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Abstract

Many interacting particle systems with short range intéoas are not ergodic, but converge weakly
towards a mixture of their ergodic invariant measures. Tinestjon arises whether a.s. the process even-
tually stays close to one of these ergodic states, or if ihgha between the attainable ergodic states
infinitely often (“recurrence”). Under the assumption thiare exists a convergence—determining class
of distributions that is (strongly) preserved under theaiyits, we show that the system is in fact recur-
rent in the above sense.

We apply our method to several interacting particle systesh&aining new or improved recurrence
results. In addition, we answer a question raised by Ed Rerdncerning the change of the locally
predominant type in a model of mutually catalytic branching
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1 Introduction

We start with an example to explain the problem we addredssnaork.

Consider the (basic) voter modgl;);>o on Z?. Think of each point ifZ¢ as being occupied by an
individual that is capable of holding either of the opinidhand1. After a rate-one exponential waiting
time, a given individual chooses one of Ri¢ nearest neighbors at random and assumes its opinion. All
waiting times and choices of neighbors are made indepelydditite opinion of the voter at at timet is
given by&;(x).

Formally, we can define the voter model as the Markov pro¢&ss-o on X = {0, I}Zd, equipped
with the product topology, via its genera@r Forz € X andi, j, k € Z< let

o (E) = x(k) k#i,
i (k) {x(j) k=i.

For I’ : X — R depending only on finitely many coordinates, we defiife by

GF(r) =Y 50 3 [Flra) — F(a)].

i€zd li—il=1

For more a detailed description and background informaser Chapter V of Liggett (1985).
It is well known that the voter model clusters in dimensibr 2. More precisely, if we start at time 0
with independent opinions, where opinion 1 has probaMility (0, 1), then

L1&] =2 (1 - 6)60 + 061 (1.1)

Here,dp andd; are the unit masses on the states where all individuals haivéoa 0, respectively 1£
denotes the law of a random variable, and- denotes weak convergence of probability measures. Note
that sinceX carries the product topology, (1.1) is equivalent to cogeece of the finite dimensional dis-
tributions. A question that arises naturally, given (1ig),

Does the opinion at a given site change value infinitely &ften

The question has been answered affirmatively by means dadrrafiecial arguments in Cox and Griffeath
(1986).
A simple argument that works for shift ergodic initial stat®as brought to our attention by Jeff Steif:
Consider the events
A={3T: &6)=1,t>T}, iezl

For|i — j| = 1isis easy to see that, = A; a.s. hence a.s4; = A := N;A,;. HoweverA is shift
invariant and by ergodicity we hau[A] € {0,1}. Sinced < 1, clearlyP[A] = 0. Now change thé in
the definition ofA; into 0 to conclude that the opinion changes infinitely often.

There are two drawbacks of this argument: (i) It works onlydiaift ergodic initial states. (ii) For many
models it is hard to check whethd; = A; a.s. or not.

The aim of this work is to give a robust and simple abstractiamgnt that can be applied to a large
variety of models and for initial states that only need toéhaglobal density. We do not assume translation
invariance or even ergodicity. This argument relies onlyfaassumptions that a certain class of probability
measures on the state space is preserved under the dyndniig$, @nd that this class is “convergence
determining” in an appropriate sense. In particular, thguarent does not rely on quantitative estimates
that make use of special features (or the dimension!) of timsidered models.

For the voter model, we are able to prove a.s. alternatiogpEg under more general conditions than
were considered in Cox and Griffeath (1986). We also com&deeral related models, as well as a model
of mutually catalytic branching recently introduced by Bam and Perkins (1998).
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Note that our focus lies on the situation where the model tsengodic, i.e., the weak limit points are
mixturesof the ergodic invariant measures. We show that the procetss“glose” to any of the ergodic
states (occurring in the mixture) at arbitrarily late timeghis question has often been connected to the
guestion of whether low-dimensional binary branching @ndvalk, starting in a homogeneous Poisson
field, populates a given site at arbitrarily late times. Tisiknown to be be true fod = 2 and false
for d = 1. Note, however, that this is a fundamentally different duesthan the one we address, since
branching random walk is ergodic. Namelydif< 2, the unit mas9, on the empty configuration is the
only invariant measure (with-finite intensity measure).

