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Abstract

Many interacting particle systems with short range interactions are not ergodic, but converge weakly
towards a mixture of their ergodic invariant measures. The question arises whether a.s. the process even-
tually stays close to one of these ergodic states, or if it changes between the attainable ergodic states
infinitely often (“recurrence”). Under the assumption thatthere exists a convergence–determining class
of distributions that is (strongly) preserved under the dynamics, we show that the system is in fact recur-
rent in the above sense.

We apply our method to several interacting particle systems, obtaining new or improved recurrence
results. In addition, we answer a question raised by Ed Perkins concerning the change of the locally
predominant type in a model of mutually catalytic branching.
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1 Introduction

We start with an example to explain the problem we address in this work.
Consider the (basic) voter model(ξt)t≥0 on Z

d. Think of each point inZd as being occupied by an
individual that is capable of holding either of the opinions0 and1. After a rate-one exponential waiting
time, a given individual chooses one of his2d nearest neighbors at random and assumes its opinion. All
waiting times and choices of neighbors are made independently. The opinion of the voter atx at timet is
given byξt(x).

Formally, we can define the voter model as the Markov process(ξt)t≥0 on X = {0, 1}Z
d

, equipped
with the product topology, via its generatorG. Forx ∈ X andi, j, k ∈ Z

d let

xi,j(k) =

{
x(k) k 6= i,

x(j) k = i.

ForF : X → R depending only on finitely many coordinates, we defineGF by

GF (x) =
∑

i∈Zd

1

2d

∑

|j−i|=1

[F (xi,j) − F (x)] .

For more a detailed description and background information, see Chapter V of Liggett (1985).
It is well known that the voter model clusters in dimensiond ≤ 2. More precisely, if we start at time 0

with independent opinions, where opinion 1 has probabilityθ ∈ (0, 1), then

L[ξt]
t→∞
=⇒ (1 − θ)δ0 + θδ1. (1.1)

Here,δ0 andδ1 are the unit masses on the states where all individuals have opinion 0, respectively 1,L
denotes the law of a random variable, and=⇒ denotes weak convergence of probability measures. Note
that sinceX carries the product topology, (1.1) is equivalent to convergence of the finite dimensional dis-
tributions. A question that arises naturally, given (1.1),is:

Does the opinion at a given site change value infinitely often?

The question has been answered affirmatively by means of rather special arguments in Cox and Griffeath
(1986).

A simple argument that works for shift ergodic initial states was brought to our attention by Jeff Steif:
Consider the events

Ai = {∃ T : ξt(i) = 1, t ≥ T }, i ∈ Z
d.

For |i − j| = 1 is is easy to see thatAi = Aj a.s. hence a.s.Ai = A := ∩jAj . HoweverA is shift
invariant and by ergodicity we haveP[A] ∈ {0, 1}. Sinceθ < 1, clearlyP[A] = 0. Now change the1 in
the definition ofAi into 0 to conclude that the opinion changes infinitely often.

There are two drawbacks of this argument: (i) It works only for shift ergodic initial states. (ii) For many
models it is hard to check whetherAi = Aj a.s. or not.

The aim of this work is to give a robust and simple abstract argument that can be applied to a large
variety of models and for initial states that only need to have a global density. We do not assume translation
invariance or even ergodicity. This argument relies only onthe assumptions that a certain class of probability
measures on the state space is preserved under the dynamics of (ξt), and that this class is “convergence
determining” in an appropriate sense. In particular, the argument does not rely on quantitative estimates
that make use of special features (or the dimension!) of the considered models.

For the voter model, we are able to prove a.s. alternation of types under more general conditions than
were considered in Cox and Griffeath (1986). We also consider several related models, as well as a model
of mutually catalytic branching recently introduced by Dawson and Perkins (1998).
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Note that our focus lies on the situation where the model is not ergodic, i.e., the weak limit points are
mixturesof the ergodic invariant measures. We show that the process gets “close” to any of the ergodic
states (occurring in the mixture) at arbitrarily late times. This question has often been connected to the
question of whether low-dimensional binary branching random walk, starting in a homogeneous Poisson
field, populates a given site at arbitrarily late times. Thisis known to be be true ford = 2 and false
for d = 1. Note, however, that this is a fundamentally different question than the one we address, since
branching random walk is ergodic. Namely, ifd ≤ 2, the unit massδ0 on the empty configuration is the
only invariant measure (withσ-finite intensity measure).

It turns out that the correct notion of convergence of randomprobability measures is crucial. We discuss
the topological details and give the abstract statement in Section 2. In Section 3 we apply our result to:

• the multitype voter model,

• interacting diffusions on[0, 1],

• interacting Fleming Viot Processes,

• interacting Brownian motions,

• mutually catalytic branching super random walk.

2 Result

In this section we formulate and prove our abstract result.
Let X be a locally compact Polish space and denote byP(X) the space of probability measures onX

equipped with the topology of weak convergence of probability measures.P(X) is again a locally compact
Polish space (see, e.g., Kallenberg (1983)). Consider now adiscrete time Markov process(ξn)n∈N0

onX .
(We could consider a Feller process(ξt)t≥0 on X instead, but we choose the discrete time setting for the
sake of generality.) Denote by(S(n))n∈N0

its semigroup. That is, forµ ∈ P(X) andn ∈ N0,

µS(n) = Lµ[ξn].

