refersto the con�dence the evaluators have in the resultsor conclusions, and this is often expressed as low,medium, or high.9 RECOMMENDED PROCEDUREThis author recommends that, as a minimum, thefollowing steps be performed in model validation:1. Have an agreement made prior to developingthe model between (a) the model developmentteam and (b) the model sponsors and (if pos-sible) the users, specifying the basic validationapproach and a minimum set of speci�c vali-dation techniques to be used in the validationprocess.2. Specify the amount of accuracy required of themodel's output variables of interest for the mod-el's intended application prior to starting thedevelopment of the model or very early in themodel development process.3. Test, wherever possible, the assumptions andtheories underlying the model.4. In each model iteration, perform at least facevalidity on the conceptual model.5. In each model iteration, at least explore themodel's behavior using the computerized model.6. In at least the last model iteration, make com-parisons, if possible, between the model andsystem behavior (output) data for at least twosets of experimental conditions.7. Develop validation documentation for inclusionin the simulation model documentation.8. If the model is to be used over a period of time,develop a schedule for periodic review of themodel's validity.



Table 2: Evaluation Table for Conceptual Model ValidityCategory/Item Technique(s) Justi�cation for Reference to Result/ Con�denceUsed Technique Used Supporting Report Conclusion In Result� Theories � Face validity� Assumptions � Historical� Model � Acceptedrepresentation approach� Derived fromempirical data� TheoreticalderivationStrengthsWeaknessesOverall evaluation for Overall Justi�cation for Con�denceComputer Model Veri�cation Conclusion Conclusion In ConclusionModels occasionally are developed to be used morethan once. A procedure for reviewing the validity ofthese models over their life cycles needs to be devel-oped, as speci�ed by step 8. No general procedurecan be given, as each situation is di�erent. For ex-ample, if no data were available on the system whena model was initially developed and validated, thenrevalidation of the model should take place prior toeach usage of the model if new data or system under-standing has occurred since its last validation.10 SUMMARYModel veri�cation and validation are critical in thedevelopment of a simulation model. Unfortunately,there is no set of speci�c tests that can easily be ap-plied to determine the \correctness" of the model.Furthermore, no algorithm exists to determine whattechniques or procedures to use. Every new simula-tion project presents a new and unique challenge.There is considerable literature on veri�cation andvalidation. Articles given in the limited bibliographycan be used as a starting point for furthering yourknowledge on model veri�cation and validation. Fora fairly recent bibliography, see the following UHL onthe WWW: http://manta.cs.vt.edu/biblio/.LIMITED BIBLIOGRAPHYAnderson, H. A. and R. G. Sargent. 1974. An Inves-tigation into Scheduling for an Interactive Com-puter System, IBM Journal of Research and De-velopment, 18, 2, pp. 125{137.Balci, O. 1989. How to Assess the Acceptability andCredibility of SimulationResults, Proc. of the 1989Winter Simulation Conf., pp. 62{71.Balci, O. 1995. Principles and Techniques of Simula-tion Validation, Veri�cation, and Testing, Proc. ofthe 1995 Winter Simulation Conf., pp. 147{154.
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