It turns out that the correct notion of convergence of rangoabability measures is crucial. We discuss
the topological details and give the abstract statemenéatiéh 2. In Section 3 we apply our result to:

o the multitype voter model,

e interacting diffusions oo, 1],

interacting Fleming Viot Processes,

interacting Brownian motions,

mutually catalytic branching super random walk.

2 Result

In this section we formulate and prove our abstract result.

Let X be a locally compact Polish space and denot@®y ) the space of probability measures &n
equipped with the topology of weak convergence of probighitieasuresP (X) is again a locally compact
Polish space (see, e.g., Kallenberg (1983)). Consider ndiacaete time Markov process,,)»en, 0N X .

(We could consider a Feller proces):>o on X instead, but we choose the discrete time setting for the
sake of generality.) Denote f$(n)),cn, its semigroup. Thatis, far € P(X) andn € Ny,

pS(n) = LX[En].

We want to describe the longtime behaviorcgfin terms of its possible limit pointgy, 8 € ©, where
O is an abstract set. (We do not assume thajyco necessarily exhausts the class of possible limit points.)
In the example of the voter modé), = [0, 1] andpp = (1 — 0)do + 697.

Now we make the crucial definition:

Definition 2.1 The domain of stochastic attractid(1.¢) of ug is the set of measurgsc P(X) such that

for all m € No, P#[¢,,, € dx]-stochasticallyL?[¢,] = . Formally,

Dlug) = {u € P(X): PHLE[E,] € 4] "= 1 opentd 5 g andm € NO}. (2.1)
Clearly,D(u) is a convex set but it is in general not closed. For exampldrvoter modelyS(n) "=
1o, Wherery is the product measure di, I}Zd with intensityd. We will see later thatryS(n) € D (1),

n € Ny, but obviouslyus ¢ D(ue) if 6 € (0,1). SinceD(up) is not compact we cannot hope for a nice
description in terms of extremal elements. In spite of this, give a mild sufficient condition for a set
My C P(X) to be a subset dP(uy) that covers a wide range in the examples.
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Assumption 1. M, C P(X) is invariant under the dynamics ¢f,,), i.e.,

S(1)Mg C M. (A1)

Assumption 2.For allu € My, the lawsL*[€,,] converge tqup in u(dz) probability. Thatis, il C P(X)
is open andy € 4, then for ally € My,

p({r € X @ L7€,] e 4}) == 1. (A2)

Proposition 2.2 If M fulfills the assumption (A1) and (A2) theWly C D(ug). Further,D(ug) fulfills
(A1) and (A2) and is hence the maximal set fulfilling (A1) afai)(

Proof The proofis simple as is left as an exercise. |

In the context of the voter model, for< 6 < 1 and withpy = (1 — 0)uoe + 6u1, we would like to argue
that (A1) and (A2) guarantee that for any initial measure My, the process; gets “close” tod and tol
at arbitrarily late times. The meaning of (A1) is clear. However, condition (A2) is ®what unusual, so
we would like to discuss its interpretation and our reasenslioosing it.

There are basically three types of convergence that we nalgbbse for (A2): convergence of the
means, stochastic convergence and almost sure converg8imz® we consider convergence of random
probability measures, convergencelih and stochastic convergence coincide, and both are impied b
almost sure convergence, while both imply convergenceeftieans. We illustrate the meaning of these
concepts in the example of the voter model.

By convergence of the meamnge mean the condition

uS(n) "= ug Y € M. (2.2)

That is, My is a subset of the domain of attraction;af. In the example of the voter model, we could set
My = {ue}, in which case (2.2) would certainly hold. However, in thésse we would haveg, = & a.s.,
so there would be no change of types at all. Hence, this niitmo rough for our purposes.

By almost sure convergenc&e mean the condition

p{z e X o L7[6)]) "= pe}) =1 Ve M. (2.3)

(Since (2.3) does not hold for the voter model withy = {ug}, our objection to (2.2) does not apply.)
Certainly (2.3) implies (2.2), but it is correspondingly redifficult to verify in any given example. For
the voter model, by usinduality (see Chapter V of Liggett (1985)), it is possible to verifydRfor some
classesMy. However, verification becomes rather difficult for more goitated models, so we do not
adopt this notion of convergence.

By stochastic convergencg&e mean exactly (A2), which is a weaker condition than (2bBit still
strong enough for our purposes. For the voter model, towéhiP), we only have to show that for all finite
H c 74 ande > 0,

p{z € X: Pl (z) =1V € H| >0 —¢, P76, (2) =0Vz € H] > 1 -0 —¢}) =3 1. (2.4)

This fact, fory belonging to a large clas$ty, is easily proved using duality (see the proof of Theorem 1)
below.