We want to describe the longtime behavior ofξn in terms of its possible limit pointsµθ, θ ∈ Θ, where
Θ is an abstract set. (We do not assume that(µθ)θ∈Θ necessarily exhausts the class of possible limit points.)
In the example of the voter model,Θ = [0, 1] andµθ = (1 − θ)δ0 + θδ1.

Now we make the crucial definition:

Definition 2.1 The domain of stochastic attractionD(µθ) of µθ is the set of measuresµ ∈ P(X) such that
for all m ∈ N0, Pµ[ξm ∈ dx]-stochastically,Lx[ξn]

n→∞
=⇒ µθ. Formally,

D(µθ) =
{
µ ∈ P(X) : Pµ[Lξm [ξn] ∈ U]

n→∞
−→ 1 ∀ openU ∋ µθ andm ∈ N0

}
. (2.1)

Clearly,D(µθ) is a convex set but it is in general not closed. For example, inthe voter modelπθS(n)
n→∞
=⇒

µθ, whereπθ is the product measure on{0, 1}Z
d

with intensityθ. We will see later thatπθS(n) ∈ D(µθ),
n ∈ N0, but obviouslyµθ /∈ D(µθ) if θ ∈ (0, 1). SinceD(µθ) is not compact we cannot hope for a nice
description in terms of extremal elements. In spite of this,we give a mild sufficient condition for a set
Mθ ⊂ P(X) to be a subset ofD(µθ) that covers a wide range in the examples.
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Assumption 1.Mθ ⊂ P(X) is invariant under the dynamics of(ξn), i.e.,

S(1)Mθ ⊂ Mθ. (A1)

Assumption 2.For allµ ∈ Mθ, the lawsLx[ξn] converge toµθ in µ(dx) probability. That is, ifU ⊂ P(X)
is open andµθ ∈ U, then for allµ ∈ Mθ,

µ({x ∈ X : Lx[ξn] ∈ U})
n→∞
−→ 1. (A2)

Proposition 2.2 If Mθ fulfills the assumption (A1) and (A2) thenMθ ⊂ D(µθ). Further,D(µθ) fulfills
(A1) and (A2) and is hence the maximal set fulfilling (A1) and (A2).

Proof The proof is simple as is left as an exercise. 2
In the context of the voter model, for0 < θ < 1 and withµθ = (1 − θ)µ0 + θµ1, we would like to argue
that (A1) and (A2) guarantee that for any initial measureµ ∈ Mθ, the processξt gets “close” to0 and to1
at arbitrarily late timest. The meaning of (A1) is clear. However, condition (A2) is somewhat unusual, so
we would like to discuss its interpretation and our reasons for choosing it.

There are basically three types of convergence that we mightchoose for (A2): convergence of the
means, stochastic convergence and almost sure convergence. Since we consider convergence of random
probability measures, convergence inL1 and stochastic convergence coincide, and both are implied by
almost sure convergence, while both imply convergence of the means. We illustrate the meaning of these
concepts in the example of the voter model.

By convergence of the means, we mean the condition

µS(n)
n→∞
=⇒ µθ ∀µ ∈ Mθ. (2.2)

That is,Mθ is a subset of the domain of attraction ofµθ. In the example of the voter model, we could set
Mθ = {µθ}, in which case (2.2) would certainly hold. However, in this case we would haveξn ≡ ξ0 a.s.,
so there would be no change of types at all. Hence, this notionis too rough for our purposes.

By almost sure convergence, we mean the condition

µ({x ∈ X : Lx[ξn]
n→∞
=⇒ µθ}) = 1 ∀µ ∈ Mθ. (2.3)

(Since (2.3) does not hold for the voter model withMθ = {µθ}, our objection to (2.2) does not apply.)
Certainly (2.3) implies (2.2), but it is correspondingly more difficult to verify in any given example. For
the voter model, by usingduality (see Chapter V of Liggett (1985)), it is possible to verify (2.3) for some
classesMθ. However, verification becomes rather difficult for more complicated models, so we do not
adopt this notion of convergence.

By stochastic convergence, we mean exactly (A2), which is a weaker condition than (2.3), but still
strong enough for our purposes. For the voter model, to verify (A2), we only have to show that for all finite
H ⊂ Z

d andε > 0,

µ({x ∈ X : Px[ξn(x) = 1 ∀x ∈ H ] > θ − ε, Px[ξn(x) = 0 ∀x ∈ H ] > 1 − θ − ε})
n→∞
−→ 1. (2.4)

This fact, forµ belonging to a large classMθ, is easily proved using duality (see the proof of Theorem 1)
below.

Now we come back to the general situation. LetSθ = supp(µθ) be the closed support ofµθ. For a
sequence(xn)n∈N in X let A((xn)n∈N) denote the set of accumulations points of(xn)n∈N in X .
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Proposition 2.3 For eachθ ∈ Θ, for all µ ∈ D(µθ),

P
µ[Sθ ⊂ A((ξn)n∈N)] = 1. (2.5)

Proof Let U ⊂ X be open, withU ∩ Sθ 6= ∅. We will show that there exists a sequencetn ↑ ∞ such that

Pµ[ξtn
∈ U infinitely often] = 1. (2.6)

Clearly, (2.6) implies (2.5).
By our choice ofU ,

δ := µθ(U) > 0.