Now we come back to the general situation. 1Sgt= supp(ue) be the closed support afy. For a
sequencér, ),en in X let A((x, )nen) denote the set of accumulations point§of ),,cn in X.
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Proposition 2.3 For eachd € O, for all 1 € D(ug),
P*[Sy C A((En)ner)] = 1. (2.5)
Proof LetU C X be open, withU N Sy # 0. We will show that there exists a sequenge oo such that
P#[&, € U infinitely often] = 1. (2.6)

Clearly, (2.6) implies (2.5).
By our choice ofU,

§:=pe(U) > 0.

Choosél C P(X) open,up € 4, such that/(U) > §/2 for all v € 4. By (Al) and (A2) we can choose a
sequence, T oo such that

(1S(tn) ({2 € X+ L7061, 0] €U}) > 1—27"
Denote byA,, the event
A, ={&, €U}
and let
B,={zeX: L"&,] € U}.
If we let F = o(&, &1, - - - , &) be the filtration induced bgg, ) then by the Markov property for € N

PHPH[AL|F, 1] < 6/2] = pS(ta—1)({z € X : P*[&,—¢,_, € U] <6/2})

< /LS(tn,l)({x e X: ﬁz[ftnftn,l] gﬂ}) (27)
<277,

HenceP*—almost surd@*[A,,|F;, ,] > /2 for infinitely manyn € N. In particular,

P*

i PH[A,|F ] = oo] =1 (2.8)

n=1

Now according to the conditional Borel-Cantelli lemma (s¢., Durrett (1996), Corollary 4.3.2)

limsup A,, = {Z PHAL|Fe, o] = oo} (mod P*). (2.9)

n— 00
n=1

Hence

P {lim sup An} =1,

n—oo

which implies (2.6). ]
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3 Applications

The situation we have in mind is that of a “general” intenagtparticle system where a global variable,
typically the density of particles, is preserved under thigainics. The models we consider here have a
number of features in common. The state space is V¢, equipped with the product topology, where the
countably infinite Abelian group’ (we exclude expressis verbis the possibility®finite!) plays the role

of the site spacé/ is the space of values that a local coordinate can assumte bontext of genealogical
models, we hav& C [0,00)F or V. C M/ (E) (the finite measures of), whereE is a “type” space. For

v € V we interpret(e) as the number of particles of typec E. WhenV is compact we can, in fact, take
X = V¢, but for non-compacY’, we need to impose growth conditions on the coordinatesll baaes,
the interaction of the coordinates will be described in ®ohan irreducible random walk kerne{-, -) on

G. The continuous time transition kernglis defined by

oo tn
a=etY Lo,
n!
n=0

wherea(™ is then-step transition probability of.
Forv € V, we letv denote the element € X such thatv(g) = v forall g € G. P always denotes the
space of probability measures on a locally compact Poliskeequipped with the weak topology.

3.1 The Multitype voter model

Fix a positive integet > 1, the number of types (opinions), I&t= {1,... , ¢} be the space of types, and
letV = {1}, e € E}. LetX = V%, and define, for € X andg, ¢’,h € G,
z(h), h#g,
T,/ (h) = ( , g (3.1)
z(9'), h=g.

We define the voter modét; ):> to be the Markov process okl with generato, where forF' : X — R
depending on only finitely many coordinates,

GF(z) = Y alg.h) (F(agn) - F(x)). (3:2)
g,heG
Define the simplex
6 =P(E) = {9 L E — (0,1 with 3 6(e) = 1}, (3.3)
ecE

and forf € © let My be the collection of. € P(X) such that for aly € G ande € E,

lim | p(de)((asa(g) - 0)(e))* = 0. (3.4)

55— 00

In the case thaty = Z¢, the collectionM, contains all translation invariant, shift ergogice P(X)
satisfying [ y(dz)z(0) = 6 (see pp. 180-181 of Cox, Greven and Shiga (1995) for the case). For
6 € O define

po =Y 0(e)0e, (3.5)

ecE

and note thaty = {e: e € F andd(e) > 0.}
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We assume that the symmetrized kefaegiven by

(g, 1) = L) +allg)

is recurrent. It is well known that the voter model clusterstiis situation. In particular, Theorem V.1.9 of
Liggett (1985) implies that for aj € My,

A== (3.6)

Theorem 1 Letf € © andy € My. Then for alle € E with 6(e) > 0, and for all finiteH C G, all
the component& (h), h € H, simultaneously assume the valyeat arbitrarily late times with probability
one.