ChooseU ⊂ P(X) open,µθ ∈ U, such thatν(U) > δ/2 for all ν ∈ U. By (A1) and (A2) we can choose a
sequencetn ↑ ∞ such that

(µS(tn))
({

x ∈ X : Lx[ξtn+1−tn
] ∈ U

})
> 1 − 2−n.

Denote byAn the event

An = {ξtn
∈ U}

and let

Bn =
{
x ∈ X : Lx[ξtn

] ∈ U
}
.

If we letF = σ(ξ0, ξ1, . . . , ξt) be the filtration induced by(ξt) then by the Markov property forn ∈ N

P
µ
[
P

µ[An|Ftn−1
] < δ/2

]
= µS(tn−1)

({
x ∈ X : P

x[ξtn−tn−1
∈ U ] < δ/2

})

≤ µS(tn−1)
({

x ∈ X : Lx[ξtn−tn−1
] 6∈ U

})

≤ 2−n.

(2.7)

HencePµ–almost surePµ[An|Ftn−1
] ≥ δ/2 for infinitely manyn ∈ N. In particular,

Pµ

[
∞∑

n=1

Pµ[An|Ftn−1
] = ∞

]
= 1. (2.8)

Now according to the conditional Borel–Cantelli lemma (see, e.g., Durrett (1996), Corollary 4.3.2)

lim sup
n→∞

An =

{
∞∑

n=1

Pµ[An|Ftn−1
] = ∞

}
(mod Pµ). (2.9)

Hence

Pµ

[
lim sup

n→∞
An

]
= 1,

which implies (2.6). 2
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3 Applications

The situation we have in mind is that of a “general” interacting particle system where a global variable,
typically the density of particles, is preserved under the dynamics. The models we consider here have a
number of features in common. The state space isX ⊂ V G, equipped with the product topology, where the
countably infinite Abelian groupG (we exclude expressis verbis the possibility ofG finite!) plays the role
of the site space.V is the space of values that a local coordinate can assume. In the context of genealogical
models, we haveV ⊂ [0,∞)E or V ⊂ Mf (E) (the finite measures onE), whereE is a “type” space. For
v ∈ V we interpretv(e) as the number of particles of typee ∈ E. WhenV is compact we can, in fact, take
X = V G, but for non-compactV , we need to impose growth conditions on the coordinates. In all cases,
the interaction of the coordinates will be described in terms of an irreducible random walk kernela(·, ·) on
G. The continuous time transition kernelat is defined by

at = e−t
∞∑

n=0

tn

n!
a(n),

wherea(n) is then-step transition probability ofa.
Forv ∈ V , we letv denote the elementv ∈ X such thatv(g) = v for all g ∈ G. P always denotes the

space of probability measures on a locally compact Polish space equipped with the weak topology.

3.1 The Multitype voter model

Fix a positive integerc > 1, the number of types (opinions), letE = {1, . . . , c} be the space of types, and
let V = {1{e}, e ∈ E}. Let X = V G, and define, forx ∈ X andg, g′, h ∈ G,

xg,g′ (h) =

{
x(h), h 6= g,

x(g′), h = g.
(3.1)

We define the voter model(ξt)t≥0 to be the Markov process onX with generatorG, where forF : X → R

depending on only finitely many coordinates,

GF (x) =
∑

g,h∈G

a(g, h) (F (xg,h) − F (x)) . (3.2)

Define the simplex

Θ = P(E) =
{
θ : E → [0, 1] with

∑

e∈E

θ(e) = 1
}
, (3.3)

and forθ ∈ Θ let Mθ be the collection ofµ ∈ P(X) such that for allg ∈ G ande ∈ E,

lim
s→∞

∫
µ(dx)((asx(g) − θ)(e))2 = 0. (3.4)

In the case thatG = Z
d, the collectionMθ contains all translation invariant, shift ergodicµ ∈ P(X)

satisfying
∫

µ(dx)x(0) = θ (see pp. 180–181 of Cox, Greven and Shiga (1995) for the casec = 2). For
θ ∈ Θ define

µθ =
∑

e∈E

θ(e) δe, (3.5)

and note thatSθ = {e : e ∈ E andθ(e) > 0.}
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We assume that the symmetrized kernelâ given by

â(g, h) =
a(g, h) + a(h, g)

2

is recurrent. It is well known that the voter model clusters in this situation. In particular, Theorem V.1.9 of
Liggett (1985) implies that for allµ ∈ Mθ,

Lµ[ξt]
t→∞
=⇒ µθ. (3.6)

Theorem 1 Let θ ∈ Θ andµ ∈ Mθ. Then for alle ∈ E with θ(e) > 0, and for all finiteH ⊂ G, all
the componentsξt(h), h ∈ H , simultaneously assume the value1e at arbitrarily late times with probability
one.