Proof It suffices to verify that (A1) and (A2) hold, in which cagefy C D(ug) is in the domain of
stochastic attraction gfs and our conclusion is justified by Proposition 2.3. To do,thie make use of
duality (see Chapter V of Liggett (1985)), which we briefly describet (n/, g € G);>o be a system of
rate one continuous time coalescing random walkg:omvith step distributioru(g, k). For eacly € G,

n] is a random walk started at The random walks; run independently until two of them meet, at which
time the walks (instantly) coalesce, and after that movettogy. A special case of the duality relation (see
(V.1.7) of Liggett (1985)) connecting. and¢; is: for all x € X, finite H € G andv € V,

P?[¢(h) = v, h € H] = Plz(nl") =v, h € HJ. (3.7)

Fix u € My andt > 0. To verify (A1), we must show that for fixeglande,

E" [(as¢i(g) — 0)(e)?] == 0. (3.8)
For H C G, letty to be the first time at which all the random walks started/itnave coalesced,
g =inf{t>0: n! =nlVghecH}. (3.9
Note that
Cov®[&(g)(e), & (h)(e)] < Plrigny < t].
Hence

B {(a.6:(g)(€) — 0(e))?] - / () (ans12(g) () — ()
- / (de) Var®[a.&,(g) e)]
- / w(dz) 3 aslg, h)as(g, k)Cov® (g () (e), & (k) (e)]

h,k€G

(3.10)

< Z as(gvh)as(gvk)Ft(k_h)’
h,keG

whereF;(k — h) = Py, 1y < t]. By the assumption that € My, the second term on the left side above
tends to 0 as — oo. The right side also tends to 0 as— oo, sinceG is infinite anda is irreducible, and
sinceFi(h) — 0 as|h| — co. (That s, for any sequendér,,) of finite subsets of7 such thaG,, T G as
n — oo, sup{Fz(h) : h € G\ Gp,} — 0asn — o0.)

In order to show that (A2) holds, it suffices to show thatfar 0 and finiteH C G,

tlim p({z 2 P*[&(h) =14 forallh € H] > 0(e) —cforalle e E}) = 1. (3.11)
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The setF of types is finite, so it suffices to prove that for each fixed E,

tlir(r)lo p({z: PT[&(h) =1 forallh € H] > 0(e) —}) = 1. (3.12)
Choose an arbitrary € H. By (3.7),

P (h )_11{}forallheH]>P[ x(nf) = 1yey, T <1

Plz(n) = L{ey] — Plru > 1]
= atx(g)(e) Plrg > t].
Since we have assumed tfaais recurrentP[ry > t] — 0 ast — co. Therefore,
p({z : PP[&(h) = 1y forallh € H| < f(e) —€})
< plfz s (ax(g) — 0)(e) < —(e = Plr > 1])})

< / () (ayz(g) — 0)(€))/ (e — Plry > 1])?

—0

ast — oo, on account of (3.4). |

3.2 Interacting diffusions

Here we consider a two—type genealogical model with migreéind resampling. We suppose that at each
siteg € G there is a large colony of individuals, and each individuabkirbe one of two genealogical types,
A or B. The frequency of type A at sitgat timet is & (g). HenceE = {1, 2} and we identifyP(E) with
[0,1] and letV = [0, 1]. Further we let&;),>o be the Markov process with state spac€ and generator

G, where, for suitabld” : X — R,

GF(z) = Y alg, h)[a(h) - () +3 oz (“’”). (3.13)

g,heG (g geG g)

The migration kernet is an irreducible random walk kernel @, and the diffusion coefficient (or resam-
pling function)e is a functiong : [0, 1] — [0, co) that satisfies

0(0) = o(1) =0,
o(r) >0, r€(0,1), (3.14)
o is Lipschitz continuous.