Proof It suffices to verify that (A1) and (A2) hold, in which caseMθ ⊂ D(µθ) is in the domain of
stochastic attraction ofµθ and our conclusion is justified by Proposition 2.3. To do this, we make use of
duality (see Chapter V of Liggett (1985)), which we briefly describe.Let (ηg

t , g ∈ G)t≥0 be a system of
rate one continuous time coalescing random walks onG, with step distributiona(g, h). For eachg ∈ G,
ηg

t is a random walk started atg. The random walksηg
t run independently until two of them meet, at which

time the walks (instantly) coalesce, and after that move together. A special case of the duality relation (see
(V.1.7) of Liggett (1985)) connectingηt andξt is: for all x ∈ X , finite H ⊂ G andv ∈ V ,

P
x[ξt(h) = v, h ∈ H ] = P[x(ηh

t ) = v, h ∈ H ]. (3.7)

Fix µ ∈ Mθ andt > 0. To verify (A1), we must show that for fixedg ande,

E
µ

[
(asξt(g) − θ)(e)2

] s→∞
−→ 0. (3.8)

ForH ⊂ G, let τH to be the first time at which all the random walks started inH have coalesced,

τH = inf{t > 0 : ηg
t = ηh

t ∀ g, h ∈ H}. (3.9)

Note that
Cov

x[ξt(g)(e), ξt(h)(e)] ≤ P[τ{g,h} ≤ t].

Hence

Eµ[(asξt(g)(e) − θ(e))2] −

∫
µ(dx)(as+tx(g)(e) − θ(e))2

=

∫
µ(dx)Var

x[asξt(g)(e)]

=

∫
µ(dx)

∑

h,k∈G

as(g, h)as(g, k)Cov
x[ξt(h)(e), ξt(k)(e)]

≤
∑

h,k∈G

as(g, h)as(g, k)Ft(k − h),

(3.10)

whereFt(k − h) = P[τ{h,k} ≤ t]. By the assumption thatµ ∈ Mθ, the second term on the left side above
tends to 0 ass → ∞. The right side also tends to 0 ass → ∞, sinceG is infinite anda is irreducible, and
sinceFt(h) → 0 as|h| → ∞. (That is, for any sequence(Gn) of finite subsets ofG such thatGn ↑ G as
n → ∞, sup{Ft(h) : h ∈ G \ Gn} → 0 asn → ∞.)

In order to show that (A2) holds, it suffices to show that forε > 0 and finiteH ⊂ G,

lim
t→∞

µ({x : Px[ξt(h) = 1{e} for all h ∈ H ] > θ(e) − ε for all e ∈ E}) = 1. (3.11)
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The setE of types is finite, so it suffices to prove that for each fixede ∈ E,

lim
t→∞

µ({x : P
x[ξt(h) = 1{e} for all h ∈ H ] > θ(e) − ε}) = 1. (3.12)

Choose an arbitraryg ∈ H . By (3.7),

P
x[ξt(h) = 1{e} for all h ∈ H ] ≥ P[x(ηg

t ) = 1{e}, τH ≤ t]

≥ P[x(ηg
t ) = 1{e}] − P[τH > t]

= atx(g)(e) − P[τH > t].

Since we have assumed thatâ is recurrent,P[τH > t] → 0 ast → ∞. Therefore,

µ({x : Px[ξt(h) = 1{e} for all h ∈ H ] ≤ θ(e) − ε})

≤ µ({x : (atx(g) − θ)(e) ≤ −(ε − P[τH > t])})

≤

∫
µ(dx)((atx(g) − θ)(e))2/(ε − P[τH > t])2

−→ 0

ast → ∞, on account of (3.4). 2
3.2 Interacting diffusions

Here we consider a two–type genealogical model with migration and resampling. We suppose that at each
siteg ∈ G there is a large colony of individuals, and each individual must be one of two genealogical types,
A or B. The frequency of type A at siteg at timet is ξt(g). HenceE = {1, 2} and we identifyP(E) with
[0, 1] and letV = [0, 1]. Further we let(ξt)t≥0 be the Markov process with state spaceV G and generator
G, where, for suitableF : X → R,

GF (x) =
∑

g,h∈G

a(g, h)[x(h) − x(g)]
∂F (x)

∂x(g)
+

∑

g∈G

̺(x(g))
∂2F (x)

∂2x(g)
. (3.13)

The migration kernela is an irreducible random walk kernel onG, and the diffusion coefficient (or resam-
pling function)̺ is a function̺ : [0, 1] → [0,∞) that satisfies

̺(0) = ̺(1) = 0,

̺(r) > 0, r ∈ (0, 1), (3.14)

̺ is Lipschitz continuous.

The ergodic theory of this process has been studied by Shiga (1980a,b) (for the case̺(r) = r(1 − r)),
Notahara and Shiga (1980) and Cox and Greven (1994). As with the voter model, there is either coexistence
or local extinction of one type, depending on whether the symmetrized kernel̂a defined in (3.1) is transient
or recurrent. We assume here thatâ is recurrent. LetΘ = [0, 1], and forθ ∈ Θ let Mθ be the collection of
µ ∈ P(X) such that for allg ∈ G,

lim
s→∞

∫
µ(dx)(asx(g) − θ)2 = 0. (3.15)

Forθ ∈ Θ, let µθ = (1− θ)δ0 + θδ1, and note thatSθ = {0,1}. By Theorem 4 of Cox and Greven (1994),
if µ ∈ Mθ then

Lµ[ξt]
t→∞
=⇒ (1 − θ)δ0 + θδ1. (3.16)