The ergodic theory of this process has been studied by Sh#i0@,b) (for the case(r) = r(1 — r)),
Notahara and Shiga (1980) and Cox and Greven (1994). As hgtlhidter model, there is either coexistence
or local extinction of one type, depending on whether thermgtnized kernef defined in (3.1) is transient
or recurrent. We assume here thds recurrent. Le® = [0, 1], and forf € © let M, be the collection of
€ P(X) such that foralp € G,

lim [ p(dr)(asz(g) — 60)* = 0. (3.15)

§— 00

Forf € ©, letug = (1 — 6)do + 641, and note thaby = {0, 1}. By Theorem 4 of Cox and Greven (1994),
if © € Mg then

L6 E2 (1 - 0)60 + 064 (3.16)

We prove here a recurrence result fgrthat extends a result of Fleischmann and Greven (1994) for a
specialG anda (see the proof of their Proposition 5.11).
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Theorem 2 Letf € (0,1) andu € My. Then, for all finiteH C G,
P# |liminf sup &(h) = 0 and limsup inf &(h) =1| = 1. (3.17)
t—oo pep t—oo heH

Proof It suffices to verify that (A1) and (A2) hold, in which cagely C D(ug) is in the domain of
stochastic attraction gfy and our conclusion is justified by Proposition 2.3. kixce My andt > 0. To
verify (A1) we must show that

lim E*[(as&i(9) — 0)(as&i(h) = 0)] = 0. (3.18)

§— 00

In order to compute the first and second moment we use Lemm&doénd Greven (1994):
E*[6(g)] = arz(g) (3.19)

E*[¢(9)&(h)] = arw(g)azx(h) + Z/o at—r(h, Dag—r(k, DE"[0(&-(1))] dr. (3.20)

leG

Now it is straightforward to check the formula

EX[(&(h) — 0)(&: (k) — 0)]
= /u(d:v)(atx(h) —0)(arx(k) — 0) + Z/o at—r(hyDag—r(k,)E*[0(&-(1))] dr.  (3.21)

l

It follows that

E“[(as&(g) - 6‘)(as§t(g) - 9)]

= [wnosinto) 07+ 3 [ B e G2
l

The first term on the right side of (3.22) tends to Gas oo because: € My. The second term on the
right side of (3.22) is bounded above by

t
IMM/amMMJMH
0

and this also tends to 0 as— oo (recall that|G| = oo and thata is irreducible, hencé,(g,9) — oo as
r — 00). We have thus established (3.18)
In order to show that (A2) holds, it suffices to prove that foité H C G ande > 0,

lim u({:v: P[¢,(h) < eVh e H]>1—0—candP?[&,(h) > 1 — e Vh € H] > 9—5}) = 1.

(3.23)
We break the proof of (3.23) into two parts. First, we showt fbaanyg € G ande > 0,
Jim u({x L P[e(g) <] >1—0—c, andPe[E,(g) > 1 —¢] > 0 — a}) =1 (3.24)

Then we show that for any, h € G ande > 0,

Jim p({a: PT[[€(g) — &(h)| > €] > e}) =0. (3.25)
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Itis easy to see that (3.24) and (3.25) imply (3.23)
Let H C G be finite, letd > 0, and define

Iy(0) = {x : |aww(h) — 0| < dforallh € H}.
Sinceu € My andH is finite, Chebyshev’s inequality and (3.15) imply that that
tlim w(Te(6)) = 1. (3.26)

Suppose now thall = {g, h}. In the proof of Theorem 4 in Cox and Greven (1994), it is shomat for
0 >0,

E“[(&(9) — 52)(§t(h) + 52)] > axr(g) — qi(d,9,h) — 52, (3.27)

whereg; (4, g, h) — 0 ast — co. (The quantityy; (4, g, h) is the probability that two random walks starting
from g andh, which move independently according to the kemgland coalesce at ratewhenever they
occupy the same site, coalesce by tiim&he constant depends om, h, o andd, but is strictly positive.)
After a little rearrangement (using (3.19)), this ineqgtyaiinplies that

0 < E7&(9)(1 — &(h)] < a:(0, g, h) + 26°. (3.28)
By choosingt large enough so that(d, g, h) < 4%, we have
0 < E7[&(g)(1 = &(h))] < 36% (3.29)
Settingg = h, Chebyshev’s inequality implies
P& (9)(1 = &(9)) = 0] < 30. (3.30)

Assume now thab < ¢ < 1/4. Forr € [20,1 — 2], »(1 — r) > §. Therefore, for large, the last
estimate implies that

P*[&(g) € [26,1 — 26]] < 36. (3.31)
Using (3.19) we get that for € T',(9), E*[£,(g)] = aix(g) > 6 — ¢. On the other hand,
E*[6(9)] < 20P7[5(g) < 26] + P& (9) > 26] = 1 — (1 =20)P"[&,(9) <20].  (3.32)

On account of these estimates,

1-6+6

* <. .
Pe[6(9) < 20] < —— (3.33)
A similar argument gives the inequality
0+46
x —20] < ) .
P[6(g) > 1 - 20) < 7= (3.34)
Combining (3.31), (3.33) and (3.34), we obtain thatfor T';(9)
0
Peléi(g) <20 > 1-35— 20
1-26 (3.35)
1-60+496 '
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Givene > 0, we may choosé > 0 small enough, and thernlarge enough so that (6, g, g) < §2, and for
allz € Ft(5),

P?[¢(g) <e]>1—-0—¢ and P?[&(g) >1—¢] >0 —c.

In view of (3.26), (3.24) holds.

To prove (3.25), suppose th&:(g) — &(h)| > §. Then, it must be the case that at least one of
&t(g9), &(h) belong to the interveh, 1 — 4], or, one oft;(g), &:(h) is smaller thad and the other larger than
1 — 4. In the latter case, eith&f(g)(1 — &(h)) > 0(1 — 9) or & (h)(1 — &(g)) > 6(1 — d). Therefore,
P*[|&(g) — & (h)| > ] is bounded above by

P*[&(g) €[0,1 = 0]] + P*[&(h) € [6,1 - 4]]
+ P& (9) (1 = & (h) > 0(1 = 8)] + P& (h)(1 = &(9)) > 6(1 = 9)].

Fort large enough so that (9, g, h) < 62, and allz € T';(6), (3.29) and Chebyshev’s inequality imply
P[5 (9)(1 = & (h)) > 6(1 = 6)] < 35/(1 —9)

On account of this estimate, (3.31) and (3.36),

(3.36)

Pe([&i(9) = & (h)] > 0] <65 +66/(1 - 9). (3.37)

Givene > 0, we may choosé > 0 small enough so that the right side above is less thandt¢ large
enough so tha; (6, g, h) < §2. We therefore obtain that, for all € T',(9),

P[[&(g) — &(h)] > €] <e. (3-38)
In view of (3.26), (3.25) holds. |

3.3 Interacting Fleming Viot Processes

Here we consider a generalization of the two allele (A anday) snodel of the last example to infinitely
many alleles. The spade of alleles (or types) is now infinite. W.l.0.g. we assufie= [0, 1]. The interval
[0, 1] is understood as an arbitrary labeling of the types. Thoughneed some measureability Bfand
thus equip it with the Boretr-field 55 from the euclidian metric of0, 1].

Now &,(g)(A) is the frequency at time timeof individuals in the colony; € G having a type that is
in A € B. Henceg,(g) € Ag :=V := P(E, B) (the set of probability measures 68, B)) and(;) is a
Markov process with values in

X =P(E,B)°.

The process¢;) is a model with migration and resampling. While the migratie just the one we intro-
duced in the previous subsection we must be more carefulthéthesampling: we can defif& ) uniquely
only for the so-called Fisher-Wright cagéx) = ¢ - z(1 — x), ¢ > 0.

We define(&;) in terms of its generatd¥ which is defined for certain polynomials : X — R by

orw) = 3 ale.n [ (‘9”””)@)) (e(h)(de) — w(g)(de))

4heG dz(9) 339
w € 8/ €T € 6/ — X €)T 6/ '
+;/E/E<(ax(g))g<, )) lelo) e ) = sta)(de)ala) ')

We do not explain the details of this formula but refer to DamsGreven and Vaillancourt (1995), equation
(0.8), or Chapter 2.6 of Dawson (1993).
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The possible limit pointg,y will now be indexed by the sé = P(E, B). We define fo € ©
My ={p € P(P(E,B)°): uis shift ergodic with intensity}. (3.40)

By shift ergodicwe mean ergodic with respect to translations by any groupete. Again fora recurrent
we have clustering and the limit points are mixtures of theasuees)s, ( the bold symbol indicates the
point mass on the constant stétg e € E):

o = /EG(de) 05, - (3.41)

See Dawson, Greven and Vaillancourt (1995), Theorem 0.patticular,Sy = supp(ug) = {de : e €
supp(6)}.

Theorem 3 Letd € © andu € My. Then for every finite séf C G and every sefl € B with pg(A) > 0,

pP# {lim sup hlgg &(h)(A) = 1} =1. (3.42)

t—o0

In particular, the the locally predominant type changesiitély often.