We prove here a recurrence result forξt that extends a result of Fleischmann and Greven (1994) for a
specialG anda (see the proof of their Proposition 5.11).
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Theorem 2 Letθ ∈ (0, 1) andµ ∈ Mθ. Then, for all finiteH ⊂ G,

Pµ

[
lim inf
t→∞

sup
h∈H

ξt(h) = 0 and lim sup
t→∞

inf
h∈H

ξt(h) = 1

]
= 1. (3.17)

Proof It suffices to verify that (A1) and (A2) hold, in which caseMθ ⊂ D(µθ) is in the domain of
stochastic attraction ofµθ and our conclusion is justified by Proposition 2.3. Fixµ ∈ Mθ andt > 0. To
verify (A1) we must show that

lim
s→∞

Eµ[(asξt(g) − θ)(asξt(h) − θ)] = 0. (3.18)

In order to compute the first and second moment we use Lemma 1 ofCox and Greven (1994):

Ex[ξt(g)] = atx(g) (3.19)

Ex[ξt(g)ξt(h)] = atx(g)atx(h) +
∑

l∈G

∫ t

0

at−r(h, l)at−r(k, l)Ex[̺(ξr(l))] dr. (3.20)

Now it is straightforward to check the formula

E
µ[(ξt(h) − θ)(ξt(k) − θ)]

=

∫
µ(dx)(atx(h) − θ)(atx(k) − θ) +

∑

l

∫ t

0

at−r(h, l)at−r(k, l)Eµ[̺(ξr(l))] dr. (3.21)

It follows that

Eµ[(asξt(g) − θ)(asξt(g) − θ)]

=

∫
µ(dx)(as+tx(g) − θ)2 +

∑

l

∫ t

0

a2
s+t−r(g, l)Eµ[̺(ξr(l))] dr.

(3.22)

The first term on the right side of (3.22) tends to 0 ass → ∞ becauseµ ∈ Mθ. The second term on the
right side of (3.22) is bounded above by

‖̺‖∞

∫ t

0

â2(s+r)(g, g) dr,

and this also tends to 0 ass → ∞ (recall that|G| = ∞ and thata is irreducible, hencêar(g, g) → ∞ as
r → ∞). We have thus established (3.18)

In order to show that (A2) holds, it suffices to prove that for finiteH ⊂ G andε > 0,

lim
t→∞

µ
(
{x : Px[ξt(h) < ε ∀h ∈ H ] > 1 − θ − ε andPx[ξt(h) > 1 − ε ∀h ∈ H ] > θ − ε}

)
= 1.

(3.23)

We break the proof of (3.23) into two parts. First, we show that for anyg ∈ G andε > 0,

lim
t→∞

µ
(
{x : Px[ξt(g) < ε] > 1 − θ − ε, andPx[ξt(g) > 1 − ε] > θ − ε}

)
= 1. (3.24)

Then we show that for anyg, h ∈ G andε > 0,

lim
t→∞

µ
(
{x : Px[

∣∣ξt(g) − ξt(h)
∣∣ > ε] > ε}

)
= 0. (3.25)
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It is easy to see that (3.24) and (3.25) imply (3.23)
Let H ⊂ G be finite, letδ > 0, and define

Γt(δ) =
{
x :

∣∣atx(h) − θ
∣∣ < δ for all h ∈ H

}
.

Sinceµ ∈ Mθ andH is finite, Chebyshev’s inequality and (3.15) imply that that

lim
t→∞

µ(Γt(δ)) = 1. (3.26)

Suppose now thatH = {g, h}. In the proof of Theorem 4 in Cox and Greven (1994), it is shownthat for
δ > 0,

E
x[(ξt(g) − δ2)(ξt(h) + δ2)] ≥ atx(g) − qt(δ, g, h)− δ2, (3.27)

whereqt(δ, g, h) → 0 ast → ∞. (The quantityqt(δ, g, h) is the probability that two random walks starting
from g andh, which move independently according to the kernelas, and coalesce at ratec whenever they
occupy the same site, coalesce by timet. The constantc depends ong, h, ̺ andδ, but is strictly positive.)
After a little rearrangement (using (3.19)), this inequality implies that

0 ≤ E
x[ξt(g)(1 − ξt(h))] ≤ qt(δ, g, h) + 2δ2. (3.28)

By choosingt large enough so thatqt(δ, g, h) < δ2, we have

0 ≤ Ex[ξt(g)(1 − ξt(h))] ≤ 3δ2. (3.29)

Settingg = h, Chebyshev’s inequality implies

Px[ξt(g)(1 − ξt(g)) ≥ δ] ≤ 3δ. (3.30)

Assume now that0 < δ < 1/4. For r ∈ [2δ, 1 − 2δ], r(1 − r) ≥ δ. Therefore, for larget, the last
estimate implies that

Px
[
ξt(g) ∈ [2δ, 1 − 2δ]

]
≤ 3δ. (3.31)

Using (3.19) we get that forx ∈ Γt(δ), Ex[ξt(g)] = atx(g) ≥ θ − δ. On the other hand,

Ex[ξt(g)] ≤ 2δPx[ξt(g) ≤ 2δ] + Px[ξt(g) > 2δ] = 1 − (1 − 2δ)Px[ξt(g) ≤ 2δ]. (3.32)

On account of these estimates,

Px[ξt(g) < 2δ] ≤
1 − θ + δ

1 − 2δ
. (3.33)

A similar argument gives the inequality

Px[ξt(g) > 1 − 2δ] ≤
θ + δ

1 − 2δ
. (3.34)

Combining (3.31), (3.33) and (3.34), we obtain that forx ∈ Γt(δ)

P
x[ξt(g) < 2δ] ≥ 1 − 3δ −

θ + δ

1 − 2δ
,

P
x[ξt(g) > 1 − 2δ] ≥ 1 − 3δ −

1 − θ + δ

1 − 2δ
.