Proof For fixed A € B the processé;(g); g € G)iso = (€:(9)(A); g € G)y>o is just the process of
interacting Fisher-Wright diffusions off), 1]. That is the process of interacting diffusions from the last
example with diffusion coefficieni(z) = (1 — x). Hence the claim follows from Theorem 2. O

3.4 Interacting Brownian motions

So far we have considered examples where the state spaclasite) was compact. Now we come up
with our first example of a non-compact state space.

Here we consider only one type, i.é, = {1}. In the notation of the last few examples we have
© =V =RandX c R is a Liggett—Spitzer space (see Liggett and Spitzer (19849ye precisely, fix
v € (0,00)% with > sec V(9) < oo and with the property that

sup7(g)~" (va)(g) < oo. (3.43)
geG

Now define|z(l, = 3_ . |2(g)|7(g) and let
X ={zeR: |z[, < o} (3.44)

For example, ilG = Z? anda is the kernel of simple random walk then= (1+ ||z||2) ~? fulfills the above

assumption fop > d. Hence allz € RZ* that do not grow faster than a polynomial are possible initia
configurations.
We define linearly interacting Brownian motions as the Margoocess orX with generator

OF (z) n 1 0?F ()
Ox(g) 2 2= Ox(g)*

GF(z) = Y alg.h) [z(h) - x(g)] (3.45)

g,heG

Define

M={ueP(X): {uo((wa)(g) ", t > 0}istight¥ g € G}. (3.46)
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We show that if the symmetrized kerniels recurrent, then for € M
. t—00 1 1
El [é—t] — Mo = 56_00 + 56_'_00, (347)

and moreover thatm C D(uo), the domain of stochastic attraction gf (Of course, other subsets of
D(uo) are conceivable). To make precise sense of this statemteRt & R U {40} be the two point
compactification of the real line. The bold symbelsc and+oco denote the elements IR with all
components equal te oo respectivelytoo.

In fact, even the stronger statement needed for (A2) is true

t—oo

LE¢] = o, u(dzx)-stochastically (3.48)

or equivalently: for alk > 0, K > 0 andH C G finite
o o - " _ LR
htIE)lOIOlf/L({,T. P [hlggﬁt(h) > K] /\ P [sgg&(h) < K] > 5 6}) =1 (3.49)

We give the simple proof of (3.49): First note th@t),>o solves a system of stochastic differential
equations
déi(g9) =Y alg, h)[&(h) — &lg)) dt + dWi(g), (3.50)

heG

where{(W,(g9):>0, g € G} is an independent family of standard Wiener processes.s(@dm be seen
by an approximation procedure as in Shiga and Shimizu (1986pf of Theorem 3.2.) Hencg can be
written as

€4(9) = (auto)(9) + /0 S aios(g,h) AW, (R). (351)
heG

From (3.51) we derive for € X the first and second moment:

E6lo) = (0n)(o), (352)
Cov?lei(9). &(h)] = 3Caulo,) (359

where@t(g, h) is the Green function of the symmetrized kerael

~

t
Clg.h) = [ anlg.m) ds
0

t
= / Zas/Q(gaZ)as/Q(hal) ds.
0

leG
Sinceq is irreducible and is recurrent, the weak ratio limit theorem (see, e.g., Bz o0k, Proposition
1.5) implies
Culg.1) 1=y,
Gi(9.9)
Hence asymptotically the components are perfectly cagdlavhile

(3.54)

Var®[¢,(g)] = %@m(O, 0) =% oc. (3.55)
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Since undeP” the field{{;(g), g € G} is Gaussian antl®[,(g)] = (a.x)(g) is tight ast — oo (w.r.t.
w) for all g € G, this implies (3.49). Hence we have shown that (A2) holds.

Assumption (A1) however is an immediate consequence ol {3 Bhus we can apply Proposition 2.3
to get the following result:

Theorem 4 Lety, € M. ThenforH C G finite

u({x: P* [hmsuphlnf &i(h) = o0, hmlnf sup & (h) = —oo} = 1}) (3.56)

t—oo =00 peH

3.5 Mutually catalytic branching super random walk

We now come to the example that mainly motivated our work. <iter a two-type “infinitesimal mass”
interacting particle system df?, i.e. G = Z¢, E = {1,2}, V = [0,00)%. Hence&(i)(c) € [0,00) is
the amount of mass of typec {1,2} at sitei € Z? at timet > 0. The particles migrate (independently
of each other) according to a nearest neighbor random walks i, j) = ﬁﬂ{“,ﬂ:l}. Additionally the
mass of each type fluctuates randomly according to Fellegadhing diffusion, however with a diffusion
rate proportional to the mass of the other type at that paeticsite. The proper space of the process is a
subspaceé c V¢ that fulfills a natural growth condition (see Theorem 1.1 aid@on and Perkins (1998)).
Formally we defindé,;):>o as the Markov process oki with generato given by

:Z[ 3 ali )z (e) - 2(i) ()] 2 + ) a w3 — 0 LE@ | (357)

NI i€Z4 Oz (Z) (0)2

The explicit construction of this process can be found in Bawand Perkins (1998). Uniqueness in law is
based on Mytnik’s duality (see Mytnik (1996)).

Dawson and Perkins investigate the longtime behavidéof They show thatitl = 1 ord = 2 and
& = 6 € (0,0)? then locally one type dies out (in probability) while the ethype is locally constant but
random. The question that was raised by Ed Perkins at the \I®9Gouver Probability Meeting is whether
it is always (i.e. as time passes) the same type that is Jopadidominant. From the above discussion the
reader might by now guess the right answer. Here however,ratefant to give the result of Dawson and
Perkins in detail.

Consider planar Brownian motiqiB; );>o in the upper right quadraif, started ird € (0, c0)?. Define
my to be the distribution of the first hitting @B, of the boundaryV = {0} x [0,00) U [0, 00) x {0} of
V. my is absolutely continuous w.r.t. Lebesgue measur@@randsupp(mg) = 9V for 6 € (0,00)%. In
fact, it is an exercise to compute the densityrof. Letting

c=1

day 2 2 2 2 2y2\
glay2) = =2 (4a%2 + (2437 —2?)?) =z w0,
s
we have

mg(dvr, {0}) = g(0(1),6(2),v1)dvs,
mg ({0}, dvg) g(0(2),0(1), va)dvs.

Further let),, be the unit mass at the element X with all components equal to€ V. Finally define

o = /E ma(dv)d, (3.58)

= / mg(dvl, {O})5(v1,0) + / mg({O}, d02)5(07v2). (359)
[0,00) [0,00)
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Theorem 1.5 of Dawson and Perkins (1998) says that for thetanhstated € X with all components
equal tod,

L6) =3 po. (3.60)

In order to apply our abstract argument we have to have amiantaclassMy C D(uy) in the domain
of stochastic attraction gfy. A large classM, with these features has been obtained by Cox, Klenke and
Perkins (1999). They show in their Theorem 2 that

Mo = {u ePX): C, < oo, tlim p(dz) (arx(i)(c) — 0(c))? =0, i € 2, ¢ =1, 2} , (3.61)
where

C, = sup /,u(dx) z(1)(4) + 2(2) (1), (3.62)

€24

is convergence determining in the sense of (A2). In paricuve have
LUE]) Z2 e, pe Mg, 0 €O. (3.63)

It is simple to check invariance 0%1y (A1). In fact, forallT > 0, i € Z% andc = 1,2, by Theorem
2.2 of Dawson and Perkins (1998),

Brer()(02] = EX((ar&(e)()] (3.64)
T
[ B (i) () to(h) 2]

kezd
Hence Jensen’s inequality yields (withr = fOT a.(0,0)dt)
C;LS(T) S (1 + GQT)CP. < 00. (365)

On the other hand, again by Theorem 2.2 of Dawson and Perkins,
E*[(a—rér(i)(c) — 6(c))?] — / p(dz)(ap)(i)(c) — 6(c))” (3.66)
T
= [ a3 B (e k) (Da () 2)

kezd
1 t—o0
§CH . (th - GQ(th)) — 0.
HenceuS(T') € My and M, fulfills assumption (A1).
Now we present the main new result of this work which is an irdiat consequence of Proposition 2.3
and Cox, Klenke and Perkins (1999).

IN

Theorem 5 Fix 6 € (0,00) andu € M,. For every finite seff C Z<¢ and everyp € {0} x [0,00) U
[0,00) x {0}

P# [liminf sup ||&(i) — p|| =0 = 1. (3.67)
t—o0 i€H

In particular, P#-a.s. the locally predominant type changes infinitely often
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