(3.35)
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Givenε > 0, we may chooseδ > 0 small enough, and thent large enough so thatqt(δ, g, g) < δ2, and for
all x ∈ Γt(δ),

Px[ξt(g) < ε] > 1 − θ − ε and Px[ξt(g) > 1 − ε] > θ − ε.

In view of (3.26), (3.24) holds.
To prove (3.25), suppose that|ξt(g) − ξt(h)| > δ. Then, it must be the case that at least one of

ξt(g), ξt(h) belong to the interval[δ, 1−δ], or, one ofξt(g), ξt(h) is smaller thanδ and the other larger than
1 − δ. In the latter case, eitherξt(g)(1 − ξt(h)) > δ(1 − δ) or ξt(h)(1 − ξt(g)) > δ(1 − δ). Therefore,
Px[|ξt(g) − ξt(h)| > δ] is bounded above by

P
x
[
ξt(g) ∈[δ, 1 − δ]

]
+ P

x
[
ξt(h) ∈ [δ, 1 − δ]

]

+ Px[ξt(g)(1 − ξt(h)) > δ(1 − δ)] + Px[ξt(h)(1 − ξt(g)) > δ(1 − δ)].
(3.36)

For t large enough so thatqt(δ, g, h) < δ2, and allx ∈ Γt(δ), (3.29) and Chebyshev’s inequality imply

Px[ξt(g)(1 − ξt(h)) > δ(1 − δ)] ≤ 3δ/(1 − δ)

On account of this estimate, (3.31) and (3.36),

Px[|ξt(g) − ξt(h)| > δ] < 6δ + 6δ/(1 − δ). (3.37)

Givenε > 0, we may chooseδ > 0 small enough so that the right side above is less thanε, andt large
enough so thatqt(δ, g, h) < δ2. We therefore obtain that, for allx ∈ Γt(δ),

Px[|ξt(g) − ξt(h)| > ε] < ε. (3.38)

In view of (3.26), (3.25) holds. 2
3.3 Interacting Fleming Viot Processes

Here we consider a generalization of the two allele (A and B, say) model of the last example to infinitely
many alleles. The spaceE of alleles (or types) is now infinite. W.l.o.g. we assumeE = [0, 1]. The interval
[0, 1] is understood as an arbitrary labeling of the types. Though,we need some measureability ofE and
thus equip it with the Borelσ-field B from the euclidian metric on[0, 1].

Now ξt(g)(A) is the frequency at time timet of individuals in the colonyg ∈ G having a type that is
in A ∈ B. Henceξt(g) ∈ ∆E := V := P(E,B) (the set of probability measures on(E,B)) and(ξt) is a
Markov process with values in

X = P(E,B)G.

The process(ξt) is a model with migration and resampling. While the migration is just the one we intro-
duced in the previous subsection we must be more careful withthe resampling: we can define(ξt) uniquely
only for the so-called Fisher-Wright case̺(x) = c · x(1 − x), c > 0.

We define(ξt) in terms of its generatorG which is defined for certain polynomialsF : X → R by

GF (x) =
∑

g,h∈G

a(g, h)

∫

E

(
∂F (x)

∂x(g)
(e)

)
(x(h)(de) − x(g)(de))

+
∑

g∈G

∫

E

∫

E

(
∂2F (x)

(∂x(g))2
(e, e′)

) [
x(g)(de)δe(de′) − x(g)(de)x(g)(de′)

]
.

(3.39)

We do not explain the details of this formula but refer to Dawson, Greven and Vaillancourt (1995), equation
(0.8), or Chapter 2.6 of Dawson (1993).
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The possible limit pointsµθ will now be indexed by the setΘ = P(E,B). We define forθ ∈ Θ

Mθ = {µ ∈ P(P(E,B)G) : µ is shift ergodic with intensityθ}. (3.40)

By shift ergodicwe mean ergodic with respect to translations by any group element. Again for̂a recurrent
we have clustering and the limit points are mixtures of the measuresδδe

( the bold symbol indicates the
point mass on the constant stateδe, e ∈ E):

µθ =

∫

E

θ(de) δδe
. (3.41)

See Dawson, Greven and Vaillancourt (1995), Theorem 0.1. Inparticular,Sθ = supp(µθ) = {δe : e ∈
supp(θ)}.

Theorem 3 Letθ ∈ Θ andµ ∈ Mθ. Then for every finite setH ⊂ G and every setA ∈ B with µθ(A) > 0,

Pµ

[
lim sup

t→∞
inf

h∈H
ξt(h)(A) = 1

]
= 1. (3.42)

In particular, the the locally predominant type changes infinitely often.

Proof For fixedA ∈ B the process(ξ̃t(g); g ∈ G)t≥0 = (ξt(g)(A); g ∈ G)t≥0 is just the process of
interacting Fisher-Wright diffusions on[0, 1]. That is the process of interacting diffusions from the last
example with diffusion coefficient̺(x) = x(1 − x). Hence the claim follows from Theorem 2. 2
3.4 Interacting Brownian motions

So far we have considered examples where the state space (at each site) was compact. Now we come up
with our first example of a non-compact state space.

Here we consider only one type, i.e.,E = {1}. In the notation of the last few examples we have
Θ = V = R andX ⊂ R

G is a Liggett–Spitzer space (see Liggett and Spitzer (1981)). More precisely, fix
γ ∈ (0,∞)G with

∑
g∈G γ(g) < ∞ and with the property that

sup
g∈G

γ(g)−1 (γa)(g) < ∞. (3.43)

Now define‖x‖γ =
∑

g∈G |x(g)|γ(g) and let

X =
{
x ∈ R

G : ‖x‖γ < ∞
}
. (3.44)

For example, ifG = Z
d anda is the kernel of simple random walk thenγ = (1+‖x‖2)

−p fulfills the above
assumption forp > d. Hence allx ∈ R

Z
d

that do not grow faster than a polynomial are possible initial
configurations.

We define linearly interacting Brownian motions as the Markov process onX with generator

GF (x) =
∑

g,h∈G

a(g, h) [x(h) − x(g)]
∂F (x)

∂x(g)
+

1

2

∑

g∈G

∂2F (x)

∂x(g)2
. (3.45)

Define

M =
{
µ ∈ P(X) : {µ ◦ ((atx)(g))−1, t ≥ 0} is tight∀ g ∈ G

}
. (3.46)
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We show that if the symmetrized kernelâ is recurrent, then forµ ∈ M

Lµ[ξt]
t→∞
=⇒ µ0 :=

1

2
δ−∞ +

1

2
δ+∞, (3.47)

and moreover thatM ⊂ D(µ0), the domain of stochastic attraction ofµ0 (Of course, other subsets of
D(µ0) are conceivable). To make precise sense of this statement let R̄ = R ∪ {±∞} be the two point
compactification of the real line. The bold symbols−∞ and+∞ denote the elements in̄RG with all
components equal to−∞ respectively+∞.

In fact, even the stronger statement needed for (A2) is true

Lx[ξt]
t→∞
=⇒ µ0, µ(dx)-stochastically (3.48)

or equivalently: for allε > 0, K > 0 andH ⊂ G finite

lim inf
t→∞

µ
({

x : Px
[

inf
h∈H

ξt(h) > K
] ∧

Px
[

sup
h∈H

ξt(h) < −K
]

>
1

2
− ε

})
= 1. (3.49)

We give the simple proof of (3.49): First note that(ξt)t≥0 solves a system of stochastic differential
equations

dξt(g) =
∑

h∈G

a(g, h)[ξt(h) − ξt(g)] dt + dWt(g), (3.50)

where{(Wt(g)t≥0, g ∈ G} is an independent family of standard Wiener processes. (This can be seen
by an approximation procedure as in Shiga and Shimizu (1980), proof of Theorem 3.2.) Henceξt can be
written as

ξt(g) = (atξ0)(g) +

∫ t

0

∑

h∈G

at−s(g, h) dWs(h). (3.51)

From (3.51) we derive forx ∈ X the first and second moment:

Ex[ξt(g)] = (atx)(g), (3.52)

Cov
x[ξt(g), ξt(h)] =

1

2
Ĝ2t(g, h), (3.53)

whereĜt(g, h) is the Green function of the symmetrized kernelâ

Ĝt(g, h) =

∫ t

0

âs(g, h) ds

=

∫ t

0

∑

l∈G

as/2(g, l)as/2(h, l) ds.

Sincea is irreducible and̂a is recurrent, the weak ratio limit theorem (see, e.g., Spitzer’s book, Proposition
1.5) implies

Ĝt(g, h)

Ĝt(g, g)

t→∞
−→ 1. (3.54)

Hence asymptotically the components are perfectly correlated while

Var
x[ξt(g)] =

1

2
Ĝ2t(0, 0)

t→∞
−→ ∞. (3.55)
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Since underPx the field{ξt(g), g ∈ G} is Gaussian andEx[ξt(g)] = (atx)(g) is tight ast → ∞ (w.r.t.
µ) for all g ∈ G, this implies (3.49). Hence we have shown that (A2) holds.

Assumption (A1) however is an immediate consequence of (3.51). Thus we can apply Proposition 2.3
to get the following result:

Theorem 4 Letµ ∈ M. Then forH ⊂ G finite

µ
({

x : P
x
[
lim sup

t→∞
inf

h∈H
ξt(h) = ∞, lim inf

t→∞
sup
h∈H

ξt(h) = −∞
]

= 1
})

. (3.56)2
3.5 Mutually catalytic branching super random walk

We now come to the example that mainly motivated our work. Consider a two-type “infinitesimal mass”
interacting particle system onZd, i.e. G = Z

d, E = {1, 2}, V = [0,∞)2. Henceξt(i)(c) ∈ [0,∞) is
the amount of mass of typec ∈ {1, 2} at sitei ∈ Z

d at timet ≥ 0. The particles migrate (independently
of each other) according to a nearest neighbor random walk, i.e. a(i, j) = 1

2d1{|i−j|=1}. Additionally the
mass of each type fluctuates randomly according to Feller’s branching diffusion, however with a diffusion
rate proportional to the mass of the other type at that particular site. The proper space of the process is a
subspaceX ⊂ V G that fulfills a natural growth condition (see Theorem 1.1 of Dawson and Perkins (1998)).

Formally we define(ξt)t≥0 as the Markov process onX with generatorG given by

GF (x) =

2∑

c=1

[ ∑

i,j∈Zd

a(i, j)[x(j)(c) − x(i)(c)]
∂F (x)

∂x(i)(c)
+

∑

i∈Zd

x(i)(c)x(i)(3 − c)
∂2F (x)

∂x(i)(c)2

]
. (3.57)

The explicit construction of this process can be found in Dawson and Perkins (1998). Uniqueness in law is
based on Mytnik’s duality (see Mytnik (1996)).

Dawson and Perkins investigate the longtime behavior of(ξt). They show that ifd = 1 or d = 2 and
ξ0 ≡ θ ∈ (0,∞)2 then locally one type dies out (in probability) while the other type is locally constant but
random. The question that was raised by Ed Perkins at the 1997Vancouver Probability Meeting is whether
it is always (i.e. as time passes) the same type that is locally predominant. From the above discussion the
reader might by now guess the right answer. Here however, we first want to give the result of Dawson and
Perkins in detail.

Consider planar Brownian motion(Bt)t≥0 in the upper right quadrantV , started inθ ∈ (0,∞)2. Define
mθ to be the distribution of the first hitting ofBt of the boundary∂V = {0} × [0,∞) ∪ [0,∞) × {0} of
V . mθ is absolutely continuous w.r.t. Lebesgue measure on∂V andsupp(mθ) = ∂V for θ ∈ (0,∞)2. In
fact, it is an exercise to compute the density ofmθ. Letting

g(x, y, z) =
4xy

π

(
4x2y2 + (z2 + y2 − x2)2

)−1

z, x, y, z ≥ 0,

we have

mθ(dv1, {0}) = g(θ(1), θ(2), v1)dv1,

mθ({0}, dv2) = g(θ(2), θ(1), v2)dv2.

Further letδv be the unit mass at the elementv ∈ X with all components equal tov ∈ V . Finally define

µθ =

∫

E

mθ(dv)δv (3.58)

=

∫

[0,∞)

mθ(dv1, {0})δ(v1,0) +

∫

[0,∞)

mθ({0}, dv2)δ(0,v2). (3.59)
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Theorem 1.5 of Dawson and Perkins (1998) says that for the constant stateθ ∈ X with all components
equal toθ,

Lθ[ξt]
t→∞
=⇒ µθ. (3.60)

In order to apply our abstract argument we have to have an invariant classMθ ⊂ D(µθ) in the domain
of stochastic attraction ofµθ. A large classMθ with these features has been obtained by Cox, Klenke and
Perkins (1999). They show in their Theorem 2 that

Mθ =

{
µ ∈ P(X) : Cµ < ∞, lim

t→∞

∫
µ(dx) (atx(i)(c) − θ(c))2 = 0, i ∈ Z

d, c = 1, 2

}
, (3.61)

where

Cµ := sup
i∈Zd

∫
µ(dx) x(1)(i)2 + x(2)(i)2, (3.62)

is convergence determining in the sense of (A2). In particular, we have

Lµ[ξt]
t→∞
=⇒ µθ, µ ∈ Mθ, θ ∈ Θ. (3.63)

It is simple to check invariance ofMθ (A1). In fact, for allT > 0, i ∈ Z
d andc = 1, 2, by Theorem

2.2 of Dawson and Perkins (1998),

Eµ[ξT (i)(c)2] = Eµ[(aT ξ0(c))(i)
2] (3.64)

+

∫ T

0

dr
∑

k∈Zd

Eµ[aT−r(k, i)2arξ0(k)(1)arξ0(k)(2)].

Hence Jensen’s inequality yields (withGT =
∫ T

0 at(0, 0)dt)

CµS(T ) ≤ (1 + G2T )Cµ < ∞. (3.65)

On the other hand, again by Theorem 2.2 of Dawson and Perkins,

E
µ[(at−T ξT (i)(c) − θ(c))2] −

∫
µ(dx)(atx)(i)(c) − θ(c))2 (3.66)

=

∫ T

0

dr
∑

k∈Zd

E
µ[at−r(k, i)2arξ0(k)(1)arξ0(k)(2)]

≤
1

2
Cµ · (G2t − G2(t−T ))

t→∞
−→ 0.

HenceµS(T ) ∈ Mθ andMθ fulfills assumption (A1).
Now we present the main new result of this work which is an immediate consequence of Proposition 2.3

and Cox, Klenke and Perkins (1999).

Theorem 5 Fix θ ∈ (0,∞) andµ ∈ Mθ. For every finite setH ⊂ Z
d and everyρ ∈ {0} × [0,∞) ∪

[0,∞) × {0}

P
µ

[
lim inf
t→∞

sup
i∈H

‖ξt(i) − ρ‖ = 0

]
= 1. (3.67)

In particular,Pµ-a.s. the locally predominant type changes infinitely often.
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